SlideShare a Scribd company logo
1 of 16
Ingo Kröger
Department 4.1: Photometry and Applied Radiometry
Working Group 4.14: Solar Cells
The laser-based differential spectral responsivity
facility at PTB: Calibration services for energy rating
Metrological challenges related to energy rating?
2
Standard Test Conditions (STC)
+ irradiance dependence (Linearity)
+ temperature dependence
+ angular dependence
+ spectral dependence
Irradiance
W m-2 Spectrum 15°C 25°C 50°C 75°C
1100 AM1.5 NA
1000 AM1.5 STC
800 AM1.5
600 AM1.5
400 AM1.5 NA
200 AM1.5 NA NA
100 AM1.5 NA NA
IEC 61853-1
state of the art: mature metrological infrastructure incl. Quality
infrastructure, intercomparisons, round robins, validation,…
Energy rating: new metrological infrastructure is built up, new
techniques are developed, only few intercomparions, round
robins, …
𝜙, 𝜗
IEC 61853-2
PTB wants to provide a high precision calibration facility covering spectral irradiance dependence, spectral
temperature dependence and spectral angle of incidence measurements, i.e for validation purposes
Differential spectral responsivity (DSR) method
3
400 600 800 1000 1200 1400 1600 1800 2000
 / nm
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
E/W/m²nm
: AM1.5g (IEC 60904-3)
200 400 600 800 1000 1200 1400 1600 1800
Wavelength / nm
2468 135
Photon energy / eV
0,0
0,2
0,4
0,6
0,8
Absolutespectralresponsivity,s/AW-1
 = 100%
c-Si
GaInAs
CdTe
Poly-Si
CIS
a-Si GaInP
Ge
Component
Cell
SpektraleEmpfindlichkeits/A/W
• Measurement of the absolute spectral irradiance responsivity under STC
• Calculation of short circuit current for any given spectrum (AM1.5G, AM1.5D, AM0, measured/simulated
spectra,…)
Photocurrent: 𝐼𝑆𝑇𝐶 = 𝐸 𝜆 ∙ 𝑠 𝜆 𝑑𝜆
4
DSR- facility
• 2 beam technique:
 monochromatic irradiation
 Bias irradiation
• Reference radiometer:
Photodiode, traceable to SI
Eb
Solarzelle
DE()
200 400 600 800 1000 1200 1400 1600 1800
Wavelength / nm
2468 135
Photon energy / eV
0,0
0,2
0,4
0,6
0,8
Absolutespectralresponsivity,s/AW-1
 = 100%
c-Si
GaInAs
CdTe
Poly-Si
CIS
a-Si GaInP
Ge
Component
Cell
Ib + DIsc(, Eb)
0 – 1000 W/m²
Differential spectral responsivity (DSR) method
5
Laser-DSR facility @PTB
x,y,z-table
Monochromator
Optics (lenses, aperture,
monitor)
Bias-turrets
ϑ,φ-Goniometer
Puls-zu-CW
Konverter
(Glasfaser)
Chopper
Laser System
(Ti:Saphir Laser,
OPO, SHG, THG,
FHG)
Compact Array
Spectroradiometer
Measurements of differential spectral responsivity
curves 𝑠 𝑆𝑍 𝜆, 𝐸b at different Bias irradiance levels
Eb.
Comparison of solar cell against reference
photodiode in homogeneous monochromatic
fields, using monitor correction:
6
DSR fundamentals: From DSR to ISTC
Determination of AMx weighted currents
𝑠AMx 𝐼SC 𝐸b for each DSR curve at given Bias
irradiance level 𝐼SC 𝐸b :
If the solar cell would be linear, 𝑠AMx 𝐼SC 𝐸b
would be constant and 𝑠AMx 𝐼SC 𝐸b = 𝐼𝑆𝑇𝐶
absolute differential spectral responsivity ~s(, I(E)) of ENG55-S-04
400 600 800 1000 1200
 in nm
0,00
0,05
0,10
0,15
0,20
~sabsin
mA
W/m²
0%
1%
2%
3%
4%
5%
Urel(k=2)
: ISC= 0 mA
: ISC= 0,3 mA
: ISC= 1,2 mA
: ISC= 2,4 mA
: ISC= 9,4 mA
: ISC= 23,4 mA
: ISC= 50,2 mA
: ISC= 72,4 mA
: ISC= 99,1 mA
: ISC= 122,5 mA
: ISC= 135,1 mA
𝑠 𝑆𝑍 𝜆, 𝐼 𝐵𝑖𝑎𝑠 =
𝐼𝑆𝑍 𝜆, 𝐼 𝐵𝑖𝑎𝑠
𝐼 𝑀𝐷,𝑆𝑍 𝜆
𝐼 𝑅𝑒𝑓 𝜆
𝐼 𝑀𝐷,𝑅𝑒𝑓 𝜆
∙ 𝑠 𝑅𝑒𝑓 𝜆
𝑠AMx 𝐼SC 𝐸b = 0
∞
𝑠 𝜆, 𝐼SC (𝐸B ∙ 𝐸𝜆,AMx 𝜆 𝑑𝜆
0
∞
𝐸𝜆,AMx 𝜆 𝑑𝜆
0 20 40 60 80 100 120 140
I in mA
116
118
120
122
124
~sAMxin
mA
1000W/m²
Where is ISTC?
0 20 40 60 80 100 120 140
I in mA
0,010,1110 100 1000
E in W / m²
116
118
120
122
124
~sAMxin
mA
1000W/m²
-5%
-4%
-3%
-2%
-1%
0%
1%
2%
: DSR
: SR
: STC
7
DSR fundamentals: From DSR to ISTC
𝑠 𝐼SC 𝐸b =
𝜕𝐼SC 𝐸 𝑏
𝜕𝐸 𝐸 𝑏
BUT, what we actually measure is the differential
spectral responsivity (chopper, Lock-In technique)
Corresponds to the
slope of the linearity
curve at given points Eb
→
0
1000
d𝐸 = 1000 =
0
𝐼 𝑆𝑇𝐶
1
𝑠AM1.5 𝐼SC
d𝐼SC
ISTC (or any current at given spectrum Amx and
irradiance 𝐸b,AMx) can be derived from numerically
solving the upper equation.
→ 𝐸b,AMx =
0
𝐼 𝑆𝐶(𝐸 𝑏
1
𝑠AMx 𝐼SC
d𝐼SC
The absolute AMx spectral irradiance responsivity
is derived from:
𝑠 λ, 𝐸b,AMx =
𝐼𝑆𝐶(𝐸 𝑏
0
𝐼 𝑆𝐶(𝐸 𝑏 d𝐼sc
s λ,Isc
absolute differential spectral responsivity ~s(, I(E)) of ENG55-S-04
400 600 800 1000 1200
 in nm
0,00
0,05
0,10
0,15
0,20
~sabsin
mA
W/m²
0%
1%
2%
3%
4%
5%
Urel(k=2)
: ISC= 0 mA
: ISC= 0,3 mA
: ISC= 1,2 mA
: ISC= 2,4 mA
: ISC= 9,4 mA
: ISC= 23,4 mA
: ISC= 50,2 mA
: ISC= 72,4 mA
: ISC= 99,1 mA
: ISC= 122,5 mA
: ISC= 135,1 mA
: s(, 1000 W/m²)
8
Conclusion: DSR-calibration services
Energy rating related extended measurements:
+ irradiance dependence (Linearity)  already integral part of DSR-method (ISC)
+ temperature dependence
+ angular dependence
+ spectral dependence  already integral part of DSR-method (ISC)
Irradiance
W m-2 Spectrum 15°C 25°C 50°C 75°C
1100 AM1.5 NA 135,59 mA
1000 AM1.5 123,12 mA
800 AM1.5 98,23 mA
600 AM1.5 73,43 mA
400 AM1.5 48,73 mA NA
200 AM1.5 24,19 mA NA NA
100 AM1.5 12,03 mA NA NA
400 600 800 1000 1200
 / nm
0,00
0,05
0,10
0,15
0,20
sabs/mA/W/m²
ENG55-S-04
: E = 1100W/m²
: E = 1000W/m²
: E = 800W/m²
: E = 600W/m²
: E = 400W/m²
: E = 200W/m²
: E = 100W/m²
: E = 10W/m²
These measurements are needed for solar simulator measurements related to energy rating.
• s(λ, E): for spectral mismatch corrections
• ISC(E): for calibration of solar simulator irradiance level
• These measurements can be performed by PTB for reference solar cells up to 6” size (and mini-
modules)
9
Temperature dependent measurements
Full DSR-calibration at 4 different temperatures exceeds reasonable time scale
• Only perform relative DSR measurement dependent on solar cell temperature
• Set irradiance level to approx. 300W/m², since in general SR(1000 W/m²) ≈ DSR(300 W/m²)
• Set solar cell temperature to 15°C, 20°C, 25°C, 30°C, 40°C, 50°C, 75°C
• Peltier based heating/cooling: Temperature instability <0.2K
0 20 40 60 80 100 120 140
I in mA
0,010,1110 100 1000
E in W / m²
116
118
120
122
124
~sAMxin
mA
1000W/m²
-5%
-4%
-3%
-2%
-1%
0%
1%
2%
: DSR
: SR
400 600 800 1000 1200
 / nm
5
10
15
20
Ds
10-3
0,01
0,1
1
10
U(k=2)/%
: Type A
: freprod.homog.
: flambda
: fTypeB
: overall
20
30
40
50
60
70
10
Temperature dependent measurements
• Perform a linear regression for each wavelength
• Determination of spectral temperature coefficient
• Calculation of AM1.5 weighted temperature coefficient using the absolute SR.
20 30 40 50 60 70
Temperature / °C
3,0
3,5
4,0
4,5
Ds
:  = 1100nm
T coefficient, E, s, Product
400 600 800 1000 1200
 / nm
0
2
4
6
8
10
TC/%K-1
TC ISC : (0.00883 ± 0.00100) %/K
11
Conclusion: DSR-calibration services
Energy rating related extended measurements:
+ irradiance dependence (Linearity)  already integral part of DSR-method (ISC)
+ temperature dependence  extended temperature range, based on relative DSR
+ angular dependence
+ spectral dependence  already integral part of DSR-method (ISC)
Irradiance
W m-2 Spectrum 15°C 25°C 50°C 75°C
1100 AM1.5 NA 135.59 mA 0.221% 0.442%
1000 AM1.5 -0.0883% 123.12 mA 0.221% 0.442%
800 AM1.5 0.0883% 98.23 mA 0.221% 0.442%
600 AM1.5 0.0883% 73.43 mA 0.221% 0.442%
400 AM1.5 0.0883% 48.73 mA 0.221% NA
200 AM1.5 0.0883% 24.19 mA NA NA
100 AM1.5 0.0883% 12.03 mA NA NA
These measurements are needed for solar simulator measurements related to energy rating at different
temperatures (i.e. in climate chamber)
• s(λ, T): for spectral mismatch corrections
• ISC(T): for calibration of solar simulator irradiance level
• These measurements can be performed by PTB for reference solar cells up to 6” size (and mini-
modules), when appropriate thermal back contact possible
T coefficient, E, s, Product
400 600 800 1000 1200
 / nm
0
2
4
6
8
10
TC/%K-1
12
Angular dependent measurements
DSR-facility is equipped with an automated ϑ,φ-Goniometer
• Change angle of incidence of the solar cell relative to optical axis of the monochromatic beam
• Optical axis and center of rotation is kept fixed in the center and surface of the solar cell
• Bias light mounted on Goniometer base plate  Bias irradiance does not change upon rotation
Typical measurement:
ϑ: 0 - 90°, Δϑ = 5°
Φ: 0 - 90°, ΔΦ = 15°
λ: 300 nm – 1150 nm, Δ λ =50nm
ϑ
Φ
13
Angular dependent measurements
• Normalization of measured current to normal incidence
• Generally wavelength dependent angular response is observed
• Validation: comparison of spectral angular responsivity with integral angular response using a halogen
lamp (broadband light source of known spectral irradiance)
0 20 40 60 80
AOI / °
0,2
0,4
0,6
0,8
1,0
Angularresponsivity
: Cosine
: Integral measurement
 / nm
400
600
800
1000
0 20 40 60 80
AOI / °
-30
-25
-20
-15
-10
-5
0
5
Deviationfromcosine/%
: Integral measurement
 / nm
400
600
800
1000
0 20 40 60 80
AOI / °
-30
-25
-20
-15
-10
-5
0
Deviationfromcosine/%
-1,5
-1,0
-0,5
0,0
0,5
1,0
1,5
Deviation/%
: Integral measurement halogen lamp
: Halogen lamp weighted spectral angular response
: AM1.5 weighted spectral angular response
: Deviation spectral vs integral
: U (k=2)
0 20 40 60 80
AOI / °
0,2
0,4
0,6
0,8
1,0
Angularresponsivity
-4
-2
0
2
4
Deviation/%
: Cosine
: Integral measurement halogen lamp
: Halogen lamp weighted spectral angular response
: AM1.5 weighted spectral angular response
: Deviation spectral vs integral
: U (k=2)
14
Angular dependent measurements
• Calculation of weighted average of spectral angular response for different light sources
1. Weights: spectral responsivity + AM1.5 spectrum
2. Weights: spectral responsivity + Halogen lamp spectrum
• Experimental halogen lamp angular response agrees well with spectral angular response weighted by
spectral responsivity + halogen lamp spectrum
• AM1.5 (or any other spectrum) angular response can be derived from spectral angular response
measurements
15
Conclusion: DSR-calibration services
Energy rating related extended measurements:
+ irradiance dependence (Linearity)  already integral part of DSR-method (ISC)
+ temperature dependence  extended temperature range, based on relative DSR
+ angular dependence  additional spectral angular response measurements available
+ spectral dependence  already integral part of DSR-method (ISC)
Irradiance
W m-2 Spectrum 15°C 25°C 50°C 75°C
1100 AM1.5 NA 135.59 mA 0.221% 0.442%
1000 AM1.5 -0.0883% 123.12 mA 0.221% 0.442%
800 AM1.5 0.0883% 98.23 mA 0.221% 0.442%
600 AM1.5 0.0883% 73.43 mA 0.221% 0.442%
400 AM1.5 0.0883% 48.73 mA 0.221% NA
200 AM1.5 0.0883% 24.19 mA NA NA
100 AM1.5 0.0883% 12.03 mA NA NA
These measurements can be used for validation measurements of solar simulator based AOI-
measurements
• These measurements can be performed by PTB for reference solar cells up to 6” size (and mini-
modules)
𝜙, 𝜗
Thank you.
16

More Related Content

What's hot

Modeling and Optimization of Cold Crucible Furnaces for Melting Metals
Modeling and Optimization of Cold Crucible Furnaces for Melting MetalsModeling and Optimization of Cold Crucible Furnaces for Melting Metals
Modeling and Optimization of Cold Crucible Furnaces for Melting MetalsFluxtrol Inc.
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
My thesis presentation
My thesis presentationMy thesis presentation
My thesis presentationGigaF
 
PV Mismatch loss study using flash test datasets
PV Mismatch loss study using flash test datasetsPV Mismatch loss study using flash test datasets
PV Mismatch loss study using flash test datasetschaudharichetan
 

What's hot (20)

16 reise uncertainties_v02
16 reise uncertainties_v0216 reise uncertainties_v02
16 reise uncertainties_v02
 
12 wittmer p_vsyst_pvpmc_7
12 wittmer p_vsyst_pvpmc_712 wittmer p_vsyst_pvpmc_7
12 wittmer p_vsyst_pvpmc_7
 
22 2017 7th-pvpm_herrmann_final
22 2017 7th-pvpm_herrmann_final22 2017 7th-pvpm_herrmann_final
22 2017 7th-pvpm_herrmann_final
 
14 presentation barykina
14 presentation barykina14 presentation barykina
14 presentation barykina
 
08 supsi 2017_schweiger_v3
08 supsi 2017_schweiger_v308 supsi 2017_schweiger_v3
08 supsi 2017_schweiger_v3
 
25 7th energy-rating-and-module-performance-modeling-workshop-eisenlohr_final
25 7th energy-rating-and-module-performance-modeling-workshop-eisenlohr_final25 7th energy-rating-and-module-performance-modeling-workshop-eisenlohr_final
25 7th energy-rating-and-module-performance-modeling-workshop-eisenlohr_final
 
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
 
06 en50380 2017-03-29
06 en50380 2017-03-2906 en50380 2017-03-29
06 en50380 2017-03-29
 
2014 PV Performance Modeling Workshop: Results from Flash Testing at Multiple...
2014 PV Performance Modeling Workshop: Results from Flash Testing at Multiple...2014 PV Performance Modeling Workshop: Results from Flash Testing at Multiple...
2014 PV Performance Modeling Workshop: Results from Flash Testing at Multiple...
 
2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...
2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...
2014 PV Performance Modeling Workshop: Toward Reliable Module Temperature Mea...
 
2014 PV Performance Modeling Workshop: PV Module Characterization Methods at ...
2014 PV Performance Modeling Workshop: PV Module Characterization Methods at ...2014 PV Performance Modeling Workshop: PV Module Characterization Methods at ...
2014 PV Performance Modeling Workshop: PV Module Characterization Methods at ...
 
Gupta Roy MS Thesis Defense
Gupta Roy MS Thesis DefenseGupta Roy MS Thesis Defense
Gupta Roy MS Thesis Defense
 
Modeling and Optimization of Cold Crucible Furnaces for Melting Metals
Modeling and Optimization of Cold Crucible Furnaces for Melting MetalsModeling and Optimization of Cold Crucible Furnaces for Melting Metals
Modeling and Optimization of Cold Crucible Furnaces for Melting Metals
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
08 kyumin lee (cfv) single-diode model with rs temperature dependence
08 kyumin lee (cfv)   single-diode model with rs temperature dependence08 kyumin lee (cfv)   single-diode model with rs temperature dependence
08 kyumin lee (cfv) single-diode model with rs temperature dependence
 
PVsysts new framework to simulate bifacial systems
PVsysts new framework to simulate bifacial systemsPVsysts new framework to simulate bifacial systems
PVsysts new framework to simulate bifacial systems
 
26 corbellini random forest for mismatch
26 corbellini random forest for mismatch26 corbellini random forest for mismatch
26 corbellini random forest for mismatch
 
13 2017.03.30 freeman 7th pvpmc iec 61853 presentation
13 2017.03.30 freeman 7th pvpmc iec 61853 presentation13 2017.03.30 freeman 7th pvpmc iec 61853 presentation
13 2017.03.30 freeman 7th pvpmc iec 61853 presentation
 
My thesis presentation
My thesis presentationMy thesis presentation
My thesis presentation
 
PV Mismatch loss study using flash test datasets
PV Mismatch loss study using flash test datasetsPV Mismatch loss study using flash test datasets
PV Mismatch loss study using flash test datasets
 

Similar to 19 kröger

Data Teknis Gossen Metrawatt Ground Tester : GEOHM PRO & GEOHM XTRA
Data Teknis Gossen Metrawatt Ground Tester : GEOHM PRO & GEOHM XTRAData Teknis Gossen Metrawatt Ground Tester : GEOHM PRO & GEOHM XTRA
Data Teknis Gossen Metrawatt Ground Tester : GEOHM PRO & GEOHM XTRAPT. Siwali Swantika
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...Toshihiro FUJII
 
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniYasha Parvini
 
tube voltage accuracy and linearity output using exposure indicator and mean ...
tube voltage accuracy and linearity output using exposure indicator and mean ...tube voltage accuracy and linearity output using exposure indicator and mean ...
tube voltage accuracy and linearity output using exposure indicator and mean ...Adhianto Dwi
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告Toshihiro FUJII
 
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxRuben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxjoellemurphey
 
Data Teknis Gossen Metrawatt Earth Ground Clamp : METRACLIP EARTH
Data Teknis Gossen Metrawatt Earth Ground Clamp : METRACLIP EARTHData Teknis Gossen Metrawatt Earth Ground Clamp : METRACLIP EARTH
Data Teknis Gossen Metrawatt Earth Ground Clamp : METRACLIP EARTHPT. Siwali Swantika
 
Ac wave forms theroy
Ac wave forms theroyAc wave forms theroy
Ac wave forms theroyReece Hancock
 
SILICON-CARBIDE BASED TEMPERATURE SENSOR USING OPTICAL PYROMETRY AND LASER I...
 SILICON-CARBIDE BASED TEMPERATURE SENSOR USING OPTICAL PYROMETRY AND LASER I... SILICON-CARBIDE BASED TEMPERATURE SENSOR USING OPTICAL PYROMETRY AND LASER I...
SILICON-CARBIDE BASED TEMPERATURE SENSOR USING OPTICAL PYROMETRY AND LASER I...I'am Ajas
 
58808269 microwave-manual
58808269 microwave-manual58808269 microwave-manual
58808269 microwave-manualkeerthi vasan
 
EEP301: Transducer and instrumentation
EEP301: Transducer and instrumentationEEP301: Transducer and instrumentation
EEP301: Transducer and instrumentationUmang Gupta
 
Datasheet Metrel MI 3102H BT. Hubungi PT. Siwali Swantika 021-45850618
Datasheet Metrel MI 3102H BT. Hubungi PT. Siwali Swantika 021-45850618Datasheet Metrel MI 3102H BT. Hubungi PT. Siwali Swantika 021-45850618
Datasheet Metrel MI 3102H BT. Hubungi PT. Siwali Swantika 021-45850618PT. Siwali Swantika
 
Helical Methode - To determine the specific charge
Helical Methode - To determine the specific chargeHelical Methode - To determine the specific charge
Helical Methode - To determine the specific chargeharshadagawali1
 
Data Teknis Gossen Metrawatt Multimeter : METRAport 3A
Data Teknis Gossen Metrawatt Multimeter : METRAport 3AData Teknis Gossen Metrawatt Multimeter : METRAport 3A
Data Teknis Gossen Metrawatt Multimeter : METRAport 3APT. Siwali Swantika
 
ENEL301 report _Joseph Haystead_1132999
ENEL301 report _Joseph Haystead_1132999ENEL301 report _Joseph Haystead_1132999
ENEL301 report _Joseph Haystead_1132999Joseph Haystead
 

Similar to 19 kröger (20)

Data Teknis Gossen Metrawatt Ground Tester : GEOHM PRO & GEOHM XTRA
Data Teknis Gossen Metrawatt Ground Tester : GEOHM PRO & GEOHM XTRAData Teknis Gossen Metrawatt Ground Tester : GEOHM PRO & GEOHM XTRA
Data Teknis Gossen Metrawatt Ground Tester : GEOHM PRO & GEOHM XTRA
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
ACC_2014_Yasha_Parvini
ACC_2014_Yasha_ParviniACC_2014_Yasha_Parvini
ACC_2014_Yasha_Parvini
 
Belmonte
BelmonteBelmonte
Belmonte
 
tube voltage accuracy and linearity output using exposure indicator and mean ...
tube voltage accuracy and linearity output using exposure indicator and mean ...tube voltage accuracy and linearity output using exposure indicator and mean ...
tube voltage accuracy and linearity output using exposure indicator and mean ...
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docxRuben EscaleraG00092506Lab 5 Series and Pa.docx
Ruben EscaleraG00092506Lab 5 Series and Pa.docx
 
Data Teknis Gossen Metrawatt Earth Ground Clamp : METRACLIP EARTH
Data Teknis Gossen Metrawatt Earth Ground Clamp : METRACLIP EARTHData Teknis Gossen Metrawatt Earth Ground Clamp : METRACLIP EARTH
Data Teknis Gossen Metrawatt Earth Ground Clamp : METRACLIP EARTH
 
Ac wave forms theroy
Ac wave forms theroyAc wave forms theroy
Ac wave forms theroy
 
Si apd kapd0001e (1)
Si apd kapd0001e (1)Si apd kapd0001e (1)
Si apd kapd0001e (1)
 
SILICON-CARBIDE BASED TEMPERATURE SENSOR USING OPTICAL PYROMETRY AND LASER I...
 SILICON-CARBIDE BASED TEMPERATURE SENSOR USING OPTICAL PYROMETRY AND LASER I... SILICON-CARBIDE BASED TEMPERATURE SENSOR USING OPTICAL PYROMETRY AND LASER I...
SILICON-CARBIDE BASED TEMPERATURE SENSOR USING OPTICAL PYROMETRY AND LASER I...
 
58808269 microwave-manual
58808269 microwave-manual58808269 microwave-manual
58808269 microwave-manual
 
EEP301: Transducer and instrumentation
EEP301: Transducer and instrumentationEEP301: Transducer and instrumentation
EEP301: Transducer and instrumentation
 
Datasheet Metrel MI 3102H BT. Hubungi PT. Siwali Swantika 021-45850618
Datasheet Metrel MI 3102H BT. Hubungi PT. Siwali Swantika 021-45850618Datasheet Metrel MI 3102H BT. Hubungi PT. Siwali Swantika 021-45850618
Datasheet Metrel MI 3102H BT. Hubungi PT. Siwali Swantika 021-45850618
 
Helical Methode - To determine the specific charge
Helical Methode - To determine the specific chargeHelical Methode - To determine the specific charge
Helical Methode - To determine the specific charge
 
Katalog agilent-34420 a-micro-ohm-meter-tridinamika
Katalog agilent-34420 a-micro-ohm-meter-tridinamikaKatalog agilent-34420 a-micro-ohm-meter-tridinamika
Katalog agilent-34420 a-micro-ohm-meter-tridinamika
 
Data Teknis Gossen Metrawatt Multimeter : METRAport 3A
Data Teknis Gossen Metrawatt Multimeter : METRAport 3AData Teknis Gossen Metrawatt Multimeter : METRAport 3A
Data Teknis Gossen Metrawatt Multimeter : METRAport 3A
 
SENSING WITH CHAOS
SENSING WITH CHAOSSENSING WITH CHAOS
SENSING WITH CHAOS
 
ENEL301 report _Joseph Haystead_1132999
ENEL301 report _Joseph Haystead_1132999ENEL301 report _Joseph Haystead_1132999
ENEL301 report _Joseph Haystead_1132999
 
Electrons kag
Electrons kagElectrons kag
Electrons kag
 

More from Sandia National Laboratories: Energy & Climate: Renewables

More from Sandia National Laboratories: Energy & Climate: Renewables (20)

M4 sf 18sn010303061 8th us german 020918 lac reduced sand2018-1339r
M4 sf 18sn010303061 8th us german 020918 lac reduced sand2018-1339rM4 sf 18sn010303061 8th us german 020918 lac reduced sand2018-1339r
M4 sf 18sn010303061 8th us german 020918 lac reduced sand2018-1339r
 
Sand2018 0581 o metadata for presentations 011918 lac
Sand2018 0581 o metadata for presentations 011918 lacSand2018 0581 o metadata for presentations 011918 lac
Sand2018 0581 o metadata for presentations 011918 lac
 
11 Testing Shear Strength and Deformation along Discontinuities in Salt
11 Testing Shear Strength and Deformation along Discontinuities in Salt11 Testing Shear Strength and Deformation along Discontinuities in Salt
11 Testing Shear Strength and Deformation along Discontinuities in Salt
 
10 Current status of research in the Joint Project WEIMOS
10 Current status of research in the Joint Project WEIMOS10 Current status of research in the Joint Project WEIMOS
10 Current status of research in the Joint Project WEIMOS
 
26 Current research on deep borehole disposal of nuclear spent fuel and high-...
26 Current research on deep borehole disposal of nuclear spent fuel and high-...26 Current research on deep borehole disposal of nuclear spent fuel and high-...
26 Current research on deep borehole disposal of nuclear spent fuel and high-...
 
25 Basin-Scale Density-Dependent Groundwater Flow Near a Salt Repository
25 Basin-Scale Density-Dependent  Groundwater Flow Near a Salt Repository25 Basin-Scale Density-Dependent  Groundwater Flow Near a Salt Repository
25 Basin-Scale Density-Dependent Groundwater Flow Near a Salt Repository
 
24 Actinide and brine chemistry in salt repositories: Updates from ABC Salt (V)
24 Actinide and brine chemistry in salt repositories: Updates from ABC Salt (V)24 Actinide and brine chemistry in salt repositories: Updates from ABC Salt (V)
24 Actinide and brine chemistry in salt repositories: Updates from ABC Salt (V)
 
23 Sandia’s Salt Design Concept for High Level Waste and Defense Spent Nuclea...
23 Sandia’s Salt Design Concept for High Level Waste and Defense Spent Nuclea...23 Sandia’s Salt Design Concept for High Level Waste and Defense Spent Nuclea...
23 Sandia’s Salt Design Concept for High Level Waste and Defense Spent Nuclea...
 
22 WIPP Future Advancements and Operational Safety
22 WIPP Future Advancements and Operational Safety22 WIPP Future Advancements and Operational Safety
22 WIPP Future Advancements and Operational Safety
 
21 WIPP recovery and Operational Safety
21 WIPP recovery and Operational Safety21 WIPP recovery and Operational Safety
21 WIPP recovery and Operational Safety
 
20 EPA Review of DOE’s 2014 Compliance Recertification Application for WIPP
20 EPA Review of DOE’s 2014 Compliance Recertification Application for WIPP20 EPA Review of DOE’s 2014 Compliance Recertification Application for WIPP
20 EPA Review of DOE’s 2014 Compliance Recertification Application for WIPP
 
19 Repository designs in bedded salt, the KOSINA-Project
19 Repository designs in bedded salt, the KOSINA-Project19 Repository designs in bedded salt, the KOSINA-Project
19 Repository designs in bedded salt, the KOSINA-Project
 
18 Interaction between Operational Safety and Long-Term Safety (Project BASEL)
18 Interaction between Operational Safety and Long-Term Safety (Project BASEL)18 Interaction between Operational Safety and Long-Term Safety (Project BASEL)
18 Interaction between Operational Safety and Long-Term Safety (Project BASEL)
 
17 Salt Reconsolidation
17 Salt Reconsolidation17 Salt Reconsolidation
17 Salt Reconsolidation
 
16 Reconsolidation of granular salt (DAEF report)
16 Reconsolidation of granular salt (DAEF report)16 Reconsolidation of granular salt (DAEF report)
16 Reconsolidation of granular salt (DAEF report)
 
15 Outcome of the Repoperm Project
15 Outcome of the Repoperm Project15 Outcome of the Repoperm Project
15 Outcome of the Repoperm Project
 
14 Radiological Consequences Analysis for a HLW Repository in Bedded Salt in ...
14 Radiological Consequences Analysis for a HLW Repository in Bedded Salt in ...14 Radiological Consequences Analysis for a HLW Repository in Bedded Salt in ...
14 Radiological Consequences Analysis for a HLW Repository in Bedded Salt in ...
 
13 "New results of the KOSINA project - Generic geological models / Integrity...
13 "New results of the KOSINA project - Generic geological models / Integrity...13 "New results of the KOSINA project - Generic geological models / Integrity...
13 "New results of the KOSINA project - Generic geological models / Integrity...
 
12 Salt testing: Low deviatoric stress data
12 Salt testing: Low deviatoric stress data12 Salt testing: Low deviatoric stress data
12 Salt testing: Low deviatoric stress data
 
09 Invited Lecture: Salt Creep at Low Deviatoric Stress
09 Invited Lecture: Salt Creep at Low Deviatoric Stress09 Invited Lecture: Salt Creep at Low Deviatoric Stress
09 Invited Lecture: Salt Creep at Low Deviatoric Stress
 

Recently uploaded

Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMKumar Satyam
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Simplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxSimplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxMarkSteadman7
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Choreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software EngineeringChoreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software EngineeringWSO2
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...caitlingebhard1
 
API Governance and Monetization - The evolution of API governance
API Governance and Monetization -  The evolution of API governanceAPI Governance and Monetization -  The evolution of API governance
API Governance and Monetization - The evolution of API governanceWSO2
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)Samir Dash
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightSafe Software
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data SciencePaolo Missier
 

Recently uploaded (20)

Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Simplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptxSimplifying Mobile A11y Presentation.pptx
Simplifying Mobile A11y Presentation.pptx
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Choreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software EngineeringChoreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software Engineering
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
 
API Governance and Monetization - The evolution of API governance
API Governance and Monetization -  The evolution of API governanceAPI Governance and Monetization -  The evolution of API governance
API Governance and Monetization - The evolution of API governance
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and Insight
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
 

19 kröger

  • 1. Ingo Kröger Department 4.1: Photometry and Applied Radiometry Working Group 4.14: Solar Cells The laser-based differential spectral responsivity facility at PTB: Calibration services for energy rating
  • 2. Metrological challenges related to energy rating? 2 Standard Test Conditions (STC) + irradiance dependence (Linearity) + temperature dependence + angular dependence + spectral dependence Irradiance W m-2 Spectrum 15°C 25°C 50°C 75°C 1100 AM1.5 NA 1000 AM1.5 STC 800 AM1.5 600 AM1.5 400 AM1.5 NA 200 AM1.5 NA NA 100 AM1.5 NA NA IEC 61853-1 state of the art: mature metrological infrastructure incl. Quality infrastructure, intercomparisons, round robins, validation,… Energy rating: new metrological infrastructure is built up, new techniques are developed, only few intercomparions, round robins, … 𝜙, 𝜗 IEC 61853-2 PTB wants to provide a high precision calibration facility covering spectral irradiance dependence, spectral temperature dependence and spectral angle of incidence measurements, i.e for validation purposes
  • 3. Differential spectral responsivity (DSR) method 3 400 600 800 1000 1200 1400 1600 1800 2000  / nm 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 E/W/m²nm : AM1.5g (IEC 60904-3) 200 400 600 800 1000 1200 1400 1600 1800 Wavelength / nm 2468 135 Photon energy / eV 0,0 0,2 0,4 0,6 0,8 Absolutespectralresponsivity,s/AW-1  = 100% c-Si GaInAs CdTe Poly-Si CIS a-Si GaInP Ge Component Cell SpektraleEmpfindlichkeits/A/W • Measurement of the absolute spectral irradiance responsivity under STC • Calculation of short circuit current for any given spectrum (AM1.5G, AM1.5D, AM0, measured/simulated spectra,…) Photocurrent: 𝐼𝑆𝑇𝐶 = 𝐸 𝜆 ∙ 𝑠 𝜆 𝑑𝜆
  • 4. 4 DSR- facility • 2 beam technique:  monochromatic irradiation  Bias irradiation • Reference radiometer: Photodiode, traceable to SI Eb Solarzelle DE() 200 400 600 800 1000 1200 1400 1600 1800 Wavelength / nm 2468 135 Photon energy / eV 0,0 0,2 0,4 0,6 0,8 Absolutespectralresponsivity,s/AW-1  = 100% c-Si GaInAs CdTe Poly-Si CIS a-Si GaInP Ge Component Cell Ib + DIsc(, Eb) 0 – 1000 W/m² Differential spectral responsivity (DSR) method
  • 5. 5 Laser-DSR facility @PTB x,y,z-table Monochromator Optics (lenses, aperture, monitor) Bias-turrets ϑ,φ-Goniometer Puls-zu-CW Konverter (Glasfaser) Chopper Laser System (Ti:Saphir Laser, OPO, SHG, THG, FHG) Compact Array Spectroradiometer
  • 6. Measurements of differential spectral responsivity curves 𝑠 𝑆𝑍 𝜆, 𝐸b at different Bias irradiance levels Eb. Comparison of solar cell against reference photodiode in homogeneous monochromatic fields, using monitor correction: 6 DSR fundamentals: From DSR to ISTC Determination of AMx weighted currents 𝑠AMx 𝐼SC 𝐸b for each DSR curve at given Bias irradiance level 𝐼SC 𝐸b : If the solar cell would be linear, 𝑠AMx 𝐼SC 𝐸b would be constant and 𝑠AMx 𝐼SC 𝐸b = 𝐼𝑆𝑇𝐶 absolute differential spectral responsivity ~s(, I(E)) of ENG55-S-04 400 600 800 1000 1200  in nm 0,00 0,05 0,10 0,15 0,20 ~sabsin mA W/m² 0% 1% 2% 3% 4% 5% Urel(k=2) : ISC= 0 mA : ISC= 0,3 mA : ISC= 1,2 mA : ISC= 2,4 mA : ISC= 9,4 mA : ISC= 23,4 mA : ISC= 50,2 mA : ISC= 72,4 mA : ISC= 99,1 mA : ISC= 122,5 mA : ISC= 135,1 mA 𝑠 𝑆𝑍 𝜆, 𝐼 𝐵𝑖𝑎𝑠 = 𝐼𝑆𝑍 𝜆, 𝐼 𝐵𝑖𝑎𝑠 𝐼 𝑀𝐷,𝑆𝑍 𝜆 𝐼 𝑅𝑒𝑓 𝜆 𝐼 𝑀𝐷,𝑅𝑒𝑓 𝜆 ∙ 𝑠 𝑅𝑒𝑓 𝜆 𝑠AMx 𝐼SC 𝐸b = 0 ∞ 𝑠 𝜆, 𝐼SC (𝐸B ∙ 𝐸𝜆,AMx 𝜆 𝑑𝜆 0 ∞ 𝐸𝜆,AMx 𝜆 𝑑𝜆 0 20 40 60 80 100 120 140 I in mA 116 118 120 122 124 ~sAMxin mA 1000W/m² Where is ISTC?
  • 7. 0 20 40 60 80 100 120 140 I in mA 0,010,1110 100 1000 E in W / m² 116 118 120 122 124 ~sAMxin mA 1000W/m² -5% -4% -3% -2% -1% 0% 1% 2% : DSR : SR : STC 7 DSR fundamentals: From DSR to ISTC 𝑠 𝐼SC 𝐸b = 𝜕𝐼SC 𝐸 𝑏 𝜕𝐸 𝐸 𝑏 BUT, what we actually measure is the differential spectral responsivity (chopper, Lock-In technique) Corresponds to the slope of the linearity curve at given points Eb → 0 1000 d𝐸 = 1000 = 0 𝐼 𝑆𝑇𝐶 1 𝑠AM1.5 𝐼SC d𝐼SC ISTC (or any current at given spectrum Amx and irradiance 𝐸b,AMx) can be derived from numerically solving the upper equation. → 𝐸b,AMx = 0 𝐼 𝑆𝐶(𝐸 𝑏 1 𝑠AMx 𝐼SC d𝐼SC The absolute AMx spectral irradiance responsivity is derived from: 𝑠 λ, 𝐸b,AMx = 𝐼𝑆𝐶(𝐸 𝑏 0 𝐼 𝑆𝐶(𝐸 𝑏 d𝐼sc s λ,Isc absolute differential spectral responsivity ~s(, I(E)) of ENG55-S-04 400 600 800 1000 1200  in nm 0,00 0,05 0,10 0,15 0,20 ~sabsin mA W/m² 0% 1% 2% 3% 4% 5% Urel(k=2) : ISC= 0 mA : ISC= 0,3 mA : ISC= 1,2 mA : ISC= 2,4 mA : ISC= 9,4 mA : ISC= 23,4 mA : ISC= 50,2 mA : ISC= 72,4 mA : ISC= 99,1 mA : ISC= 122,5 mA : ISC= 135,1 mA : s(, 1000 W/m²)
  • 8. 8 Conclusion: DSR-calibration services Energy rating related extended measurements: + irradiance dependence (Linearity)  already integral part of DSR-method (ISC) + temperature dependence + angular dependence + spectral dependence  already integral part of DSR-method (ISC) Irradiance W m-2 Spectrum 15°C 25°C 50°C 75°C 1100 AM1.5 NA 135,59 mA 1000 AM1.5 123,12 mA 800 AM1.5 98,23 mA 600 AM1.5 73,43 mA 400 AM1.5 48,73 mA NA 200 AM1.5 24,19 mA NA NA 100 AM1.5 12,03 mA NA NA 400 600 800 1000 1200  / nm 0,00 0,05 0,10 0,15 0,20 sabs/mA/W/m² ENG55-S-04 : E = 1100W/m² : E = 1000W/m² : E = 800W/m² : E = 600W/m² : E = 400W/m² : E = 200W/m² : E = 100W/m² : E = 10W/m² These measurements are needed for solar simulator measurements related to energy rating. • s(λ, E): for spectral mismatch corrections • ISC(E): for calibration of solar simulator irradiance level • These measurements can be performed by PTB for reference solar cells up to 6” size (and mini- modules)
  • 9. 9 Temperature dependent measurements Full DSR-calibration at 4 different temperatures exceeds reasonable time scale • Only perform relative DSR measurement dependent on solar cell temperature • Set irradiance level to approx. 300W/m², since in general SR(1000 W/m²) ≈ DSR(300 W/m²) • Set solar cell temperature to 15°C, 20°C, 25°C, 30°C, 40°C, 50°C, 75°C • Peltier based heating/cooling: Temperature instability <0.2K 0 20 40 60 80 100 120 140 I in mA 0,010,1110 100 1000 E in W / m² 116 118 120 122 124 ~sAMxin mA 1000W/m² -5% -4% -3% -2% -1% 0% 1% 2% : DSR : SR 400 600 800 1000 1200  / nm 5 10 15 20 Ds 10-3 0,01 0,1 1 10 U(k=2)/% : Type A : freprod.homog. : flambda : fTypeB : overall 20 30 40 50 60 70
  • 10. 10 Temperature dependent measurements • Perform a linear regression for each wavelength • Determination of spectral temperature coefficient • Calculation of AM1.5 weighted temperature coefficient using the absolute SR. 20 30 40 50 60 70 Temperature / °C 3,0 3,5 4,0 4,5 Ds :  = 1100nm T coefficient, E, s, Product 400 600 800 1000 1200  / nm 0 2 4 6 8 10 TC/%K-1 TC ISC : (0.00883 ± 0.00100) %/K
  • 11. 11 Conclusion: DSR-calibration services Energy rating related extended measurements: + irradiance dependence (Linearity)  already integral part of DSR-method (ISC) + temperature dependence  extended temperature range, based on relative DSR + angular dependence + spectral dependence  already integral part of DSR-method (ISC) Irradiance W m-2 Spectrum 15°C 25°C 50°C 75°C 1100 AM1.5 NA 135.59 mA 0.221% 0.442% 1000 AM1.5 -0.0883% 123.12 mA 0.221% 0.442% 800 AM1.5 0.0883% 98.23 mA 0.221% 0.442% 600 AM1.5 0.0883% 73.43 mA 0.221% 0.442% 400 AM1.5 0.0883% 48.73 mA 0.221% NA 200 AM1.5 0.0883% 24.19 mA NA NA 100 AM1.5 0.0883% 12.03 mA NA NA These measurements are needed for solar simulator measurements related to energy rating at different temperatures (i.e. in climate chamber) • s(λ, T): for spectral mismatch corrections • ISC(T): for calibration of solar simulator irradiance level • These measurements can be performed by PTB for reference solar cells up to 6” size (and mini- modules), when appropriate thermal back contact possible T coefficient, E, s, Product 400 600 800 1000 1200  / nm 0 2 4 6 8 10 TC/%K-1
  • 12. 12 Angular dependent measurements DSR-facility is equipped with an automated ϑ,φ-Goniometer • Change angle of incidence of the solar cell relative to optical axis of the monochromatic beam • Optical axis and center of rotation is kept fixed in the center and surface of the solar cell • Bias light mounted on Goniometer base plate  Bias irradiance does not change upon rotation Typical measurement: ϑ: 0 - 90°, Δϑ = 5° Φ: 0 - 90°, ΔΦ = 15° λ: 300 nm – 1150 nm, Δ λ =50nm ϑ Φ
  • 13. 13 Angular dependent measurements • Normalization of measured current to normal incidence • Generally wavelength dependent angular response is observed • Validation: comparison of spectral angular responsivity with integral angular response using a halogen lamp (broadband light source of known spectral irradiance) 0 20 40 60 80 AOI / ° 0,2 0,4 0,6 0,8 1,0 Angularresponsivity : Cosine : Integral measurement  / nm 400 600 800 1000 0 20 40 60 80 AOI / ° -30 -25 -20 -15 -10 -5 0 5 Deviationfromcosine/% : Integral measurement  / nm 400 600 800 1000
  • 14. 0 20 40 60 80 AOI / ° -30 -25 -20 -15 -10 -5 0 Deviationfromcosine/% -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 Deviation/% : Integral measurement halogen lamp : Halogen lamp weighted spectral angular response : AM1.5 weighted spectral angular response : Deviation spectral vs integral : U (k=2) 0 20 40 60 80 AOI / ° 0,2 0,4 0,6 0,8 1,0 Angularresponsivity -4 -2 0 2 4 Deviation/% : Cosine : Integral measurement halogen lamp : Halogen lamp weighted spectral angular response : AM1.5 weighted spectral angular response : Deviation spectral vs integral : U (k=2) 14 Angular dependent measurements • Calculation of weighted average of spectral angular response for different light sources 1. Weights: spectral responsivity + AM1.5 spectrum 2. Weights: spectral responsivity + Halogen lamp spectrum • Experimental halogen lamp angular response agrees well with spectral angular response weighted by spectral responsivity + halogen lamp spectrum • AM1.5 (or any other spectrum) angular response can be derived from spectral angular response measurements
  • 15. 15 Conclusion: DSR-calibration services Energy rating related extended measurements: + irradiance dependence (Linearity)  already integral part of DSR-method (ISC) + temperature dependence  extended temperature range, based on relative DSR + angular dependence  additional spectral angular response measurements available + spectral dependence  already integral part of DSR-method (ISC) Irradiance W m-2 Spectrum 15°C 25°C 50°C 75°C 1100 AM1.5 NA 135.59 mA 0.221% 0.442% 1000 AM1.5 -0.0883% 123.12 mA 0.221% 0.442% 800 AM1.5 0.0883% 98.23 mA 0.221% 0.442% 600 AM1.5 0.0883% 73.43 mA 0.221% 0.442% 400 AM1.5 0.0883% 48.73 mA 0.221% NA 200 AM1.5 0.0883% 24.19 mA NA NA 100 AM1.5 0.0883% 12.03 mA NA NA These measurements can be used for validation measurements of solar simulator based AOI- measurements • These measurements can be performed by PTB for reference solar cells up to 6” size (and mini- modules) 𝜙, 𝜗