SlideShare a Scribd company logo
1 of 22
Download to read offline
Fingerprint Recognition Using Minutiae-Based Features 
Page 1 
1. Abstract 
Nowadays, conventional identification methods such as driver's license, passport, ATM cards and PIN codes do not meet the demands of this wide scale connectivity. Automated biometrics in general, and automated fingerprint authentication in particular, provide efficient solutions to these modern identification problems. Fingerprints have been used for many centuries as a means of identifying people. The fingerprints of individual are unique and are stay unchanged during the life time. Fingerprint matching techniques can be placed into two categories, minutiae-based and correlation based. Minutiae-based techniques first find minutiae points and then map their relative placement on the finger. However, there are some difficulties when using this approach. It is difficult to extract the minutiae points accurately when the fingerprint is of low quality the correlation-based method is able to overcome some of the difficulties of the minutiae-based approach. However, it has some of its own shortcomings. Correlation-based techniques require the precise location of a registration point and are affected by image translation and rotation.
Fingerprint Recognition Using Minutiae-Based Features 
Page 2 
2. Introduction 
Biometric recognition refers to the use of distinctive physiological (e.g. fingerprint, palm print, iris, face) and behavioral (eg. gait, signature) characteristics, called biometric identifiers for recognizing individuals. 
Fingerprint recognition is one of the oldest and most reliable biometric used for personal identification. Fingerprint recognition has been used for over 100 years now and has come a long way from tedious manual fingerprint matching. The ancient procedure of matching fingerprints manually was extremely cumbersome and time-consuming and required skilled personnel. 
Finger skin is made up of friction ridges and sweat pores all along these ridges. Friction ridges are created during fetal life and only the general shape is genetically defined. The distinguishing nature of physical characteristics of a person is due to both the inherent individual genetic diversity within the human population as well as the random processes affecting the development of the embryo. Friction ridges remain the same throughout one’s adult life. They can reconstruct themselves even in case of an injury as long as the injury is not too serious. 
Fingerprints are one of the most mature biometric technologies and are considered legitimate proofs of evidence in courts of law all over the world. In recent times, more and more civilian and commercial applications are either using or actively considering using fingerprint-based identification because of the availability of inexpensive and compact solid state scanners as well as its superior and proven matching performance over other biometric technologies. 
Some important terms related to fingerprint identification systems are explained below: 
 Fingerprint Acquisition: How to acquire fingerprint images and how tore present them in a proper machine-readable format. 
 Fingerprint Verification: To determine whether two fingerprints are from the same finger. 
 Fingerprint Identification: To search for a query fingerprint in a database. 
 Fingerprint Classification: To assign a given fingerprint to one of the prespecified 
categories according to its geometric characteristics.
Fingerprint Recognition Using Minutiae-Based Features 
Page 3 
In case of both fingerprint identification and fingerprint verification systems, our tasks will be broken up into 2 stages: 
1. Off-line phase: Several fingerprint images of the fingerprint of a person to be verified are first captured and processed by a feature extraction module; the extracted features are stored as templates in a database for later use. 
2. On-line phase: The individual to be verified gives his/her identity (in case of a verification system) and places his/her finger on the inkless fingerprint scanner, minutia points are extracted from the captured fingerprint image. These minutiae are then fed to a matching module, which matches them against his/her own templates in the database (in case of a verification system) or against all the users in the database (in case of an identification system). 
2.1 What is a fingerprint? 
Fingerprints are the most important part in biometric for human identification. They are unique and permanent from birth to death. So, fingerprints have been used for the forensic application and personal identification. 
A fingerprint is collection of many ridges and furrows (Valleys). The continuous dark pattern flow in fingerprint is called ridges and the light area between ridges is called furrows. Fingerprint has some unique points on the ridge which is known as minutiae point. Here we can consider two main types of minutiae points which are termination point and bifurcation point as shown in Fig.1.Termination: where a ridge ends and Bifurcation: where ridges split into two parts. 
Figure 1 Minutiae Points (Termination, Bifurcation)
Fingerprint Recognition Using Minutiae-Based Features 
Page 4 
2.2 Fingerprint Recognition 
The fingerprint recognition problem can be grouped into two sub-domains: one is fingerprint verification and the other is fingerprint identification. In addition, different from the manual approach for fingerprint recognition by experts, the fingerprint recognition here is referred as AFRS (Automatic Fingerprint Recognition System. Fingerprint verification is to verify the authenticity of one person by his fingerprint. The user provides his fingerprint together with his identity information like his ID number. The fingerprint verification system retrieves the fingerprint template according to the ID number and matches the template with the real-time acquired fingerprint from the user. Usually it is the underlying design principle of AFAS (Automatic Fingerprint Authentication System). 
Figure 2. General architecture of a fingerprint verification system 
Fingerprint identification is to specify one person's identity by his fingerprint(s). Without knowledge of the person's identity, the fingerprint identification system tries to match his fingerprint(s) with those in the whole fingerprint database. It is especially useful for criminal investigation cases. And it is the design principle of AFIS (Automatic Fingerprint Identification System).However, all fingerprint recognition problems, either verification or identification, are ultimately based on a well-defined representation of a fingerprint. As long as the representation of fingerprints remains the uniqueness and keeps simple, the fingerprint matching, either for the 1-to-I verification case or 1-to-m identification case, is straightforward and easy.
Fingerprint Recognition Using Minutiae-Based Features 
Page 5 
2.3 Techniques for Fingerprint Recognition 
1) Minutiae Extraction based Techniques: Mostly accepted finger scan technology is based on Minutiae. Minutiae based techniques produce the fingerprint by its local features, like termination and bifurcation. When minutiae points match between two fingerprints so fingerprint are match. This approach has been genuinely studied, and it is the backbone of the current available fingerprint recognition products. 
2) Pattern Matching or Ridge Feature based Techniques: Feature extraction are established on series of ridges as averse to different points which design the basis of pattern matching techniques over Minutiae Extraction. Minutiae points can be change by wear and tear and the main drawback are that these are acute to proper adjustment of finger and need large storage . 
3) Correlation based Techniques: Correlation based technique is used to match two fingerprints, the fingerprint are adjusted and computed the correlation for each corresponding pixel. They can match ridge shapes, breaks, etc. Main disadvantages of this method are its computational complication and less tolerance to non-linear distortion and contrast variation. 
4) Image based Techniques: This technique attempt to do matching which based on the global features of an all fingerprint images. It is an advance and newly develops method for fingerprint recognition
Fingerprint Recognition Using Minutiae-Based Features 
Page 6 
3. Literature Survey
Fingerprint Recognition Using Minutiae-Based Features 
Page 7 
4. Fingerprint matching 
The matching of fingerprint is achieved by some image processing steps. These step can easily be understand by the algorithm below: 
Input: Two Gray-scale Fingerprint image. 
Output: Verify the fingerprint image using minutiae matching. 
Step 1: Enhancement of Input Image i.e. fingerprint image using Histogram equalization. 
Step 2: Binarized the enhanced fingerprint image. 
Step 3: Selection of ROI (Region of Interest) in binarized image. 
Step 4: Thinning of the Region of Interest as the part of fingerprint image. 
Step 5: Minutiae points are extracted from image. 
Step 6: Comparison and matching of one fingerprint to another fingerprint. 
Step 7: Match the minutiae points of two images are computed. If Minutiae points are matched 
in both images so fingerprint matching score are 1 and if it is not matched then matching score are 0 they are mismatched. 
Figure 3. Fingerprint Matching block diagram 
The overall implementation of algorithm may also express by using block diagram, as shown above. This block diagram is sub divided as pre-processing stage, minutiae extraction stage and post-processing stage
Fingerprint Recognition Using Minutiae-Based Features 
Page 8 
5. Pre-processing stage 
5.1 Image Acquisition 
The first stage of any vision system whether for identification or verification is the image acquisition stage. Nowadays, the automated fingerprint verification systems use live-scan digital images of fingerprints acquired from a fingerprint sensor. These sensors are based on optical, capacitance, ultrasonic, thermal and other imaging technologies. 
1. Optical Sensors: These are the oldest and most widely used technology. In most devices, a 
charged coupled device (CCD) converts the image of the fingerprint, with dark ridges and 
light valleys, into a digital signal. They are fairly inexpensive and can provide resolutions up 
to 500 dpi. Most sensors are based on FTIR (Frustrated Total Internal Reflection) technique 
to acquire the image. In this scheme, a source illuminates the fingerprint through one side 
Figure 4 :(a) General schematic for an FTIR based optical sensor (b) Schematic of a capacitive sensor 
of the prism as shown (Figure 4).Due to internal reflection phenomenon, most of the light is reflected back to the other side where it is recorded by a CCD camera. However, in regions where the fingerprint surface comes in contact with the prism, the light is diffused in all directions and therefore does not reach the sensor resulting in dark regions. The quality of the image depends on whether the fingerprint is dry or wet. Another problem faced by optical sensors is the residual patterns left by the previous fingers. Furthermore it has been shown that fake fingers are able to fool most commercial sensors. Optical sensors are also among the bulkiest sensor due to the optics involved.
Fingerprint Recognition Using Minutiae-Based Features 
Page 9 
2. Capacitive Sensors: The silicon sensor acts as one plate of a capacitor, and the finger as another other. The capacitance between the sensing plate and the finger depends inversely as the distance between them. Since the ridges are closer, they correspond to increased 
capacitance and the valleys correspond to smaller capacitance. This variation is converted into an 8-bit gray scale digital image. Most of the electronic devices featuring fingerprint authentication use this form of solid state sensors due to its compactness. However, sensors that are smaller than 0.5”x0.5” are not useful since it reduces the accuracy recognition. 
3. Ultra-sound Sensors: Ultrasound technology is perhaps the most accurate of the fingerprint 
sensing technologies. It uses ultrasound waves and measures the distance based on the impedance of the finger, the plate, and air. These sensors are capable of very high resolution. Sensors with 1000dpi or more are already available (www.ultra-scan.com). However, these sensors tend to be very bulky and contain moving parts making them suitable only for law enforcement and access control applications. 
4. Thermal Sensors: These sensors are made up of pyro-electric materials whose properties 
change with temperature. These are usually manufactured in the form of strips .As the fingerprints is swiped across the sensor, there is differential conduction of heat between the ridges and valleys(since skin conducts heat better than the air in the valleys) that is measured by the sensor. Full size thermal sensors are not practical since skin reaches thermal equilibrium very quickly once placed on the sensor leading to loss of signal. This would require us to constantly keep the sensor at a higher or lower temperature making it very energy inefficient. The sweeping action prevents the finger from reaching thermal equilibrium leading to good contrast images. However, since the sensor can acquire only small strips at a time, a sophisticated image registration and reconstruction scheme is required to construct the whole image from the strips. 
One of the most essential characteristics of a digital fingerprint image is its resolution which indicates the number of dots or pixels per inch (ppi). The minimum resolution that allows the feature extraction algorithms to locate minutiae is 250 to 300 ppi.
Fingerprint Recognition Using Minutiae-Based Features 
Page 10 
5.2 Image Enhancement 
Fingerprint image enhancement is to make the image clearer for easy further operations. 
The performance of minutiae extraction algorithms and other fingerprint recognition techniques relies heavily on the quality of the input fingerprint images. A fingerprint image is firstly enhanced before the features contained in it could be detected or extracted. A well enhanced image will provide a clear separation between the valid and spurious features. Since the fingerprint images acquired from sensors or other media are not assured with perfect quality. 
However the fingerprint images obtained are usually poor due to elements that corrode the clarity of the ridge elements. This leads to problems in minutiae extraction. Spurious features are those minutiae points that are created due to noise or artifacts and they are not actually part of the fingerprint. 
In an ideal fingerprint image, ridges and valleys alternate and flow in a locally constant direction. Thus, image enhancement techniques are employed to reduce the noise and enhance the definition of ridges against valleys. In order to ensure good performance of the ridge and minutiae extraction algorithms in poor quality fingerprint images, an enhancement algorithm to improve the clarity of the ridge structure is necessary. Enhancement methods, for increasing the contrast between ridges and furrows and for connecting the false broken points of ridges due to insufficient amount of ink are very useful to keep a higher accuracy to fingerprint recognition. 
Histogram Equalization 
It is a method for enhance the fingerprint image. Fingerprint image enhancement is to create clearer for easy other operations. Histogram equalization is to extend the pixel value of an image so as to increase the perceptional information. The histogram of a original fingerprint image has the bimodal type the histogram after the histogram equalization occupies all the range from 0 to 255 and the visualization effect is enhanced. 
In MATLAB histogram equalization is done by using MATLAB function. 
histeq (image_file_name);
Fingerprint Recognition Using Minutiae-Based Features 
Page 11 
Below, the figure shows the original image histogram and histogram after equalization 
operation.
Fingerprint Recognition Using Minutiae-Based Features 
Page 12 
5.3 Binarization 
A Fingerprint-Image-Binarization transforms an 8-bit gray image to a 1-bit binarized image. Most minutiae extraction algorithms operate on binary images where there are only two levels of interest: 0-value holds for ridges and 1-value for furrows. And after the binarization operation ridges are highlighted with black color and furrows are highlighted with white color. 
An adaptive binarization method is achieved to binarize the fingerprint image. In this method image is split into blocks of 16 x 16 pixels. A pixel value is set 1 if its value is greater than the mean intensity value of the accepted block to which the pixel belongs.
Fingerprint Recognition Using Minutiae-Based Features 
Page 13 
5.4 Image segmentation 
This is a segmentation technique. The main motive of the segmentation is to make the image simpler which can be representing very easily and to make image meaningful that will be easy to analyze. Generally ROI (Region of Interest) is very useful for analyze a fingerprint image. It is a subset of an image or a dataset analyze for a particular purpose. When the image area has ineffective ridges and furrows so firstly it made wider and larger in all directions. 
There are two regions that describe any fingerprint image; namely the foreground region and the background region. The foreground regions are the regions containing the ridges and valleys. The ridges are the raised and dark regions of a fingerprint image while the valleys are the low and white regions between the ridges. The foreground regions often referred to as the Region of Interest (ROI). The background regions are mostly the outside regions where the noises introduced into the image during enrolment are mostly found 
Region of Interest (ROI) 
To extraction of the ROI is performed in two steps: First, block direction estimation and direction variety check; second, used some Morphological methods. 
Two types of morphological methods are available i.e. OPEN and CLOSE. The OPEN operation can enlarge the images and eliminate background noise. And CLOSE operation can shrink images and eliminate small cavities. 
bwmorph (x, 'close'); bwmorph (y, 'open');
Fingerprint Recognition Using Minutiae-Based Features 
Page 14 
6. Minutiae extraction stage 
After the enhancement of the fingerprint image, the image is ready for minutiae extraction. For proper extraction, however, a thinning algorithm is applied to the enhanced image. It produces a skeletonized representation of the image. 
6.1 Thinning 
Thinning is a morphological operation that is used to remove selected foreground pixels from binary images. It is used to eliminate the redundant pixels of ridges till the ridges are just one pixel wide. Thinning is normally only applied to binary images, and produces another binary image as output. It is the final step prior to minutiae extraction. All the pixels on the boundaries of foreground regions that have at least one background neighbor are taken. Any point that has more than one foreground neighbor is deleted as long as doing so does not locally disconnect the region containing that pixel. 
This is done by using the MATLAB thinning function that is:- 
 bwmorph(binaryImage,'thin',Inf) 
Then the thinned image is filtered by using the following three MATLAB functions. This are some H is breaks, isolated points and spikes. 
 bwmorph(binaryImage, 'hbreak',k) 
 bwmorph(binaryImage, 'clean',k) 
 bwmorph(binaryImage, 'spur',k)
Fingerprint Recognition Using Minutiae-Based Features 
Page 15 
The conditions for better thinning result: 
a) Each ridge should be thinned to its center pixel. 
b) Noise and singular pixels should be removed. 
c) No further removal of pixels should be possible after accomplish of thinning process
Fingerprint Recognition Using Minutiae-Based Features 
Page 16 
6.2 Minutiae Marking 
The method extracts the minutiae from the enhanced image. This method extracts the ridge endings and bifurcations from the skeleton image by examining the local neighbourhood of each ridge pixel using a 3×3 window. The method used for minutiae extraction is the crossing number (CN) method. This method involves the use of the skeleton image where the ridge flow pattern is eight-connected. The minutiae are extracted by scanning the local neighbourhood of each ridge pixel in the image using a 3×3 window. CN is defined as half the sum of the differences between the pairs of adjacent pixel. 
CN=0.5 i=1Σ8 (Pi- Pi+1) 
The ridge pixel can be divided into bifurcation, ridge ending and non-minutiae point based on it. A ridge ending point has only one neighbor, a bifurcation point possesses more than two neighbors, and a normal ridge pixel has two neighbors. A CN value of zero refers to an isolated point, value of one to a ridge ending, two to a continuing ridge point, three to a bifurcation point and a CN of four means a crossing point. Minutiae detection in a fingerprint skeleton is implemented by scanning thinned fingerprint and counting the crossing number. Thus the minutiae points can be extracted. 
Cn{p} =1 Ridge Ending Cn{p} =3 Ridge Bifurcation
Fingerprint Recognition Using Minutiae-Based Features 
Page 17 
In the proposed method, the minutiae point’s locations and their considered direction from the 8 directions (N, S, W, E, NE, NW, SE, SW) are recorded then they used to construct the database depending of the number of recorded minutiae point and their direction. 
Suppose P is the checked point and P1-P8 are neighbourhood pixels 
If CN = 3 then 
If P1 and P3 and P7 = 1 then direction = W 
Else if P1 and P3 and P5 = 1 then direction = S 
Else if P1 and P7 and P5 = then direction = N 
Else if P3 and P5 and P7 = 1 then direction = E 
Else if P4 and P3 and P5 = 1 then direction = SE 
Else if P3 and P2 and P1 = 1 then direction = SW 
Else if P3 and P5 and P6 = 1 then direction = NE 
Else if P4 and P8 and P5 = 1 then direction = NW 
End if 
If CN = 1 then 
If P1 = 1 then direction = W 
If P1 = 1 then direction = W 
If P3 = 1 then direction = S 
If P7 = 1 then direction = N 
If P5 = 1 then direction = E 
If P4 = 1 then direction = SE 
If P2 = 1 then direction = SW 
If P6 = 1 then direction = NE 
If P8 = 1 then direction = NW
Fingerprint Recognition Using Minutiae-Based Features 
Page 18 
7. Post-processing stage 
7.1 Minutiae Matching 
When all minutiae points of two fingerprint images are extracted in selected region of interest. Now, minutiae matching are performed for verification. Basically, minutiae 
Matching is a process which completed in two steps: 
1) Find Total Minutia Points: This step is used to calculate the total number of Ridge and 
Bifurcation points separately. And it compares the calculated value with the original image values. 
2) Find Location of Minutiae Points: It works on the basis of Minutia Marking process. Simply, when minutia points marked on the image it also store the location of the point. This stored information it used to compare two different images at verification process. If both the images belong to the same person then the location of ridge/bifurcation will match. Otherwise matching of fingerprint images unsuccessful. 
7.2 Remove False Minutiae 
In fingerprint recognition, the goal is too able to detect the minutiae point and to reduce the false minutiae in the fingerprint image. In order to remove false minutia, there are a few process that need to be going through which are minutia marking and false minutia removal. 
The procedures in removing false minutia are: 
1. If the distance between one bifurcation and one termination is less than D and the 
two minutiae are in the same ridge (ml case). Remove both of them. Where D is the average inter-ridge width representing the average distance between two parallel neighboring ridges. 
2. If the distance between two bifurcations is less than D and they are in the same 
ridge, remove the two bifurcations. 
3. If two terminations are within a distance D and their directions are coincident with 
a small angle variation. And they suffice the condition that no any other 
termination is located between the two terminations. Then the two terminations are
Fingerprint Recognition Using Minutiae-Based Features 
Page 19 
8. Merits & Demerits 
Advantages 
 Physical attributes are much tougher to be faked than ID cards. 
 Fingerprints can’t be guessed unlike passwords. 
 Fingerprints can’t be misplaced unlike a card. 
 Fingerprints can’t be forgotten unlike passwords. 
 Sudden enhancement in the current security level. 
 Less security concerns leads to increased productivity. 
Disadvantages 
 It can be deceived by a picture or a mold of finger using Gelatin. 
 Fingerprints if stolen, can be a great threat to Security and intellectual property. 
 Requires a very large data base of fingerprints. 
 Some of the employees may find it uncomfortable to Have their fingerprint stored with the employer.
Fingerprint Recognition Using Minutiae-Based Features 
Page 20 
9. Applications & future scope 
Applications 
1. Financial services (e.g. ATM ) 
2. Immigration & border control (e.g. points of entry declared for frequent travelers, passport and visa cases ) 
3. Social services (e.g. fraud preventation in entitlement programmers) 
4. Health care (e.g. security measure for privacy or medical records) 
5. Physical access control (e.g. at institutional, government & residential establishment) 
6. Time & attendance (e.g. replacement of time punch card) 
7. Computer Security (e.g. personal computer access, network access, Internet use, e- commerce, e-mail, encryption) 
8. Telecommunications (e.g. mobile phones, call center technology, phone cards, televised shopping) 
9. Law enforcement (e.g. criminal investigation, national ID, driving license, rehabilitation institutions/prison, home confinement, small gun) 
Further works which can be carried out include following. 
1. To perform statistical experiment used in this project on a larger sample size & a conduct a full analysis of observed result. 
2. An implementation of a smarter matching algorithm should be able to improve the verification & identification process. 
3. Issue need to be addressed in the systematic way in developing a fool proof fingerprint based identification system for a wide scale development e.g. encryption security of fingerprint template detection of force fingers, privacy concern etc. 
4. Implementation of on-line fingerprint verification & Identification system using biometric device.
Fingerprint Recognition Using Minutiae-Based Features 
Page 21 
10. Conclusion 
This seminar has concentrated on fingerprint based biometric identification & verification systems. The primary focus is subsequent extraction of minutiae by direct gray scale image extraction technique .There are two important operations in pre-processing stage as Histogram Equalization, and Selection of ROI. These two operations make this algorithm efficient. The Histogram Equalization enhanced the quality of Input-image, which actually help to produce accurate calculation. This research concludes that the Fingerprint Verification is possible even the quality of the fingerprint image got affected. The ROI based approach reduces the processing time of algorithm by working on segment not the complete image, which means it makes fingerprint matching faster. The verification is done for selected region that authenticate the pattern. The literature of this technique is deeply studied and experimentally executed in MATLAB.
Fingerprint Recognition Using Minutiae-Based Features 
Page 22 
11. References 
1. Raymond Thai, ‘Fingerprint Image Enhancement and Minutiae-Extraction,” 
Thesis submitted to School of Computer Science and Software Engineering, University of Western Australia 
2. AK Jain, A. Ross, and S. Prabhakar, Fingerprint Matching Using Minutiae 
and Texture Features , Proc. of International Conference on Image Processing, 2001 
3. Digital Image Processing by Rafael C. Gonzalez and Richard E. Woods,Pearson Education, 2003 
4. Digital Image Processing using MATLAB: Rafael C. Gonzalez, Richard E. Woods 2nd Edition, 2009 
5. Fingerprint Image Enhancement and Minutiae Extraction by Raymond Thai 2002 
6. Online Fingerprint Verification by Sharat Chikkerur CUBS, University of Buffalo

More Related Content

What's hot

Minutiae-based Fingerprint Matching
Minutiae-based Fingerprint MatchingMinutiae-based Fingerprint Matching
Minutiae-based Fingerprint MatchingNikhil Hubballi
 
Biometrics iris recognition
Biometrics iris recognitionBiometrics iris recognition
Biometrics iris recognitionsunjaysahu
 
Signature verification in biometrics
Signature verification in biometricsSignature verification in biometrics
Signature verification in biometricsSwapnil Bangera
 
Biometrics Technology
Biometrics TechnologyBiometrics Technology
Biometrics Technologylole2
 
Face recognition technology
Face recognition technologyFace recognition technology
Face recognition technologyranjit banshpal
 
Hand geometry recognition
Hand geometry recognitionHand geometry recognition
Hand geometry recognitionDheerendra k
 
FACE RECOGNITION TECHNOLOGY
FACE RECOGNITION TECHNOLOGYFACE RECOGNITION TECHNOLOGY
FACE RECOGNITION TECHNOLOGYJASHU JASWANTH
 
Face detection presentation slide
Face detection  presentation slideFace detection  presentation slide
Face detection presentation slideSanjoy Dutta
 
Biometrics technology
Biometrics technology Biometrics technology
Biometrics technology Niharika Gupta
 
PCA Based Face Recognition System
PCA Based Face Recognition SystemPCA Based Face Recognition System
PCA Based Face Recognition SystemMd. Atiqur Rahman
 
face recognition based on PCA
face recognition based on PCAface recognition based on PCA
face recognition based on PCA@zenafaris91
 
Facial recognition system
Facial recognition systemFacial recognition system
Facial recognition systemDivya Sushma
 
seminar presentation on Face ricognition technology
seminar presentation on Face ricognition technologyseminar presentation on Face ricognition technology
seminar presentation on Face ricognition technologyJawhar Ali
 
Applications of Biometrics in Technology
Applications of Biometrics in TechnologyApplications of Biometrics in Technology
Applications of Biometrics in Technologyiamsanjayk
 

What's hot (20)

Fingerprint recognition
Fingerprint recognitionFingerprint recognition
Fingerprint recognition
 
Biometrics
BiometricsBiometrics
Biometrics
 
Minutiae-based Fingerprint Matching
Minutiae-based Fingerprint MatchingMinutiae-based Fingerprint Matching
Minutiae-based Fingerprint Matching
 
Biometrics iris recognition
Biometrics iris recognitionBiometrics iris recognition
Biometrics iris recognition
 
Iris recognition
Iris recognition Iris recognition
Iris recognition
 
Face Recognition
Face RecognitionFace Recognition
Face Recognition
 
Signature verification in biometrics
Signature verification in biometricsSignature verification in biometrics
Signature verification in biometrics
 
Face recognition
Face recognitionFace recognition
Face recognition
 
Biometrics Technology
Biometrics TechnologyBiometrics Technology
Biometrics Technology
 
Face recognition technology
Face recognition technologyFace recognition technology
Face recognition technology
 
Hand geometry recognition
Hand geometry recognitionHand geometry recognition
Hand geometry recognition
 
FACE RECOGNITION TECHNOLOGY
FACE RECOGNITION TECHNOLOGYFACE RECOGNITION TECHNOLOGY
FACE RECOGNITION TECHNOLOGY
 
Face detection presentation slide
Face detection  presentation slideFace detection  presentation slide
Face detection presentation slide
 
Biometrics technology
Biometrics technology Biometrics technology
Biometrics technology
 
PCA Based Face Recognition System
PCA Based Face Recognition SystemPCA Based Face Recognition System
PCA Based Face Recognition System
 
face recognition based on PCA
face recognition based on PCAface recognition based on PCA
face recognition based on PCA
 
Facial recognition system
Facial recognition systemFacial recognition system
Facial recognition system
 
seminar presentation on Face ricognition technology
seminar presentation on Face ricognition technologyseminar presentation on Face ricognition technology
seminar presentation on Face ricognition technology
 
Face recognition
Face recognition Face recognition
Face recognition
 
Applications of Biometrics in Technology
Applications of Biometrics in TechnologyApplications of Biometrics in Technology
Applications of Biometrics in Technology
 

Viewers also liked

Fingerprint Recognition Technique(PDF)
Fingerprint Recognition Technique(PDF)Fingerprint Recognition Technique(PDF)
Fingerprint Recognition Technique(PDF)Sandeep Kumar Panda
 
Fingerprint Recognition Technique(PPT)
Fingerprint Recognition Technique(PPT)Fingerprint Recognition Technique(PPT)
Fingerprint Recognition Technique(PPT)Sandeep Kumar Panda
 
Fingerprint presentation
Fingerprint presentationFingerprint presentation
Fingerprint presentationrajarose89
 
fingerprint technology
fingerprint technologyfingerprint technology
fingerprint technologyVishwasJangra
 
A High Performance Fingerprint Matching System for Large Databases Based on GPU
A High Performance Fingerprint Matching System for Large Databases Based on GPUA High Performance Fingerprint Matching System for Large Databases Based on GPU
A High Performance Fingerprint Matching System for Large Databases Based on GPUAlpesh Kurhade
 
50409621003 fingerprint recognition system-ppt
50409621003  fingerprint recognition system-ppt50409621003  fingerprint recognition system-ppt
50409621003 fingerprint recognition system-pptMohankumar Ramachandran
 
Fingerprint Technology
Fingerprint TechnologyFingerprint Technology
Fingerprint TechnologyJoy Dutta
 
Project Synopsis
Project SynopsisProject Synopsis
Project SynopsisParas Garg
 
computer vision and face recognition
 computer vision and face recognition computer vision and face recognition
computer vision and face recognitionhananhelal
 
Fingerprint Recognition Using Minutiae Based and Discrete Wavelet Transform
Fingerprint Recognition Using Minutiae Based and Discrete Wavelet TransformFingerprint Recognition Using Minutiae Based and Discrete Wavelet Transform
Fingerprint Recognition Using Minutiae Based and Discrete Wavelet TransformAM Publications
 
Biometric attendance system, attendance machine,face ID with time attendance ...
Biometric attendance system, attendance machine,face ID with time attendance ...Biometric attendance system, attendance machine,face ID with time attendance ...
Biometric attendance system, attendance machine,face ID with time attendance ...Amresh Kumar
 
Fingerprint verification using matlab
Fingerprint verification using matlabFingerprint verification using matlab
Fingerprint verification using matlabPraveen Kumar Kushwah
 
Network and web security
Network and web securityNetwork and web security
Network and web securityNitesh Saitwal
 
Proof of Transit: Securely Verifying a Path or Service Chain
Proof of Transit: Securely Verifying a Path or Service ChainProof of Transit: Securely Verifying a Path or Service Chain
Proof of Transit: Securely Verifying a Path or Service ChainFrank Brockners
 
Fingerprint detection
Fingerprint detectionFingerprint detection
Fingerprint detectionMudit Mishra
 
seminar report on night vision technology
seminar report on night vision technologyseminar report on night vision technology
seminar report on night vision technologyAmit Satyam
 

Viewers also liked (20)

Fingerprint Recognition Technique(PDF)
Fingerprint Recognition Technique(PDF)Fingerprint Recognition Technique(PDF)
Fingerprint Recognition Technique(PDF)
 
Fingerprint Recognition Technique(PPT)
Fingerprint Recognition Technique(PPT)Fingerprint Recognition Technique(PPT)
Fingerprint Recognition Technique(PPT)
 
Fingerprint presentation
Fingerprint presentationFingerprint presentation
Fingerprint presentation
 
fingerprint technology
fingerprint technologyfingerprint technology
fingerprint technology
 
A High Performance Fingerprint Matching System for Large Databases Based on GPU
A High Performance Fingerprint Matching System for Large Databases Based on GPUA High Performance Fingerprint Matching System for Large Databases Based on GPU
A High Performance Fingerprint Matching System for Large Databases Based on GPU
 
50409621003 fingerprint recognition system-ppt
50409621003  fingerprint recognition system-ppt50409621003  fingerprint recognition system-ppt
50409621003 fingerprint recognition system-ppt
 
Fingerprint Technology
Fingerprint TechnologyFingerprint Technology
Fingerprint Technology
 
Fingerprint
FingerprintFingerprint
Fingerprint
 
Project Synopsis
Project SynopsisProject Synopsis
Project Synopsis
 
K0167683
K0167683K0167683
K0167683
 
computer vision and face recognition
 computer vision and face recognition computer vision and face recognition
computer vision and face recognition
 
Fingerprint Recognition Using Minutiae Based and Discrete Wavelet Transform
Fingerprint Recognition Using Minutiae Based and Discrete Wavelet TransformFingerprint Recognition Using Minutiae Based and Discrete Wavelet Transform
Fingerprint Recognition Using Minutiae Based and Discrete Wavelet Transform
 
Fingerprint Based Biometric ATM Authentication System
Fingerprint Based Biometric ATM Authentication SystemFingerprint Based Biometric ATM Authentication System
Fingerprint Based Biometric ATM Authentication System
 
Biometric attendance system, attendance machine,face ID with time attendance ...
Biometric attendance system, attendance machine,face ID with time attendance ...Biometric attendance system, attendance machine,face ID with time attendance ...
Biometric attendance system, attendance machine,face ID with time attendance ...
 
Fingerprint verification using matlab
Fingerprint verification using matlabFingerprint verification using matlab
Fingerprint verification using matlab
 
Network and web security
Network and web securityNetwork and web security
Network and web security
 
Proof of Transit: Securely Verifying a Path or Service Chain
Proof of Transit: Securely Verifying a Path or Service ChainProof of Transit: Securely Verifying a Path or Service Chain
Proof of Transit: Securely Verifying a Path or Service Chain
 
Fingerprint detection
Fingerprint detectionFingerprint detection
Fingerprint detection
 
Hololens
HololensHololens
Hololens
 
seminar report on night vision technology
seminar report on night vision technologyseminar report on night vision technology
seminar report on night vision technology
 

Similar to Fingerprint recognition using minutiae features

GANNON UNIVERSITYELECTR.docx
                                     GANNON UNIVERSITYELECTR.docx                                     GANNON UNIVERSITYELECTR.docx
GANNON UNIVERSITYELECTR.docxjoyjonna282
 
Fingerprint Minutiae Extraction and Compression using LZW Algorithm
Fingerprint Minutiae Extraction and Compression using LZW AlgorithmFingerprint Minutiae Extraction and Compression using LZW Algorithm
Fingerprint Minutiae Extraction and Compression using LZW Algorithmijsrd.com
 
Fingerprint recognition (term paper) Project
Fingerprint recognition (term paper) Project Fingerprint recognition (term paper) Project
Fingerprint recognition (term paper) Project Abhishek Walia
 
Review on Fingerprint Recognition
Review on Fingerprint RecognitionReview on Fingerprint Recognition
Review on Fingerprint RecognitionEECJOURNAL
 
novel method of identifying fingerprint using minutiae matching in biometric ...
novel method of identifying fingerprint using minutiae matching in biometric ...novel method of identifying fingerprint using minutiae matching in biometric ...
novel method of identifying fingerprint using minutiae matching in biometric ...INFOGAIN PUBLICATION
 
MDD Project Report By Dharmendra singh [Srm University] Ncr Delhi
MDD Project Report By Dharmendra singh [Srm University] Ncr DelhiMDD Project Report By Dharmendra singh [Srm University] Ncr Delhi
MDD Project Report By Dharmendra singh [Srm University] Ncr DelhiDharmendrasingh417
 
Developmentof Image Enhancement and the Feature Extraction Techniques on Rura...
Developmentof Image Enhancement and the Feature Extraction Techniques on Rura...Developmentof Image Enhancement and the Feature Extraction Techniques on Rura...
Developmentof Image Enhancement and the Feature Extraction Techniques on Rura...IOSR Journals
 
Comparative study of various enhancement techniques for finger print images
Comparative study of various enhancement techniques for finger print imagesComparative study of various enhancement techniques for finger print images
Comparative study of various enhancement techniques for finger print imagesMade Artha
 
Comparative study of various enhancement techniques for finger print images
Comparative study of various enhancement techniques for finger print imagesComparative study of various enhancement techniques for finger print images
Comparative study of various enhancement techniques for finger print imagesMade Artha
 
Advanced Authentication Scheme using Multimodal Biometric Scheme
Advanced Authentication Scheme using Multimodal Biometric SchemeAdvanced Authentication Scheme using Multimodal Biometric Scheme
Advanced Authentication Scheme using Multimodal Biometric SchemeEditor IJCATR
 
Latent fingerprint and vein matching using ridge feature identification
Latent fingerprint and vein matching using ridge feature identificationLatent fingerprint and vein matching using ridge feature identification
Latent fingerprint and vein matching using ridge feature identificationeSAT Publishing House
 
Reduction of False Acceptance Rate Using Cross Validation for Fingerprint Rec...
Reduction of False Acceptance Rate Using Cross Validation for Fingerprint Rec...Reduction of False Acceptance Rate Using Cross Validation for Fingerprint Rec...
Reduction of False Acceptance Rate Using Cross Validation for Fingerprint Rec...IJTET Journal
 
Study of Local Binary Pattern for Partial Fingerprint Identification
Study of Local Binary Pattern for Partial Fingerprint  IdentificationStudy of Local Binary Pattern for Partial Fingerprint  Identification
Study of Local Binary Pattern for Partial Fingerprint IdentificationIJMER
 
Enhancing the Cash Point using Multimode Biometric System
Enhancing the Cash Point using Multimode Biometric SystemEnhancing the Cash Point using Multimode Biometric System
Enhancing the Cash Point using Multimode Biometric Systemijtsrd
 
FINGER PRINTINGS
FINGER PRINTINGSFINGER PRINTINGS
FINGER PRINTINGSshiv dhori
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Biometric authentication system
Biometric authentication systemBiometric authentication system
Biometric authentication systemManoj Kumar
 

Similar to Fingerprint recognition using minutiae features (20)

GANNON UNIVERSITYELECTR.docx
                                     GANNON UNIVERSITYELECTR.docx                                     GANNON UNIVERSITYELECTR.docx
GANNON UNIVERSITYELECTR.docx
 
Fingerprint Minutiae Extraction and Compression using LZW Algorithm
Fingerprint Minutiae Extraction and Compression using LZW AlgorithmFingerprint Minutiae Extraction and Compression using LZW Algorithm
Fingerprint Minutiae Extraction and Compression using LZW Algorithm
 
Fingerprint recognition (term paper) Project
Fingerprint recognition (term paper) Project Fingerprint recognition (term paper) Project
Fingerprint recognition (term paper) Project
 
Review on Fingerprint Recognition
Review on Fingerprint RecognitionReview on Fingerprint Recognition
Review on Fingerprint Recognition
 
novel method of identifying fingerprint using minutiae matching in biometric ...
novel method of identifying fingerprint using minutiae matching in biometric ...novel method of identifying fingerprint using minutiae matching in biometric ...
novel method of identifying fingerprint using minutiae matching in biometric ...
 
MDD Project Report By Dharmendra singh [Srm University] Ncr Delhi
MDD Project Report By Dharmendra singh [Srm University] Ncr DelhiMDD Project Report By Dharmendra singh [Srm University] Ncr Delhi
MDD Project Report By Dharmendra singh [Srm University] Ncr Delhi
 
Developmentof Image Enhancement and the Feature Extraction Techniques on Rura...
Developmentof Image Enhancement and the Feature Extraction Techniques on Rura...Developmentof Image Enhancement and the Feature Extraction Techniques on Rura...
Developmentof Image Enhancement and the Feature Extraction Techniques on Rura...
 
Biometric technology
Biometric technologyBiometric technology
Biometric technology
 
Dip fingerprint
Dip fingerprintDip fingerprint
Dip fingerprint
 
Comparative study of various enhancement techniques for finger print images
Comparative study of various enhancement techniques for finger print imagesComparative study of various enhancement techniques for finger print images
Comparative study of various enhancement techniques for finger print images
 
Comparative study of various enhancement techniques for finger print images
Comparative study of various enhancement techniques for finger print imagesComparative study of various enhancement techniques for finger print images
Comparative study of various enhancement techniques for finger print images
 
Advanced Authentication Scheme using Multimodal Biometric Scheme
Advanced Authentication Scheme using Multimodal Biometric SchemeAdvanced Authentication Scheme using Multimodal Biometric Scheme
Advanced Authentication Scheme using Multimodal Biometric Scheme
 
Latent fingerprint and vein matching using ridge feature identification
Latent fingerprint and vein matching using ridge feature identificationLatent fingerprint and vein matching using ridge feature identification
Latent fingerprint and vein matching using ridge feature identification
 
Reduction of False Acceptance Rate Using Cross Validation for Fingerprint Rec...
Reduction of False Acceptance Rate Using Cross Validation for Fingerprint Rec...Reduction of False Acceptance Rate Using Cross Validation for Fingerprint Rec...
Reduction of False Acceptance Rate Using Cross Validation for Fingerprint Rec...
 
kiran's slide info
kiran's slide infokiran's slide info
kiran's slide info
 
Study of Local Binary Pattern for Partial Fingerprint Identification
Study of Local Binary Pattern for Partial Fingerprint  IdentificationStudy of Local Binary Pattern for Partial Fingerprint  Identification
Study of Local Binary Pattern for Partial Fingerprint Identification
 
Enhancing the Cash Point using Multimode Biometric System
Enhancing the Cash Point using Multimode Biometric SystemEnhancing the Cash Point using Multimode Biometric System
Enhancing the Cash Point using Multimode Biometric System
 
FINGER PRINTINGS
FINGER PRINTINGSFINGER PRINTINGS
FINGER PRINTINGS
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Biometric authentication system
Biometric authentication systemBiometric authentication system
Biometric authentication system
 

Recently uploaded

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 

Recently uploaded (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 

Fingerprint recognition using minutiae features

  • 1. Fingerprint Recognition Using Minutiae-Based Features Page 1 1. Abstract Nowadays, conventional identification methods such as driver's license, passport, ATM cards and PIN codes do not meet the demands of this wide scale connectivity. Automated biometrics in general, and automated fingerprint authentication in particular, provide efficient solutions to these modern identification problems. Fingerprints have been used for many centuries as a means of identifying people. The fingerprints of individual are unique and are stay unchanged during the life time. Fingerprint matching techniques can be placed into two categories, minutiae-based and correlation based. Minutiae-based techniques first find minutiae points and then map their relative placement on the finger. However, there are some difficulties when using this approach. It is difficult to extract the minutiae points accurately when the fingerprint is of low quality the correlation-based method is able to overcome some of the difficulties of the minutiae-based approach. However, it has some of its own shortcomings. Correlation-based techniques require the precise location of a registration point and are affected by image translation and rotation.
  • 2. Fingerprint Recognition Using Minutiae-Based Features Page 2 2. Introduction Biometric recognition refers to the use of distinctive physiological (e.g. fingerprint, palm print, iris, face) and behavioral (eg. gait, signature) characteristics, called biometric identifiers for recognizing individuals. Fingerprint recognition is one of the oldest and most reliable biometric used for personal identification. Fingerprint recognition has been used for over 100 years now and has come a long way from tedious manual fingerprint matching. The ancient procedure of matching fingerprints manually was extremely cumbersome and time-consuming and required skilled personnel. Finger skin is made up of friction ridges and sweat pores all along these ridges. Friction ridges are created during fetal life and only the general shape is genetically defined. The distinguishing nature of physical characteristics of a person is due to both the inherent individual genetic diversity within the human population as well as the random processes affecting the development of the embryo. Friction ridges remain the same throughout one’s adult life. They can reconstruct themselves even in case of an injury as long as the injury is not too serious. Fingerprints are one of the most mature biometric technologies and are considered legitimate proofs of evidence in courts of law all over the world. In recent times, more and more civilian and commercial applications are either using or actively considering using fingerprint-based identification because of the availability of inexpensive and compact solid state scanners as well as its superior and proven matching performance over other biometric technologies. Some important terms related to fingerprint identification systems are explained below:  Fingerprint Acquisition: How to acquire fingerprint images and how tore present them in a proper machine-readable format.  Fingerprint Verification: To determine whether two fingerprints are from the same finger.  Fingerprint Identification: To search for a query fingerprint in a database.  Fingerprint Classification: To assign a given fingerprint to one of the prespecified categories according to its geometric characteristics.
  • 3. Fingerprint Recognition Using Minutiae-Based Features Page 3 In case of both fingerprint identification and fingerprint verification systems, our tasks will be broken up into 2 stages: 1. Off-line phase: Several fingerprint images of the fingerprint of a person to be verified are first captured and processed by a feature extraction module; the extracted features are stored as templates in a database for later use. 2. On-line phase: The individual to be verified gives his/her identity (in case of a verification system) and places his/her finger on the inkless fingerprint scanner, minutia points are extracted from the captured fingerprint image. These minutiae are then fed to a matching module, which matches them against his/her own templates in the database (in case of a verification system) or against all the users in the database (in case of an identification system). 2.1 What is a fingerprint? Fingerprints are the most important part in biometric for human identification. They are unique and permanent from birth to death. So, fingerprints have been used for the forensic application and personal identification. A fingerprint is collection of many ridges and furrows (Valleys). The continuous dark pattern flow in fingerprint is called ridges and the light area between ridges is called furrows. Fingerprint has some unique points on the ridge which is known as minutiae point. Here we can consider two main types of minutiae points which are termination point and bifurcation point as shown in Fig.1.Termination: where a ridge ends and Bifurcation: where ridges split into two parts. Figure 1 Minutiae Points (Termination, Bifurcation)
  • 4. Fingerprint Recognition Using Minutiae-Based Features Page 4 2.2 Fingerprint Recognition The fingerprint recognition problem can be grouped into two sub-domains: one is fingerprint verification and the other is fingerprint identification. In addition, different from the manual approach for fingerprint recognition by experts, the fingerprint recognition here is referred as AFRS (Automatic Fingerprint Recognition System. Fingerprint verification is to verify the authenticity of one person by his fingerprint. The user provides his fingerprint together with his identity information like his ID number. The fingerprint verification system retrieves the fingerprint template according to the ID number and matches the template with the real-time acquired fingerprint from the user. Usually it is the underlying design principle of AFAS (Automatic Fingerprint Authentication System). Figure 2. General architecture of a fingerprint verification system Fingerprint identification is to specify one person's identity by his fingerprint(s). Without knowledge of the person's identity, the fingerprint identification system tries to match his fingerprint(s) with those in the whole fingerprint database. It is especially useful for criminal investigation cases. And it is the design principle of AFIS (Automatic Fingerprint Identification System).However, all fingerprint recognition problems, either verification or identification, are ultimately based on a well-defined representation of a fingerprint. As long as the representation of fingerprints remains the uniqueness and keeps simple, the fingerprint matching, either for the 1-to-I verification case or 1-to-m identification case, is straightforward and easy.
  • 5. Fingerprint Recognition Using Minutiae-Based Features Page 5 2.3 Techniques for Fingerprint Recognition 1) Minutiae Extraction based Techniques: Mostly accepted finger scan technology is based on Minutiae. Minutiae based techniques produce the fingerprint by its local features, like termination and bifurcation. When minutiae points match between two fingerprints so fingerprint are match. This approach has been genuinely studied, and it is the backbone of the current available fingerprint recognition products. 2) Pattern Matching or Ridge Feature based Techniques: Feature extraction are established on series of ridges as averse to different points which design the basis of pattern matching techniques over Minutiae Extraction. Minutiae points can be change by wear and tear and the main drawback are that these are acute to proper adjustment of finger and need large storage . 3) Correlation based Techniques: Correlation based technique is used to match two fingerprints, the fingerprint are adjusted and computed the correlation for each corresponding pixel. They can match ridge shapes, breaks, etc. Main disadvantages of this method are its computational complication and less tolerance to non-linear distortion and contrast variation. 4) Image based Techniques: This technique attempt to do matching which based on the global features of an all fingerprint images. It is an advance and newly develops method for fingerprint recognition
  • 6. Fingerprint Recognition Using Minutiae-Based Features Page 6 3. Literature Survey
  • 7. Fingerprint Recognition Using Minutiae-Based Features Page 7 4. Fingerprint matching The matching of fingerprint is achieved by some image processing steps. These step can easily be understand by the algorithm below: Input: Two Gray-scale Fingerprint image. Output: Verify the fingerprint image using minutiae matching. Step 1: Enhancement of Input Image i.e. fingerprint image using Histogram equalization. Step 2: Binarized the enhanced fingerprint image. Step 3: Selection of ROI (Region of Interest) in binarized image. Step 4: Thinning of the Region of Interest as the part of fingerprint image. Step 5: Minutiae points are extracted from image. Step 6: Comparison and matching of one fingerprint to another fingerprint. Step 7: Match the minutiae points of two images are computed. If Minutiae points are matched in both images so fingerprint matching score are 1 and if it is not matched then matching score are 0 they are mismatched. Figure 3. Fingerprint Matching block diagram The overall implementation of algorithm may also express by using block diagram, as shown above. This block diagram is sub divided as pre-processing stage, minutiae extraction stage and post-processing stage
  • 8. Fingerprint Recognition Using Minutiae-Based Features Page 8 5. Pre-processing stage 5.1 Image Acquisition The first stage of any vision system whether for identification or verification is the image acquisition stage. Nowadays, the automated fingerprint verification systems use live-scan digital images of fingerprints acquired from a fingerprint sensor. These sensors are based on optical, capacitance, ultrasonic, thermal and other imaging technologies. 1. Optical Sensors: These are the oldest and most widely used technology. In most devices, a charged coupled device (CCD) converts the image of the fingerprint, with dark ridges and light valleys, into a digital signal. They are fairly inexpensive and can provide resolutions up to 500 dpi. Most sensors are based on FTIR (Frustrated Total Internal Reflection) technique to acquire the image. In this scheme, a source illuminates the fingerprint through one side Figure 4 :(a) General schematic for an FTIR based optical sensor (b) Schematic of a capacitive sensor of the prism as shown (Figure 4).Due to internal reflection phenomenon, most of the light is reflected back to the other side where it is recorded by a CCD camera. However, in regions where the fingerprint surface comes in contact with the prism, the light is diffused in all directions and therefore does not reach the sensor resulting in dark regions. The quality of the image depends on whether the fingerprint is dry or wet. Another problem faced by optical sensors is the residual patterns left by the previous fingers. Furthermore it has been shown that fake fingers are able to fool most commercial sensors. Optical sensors are also among the bulkiest sensor due to the optics involved.
  • 9. Fingerprint Recognition Using Minutiae-Based Features Page 9 2. Capacitive Sensors: The silicon sensor acts as one plate of a capacitor, and the finger as another other. The capacitance between the sensing plate and the finger depends inversely as the distance between them. Since the ridges are closer, they correspond to increased capacitance and the valleys correspond to smaller capacitance. This variation is converted into an 8-bit gray scale digital image. Most of the electronic devices featuring fingerprint authentication use this form of solid state sensors due to its compactness. However, sensors that are smaller than 0.5”x0.5” are not useful since it reduces the accuracy recognition. 3. Ultra-sound Sensors: Ultrasound technology is perhaps the most accurate of the fingerprint sensing technologies. It uses ultrasound waves and measures the distance based on the impedance of the finger, the plate, and air. These sensors are capable of very high resolution. Sensors with 1000dpi or more are already available (www.ultra-scan.com). However, these sensors tend to be very bulky and contain moving parts making them suitable only for law enforcement and access control applications. 4. Thermal Sensors: These sensors are made up of pyro-electric materials whose properties change with temperature. These are usually manufactured in the form of strips .As the fingerprints is swiped across the sensor, there is differential conduction of heat between the ridges and valleys(since skin conducts heat better than the air in the valleys) that is measured by the sensor. Full size thermal sensors are not practical since skin reaches thermal equilibrium very quickly once placed on the sensor leading to loss of signal. This would require us to constantly keep the sensor at a higher or lower temperature making it very energy inefficient. The sweeping action prevents the finger from reaching thermal equilibrium leading to good contrast images. However, since the sensor can acquire only small strips at a time, a sophisticated image registration and reconstruction scheme is required to construct the whole image from the strips. One of the most essential characteristics of a digital fingerprint image is its resolution which indicates the number of dots or pixels per inch (ppi). The minimum resolution that allows the feature extraction algorithms to locate minutiae is 250 to 300 ppi.
  • 10. Fingerprint Recognition Using Minutiae-Based Features Page 10 5.2 Image Enhancement Fingerprint image enhancement is to make the image clearer for easy further operations. The performance of minutiae extraction algorithms and other fingerprint recognition techniques relies heavily on the quality of the input fingerprint images. A fingerprint image is firstly enhanced before the features contained in it could be detected or extracted. A well enhanced image will provide a clear separation between the valid and spurious features. Since the fingerprint images acquired from sensors or other media are not assured with perfect quality. However the fingerprint images obtained are usually poor due to elements that corrode the clarity of the ridge elements. This leads to problems in minutiae extraction. Spurious features are those minutiae points that are created due to noise or artifacts and they are not actually part of the fingerprint. In an ideal fingerprint image, ridges and valleys alternate and flow in a locally constant direction. Thus, image enhancement techniques are employed to reduce the noise and enhance the definition of ridges against valleys. In order to ensure good performance of the ridge and minutiae extraction algorithms in poor quality fingerprint images, an enhancement algorithm to improve the clarity of the ridge structure is necessary. Enhancement methods, for increasing the contrast between ridges and furrows and for connecting the false broken points of ridges due to insufficient amount of ink are very useful to keep a higher accuracy to fingerprint recognition. Histogram Equalization It is a method for enhance the fingerprint image. Fingerprint image enhancement is to create clearer for easy other operations. Histogram equalization is to extend the pixel value of an image so as to increase the perceptional information. The histogram of a original fingerprint image has the bimodal type the histogram after the histogram equalization occupies all the range from 0 to 255 and the visualization effect is enhanced. In MATLAB histogram equalization is done by using MATLAB function. histeq (image_file_name);
  • 11. Fingerprint Recognition Using Minutiae-Based Features Page 11 Below, the figure shows the original image histogram and histogram after equalization operation.
  • 12. Fingerprint Recognition Using Minutiae-Based Features Page 12 5.3 Binarization A Fingerprint-Image-Binarization transforms an 8-bit gray image to a 1-bit binarized image. Most minutiae extraction algorithms operate on binary images where there are only two levels of interest: 0-value holds for ridges and 1-value for furrows. And after the binarization operation ridges are highlighted with black color and furrows are highlighted with white color. An adaptive binarization method is achieved to binarize the fingerprint image. In this method image is split into blocks of 16 x 16 pixels. A pixel value is set 1 if its value is greater than the mean intensity value of the accepted block to which the pixel belongs.
  • 13. Fingerprint Recognition Using Minutiae-Based Features Page 13 5.4 Image segmentation This is a segmentation technique. The main motive of the segmentation is to make the image simpler which can be representing very easily and to make image meaningful that will be easy to analyze. Generally ROI (Region of Interest) is very useful for analyze a fingerprint image. It is a subset of an image or a dataset analyze for a particular purpose. When the image area has ineffective ridges and furrows so firstly it made wider and larger in all directions. There are two regions that describe any fingerprint image; namely the foreground region and the background region. The foreground regions are the regions containing the ridges and valleys. The ridges are the raised and dark regions of a fingerprint image while the valleys are the low and white regions between the ridges. The foreground regions often referred to as the Region of Interest (ROI). The background regions are mostly the outside regions where the noises introduced into the image during enrolment are mostly found Region of Interest (ROI) To extraction of the ROI is performed in two steps: First, block direction estimation and direction variety check; second, used some Morphological methods. Two types of morphological methods are available i.e. OPEN and CLOSE. The OPEN operation can enlarge the images and eliminate background noise. And CLOSE operation can shrink images and eliminate small cavities. bwmorph (x, 'close'); bwmorph (y, 'open');
  • 14. Fingerprint Recognition Using Minutiae-Based Features Page 14 6. Minutiae extraction stage After the enhancement of the fingerprint image, the image is ready for minutiae extraction. For proper extraction, however, a thinning algorithm is applied to the enhanced image. It produces a skeletonized representation of the image. 6.1 Thinning Thinning is a morphological operation that is used to remove selected foreground pixels from binary images. It is used to eliminate the redundant pixels of ridges till the ridges are just one pixel wide. Thinning is normally only applied to binary images, and produces another binary image as output. It is the final step prior to minutiae extraction. All the pixels on the boundaries of foreground regions that have at least one background neighbor are taken. Any point that has more than one foreground neighbor is deleted as long as doing so does not locally disconnect the region containing that pixel. This is done by using the MATLAB thinning function that is:-  bwmorph(binaryImage,'thin',Inf) Then the thinned image is filtered by using the following three MATLAB functions. This are some H is breaks, isolated points and spikes.  bwmorph(binaryImage, 'hbreak',k)  bwmorph(binaryImage, 'clean',k)  bwmorph(binaryImage, 'spur',k)
  • 15. Fingerprint Recognition Using Minutiae-Based Features Page 15 The conditions for better thinning result: a) Each ridge should be thinned to its center pixel. b) Noise and singular pixels should be removed. c) No further removal of pixels should be possible after accomplish of thinning process
  • 16. Fingerprint Recognition Using Minutiae-Based Features Page 16 6.2 Minutiae Marking The method extracts the minutiae from the enhanced image. This method extracts the ridge endings and bifurcations from the skeleton image by examining the local neighbourhood of each ridge pixel using a 3×3 window. The method used for minutiae extraction is the crossing number (CN) method. This method involves the use of the skeleton image where the ridge flow pattern is eight-connected. The minutiae are extracted by scanning the local neighbourhood of each ridge pixel in the image using a 3×3 window. CN is defined as half the sum of the differences between the pairs of adjacent pixel. CN=0.5 i=1Σ8 (Pi- Pi+1) The ridge pixel can be divided into bifurcation, ridge ending and non-minutiae point based on it. A ridge ending point has only one neighbor, a bifurcation point possesses more than two neighbors, and a normal ridge pixel has two neighbors. A CN value of zero refers to an isolated point, value of one to a ridge ending, two to a continuing ridge point, three to a bifurcation point and a CN of four means a crossing point. Minutiae detection in a fingerprint skeleton is implemented by scanning thinned fingerprint and counting the crossing number. Thus the minutiae points can be extracted. Cn{p} =1 Ridge Ending Cn{p} =3 Ridge Bifurcation
  • 17. Fingerprint Recognition Using Minutiae-Based Features Page 17 In the proposed method, the minutiae point’s locations and their considered direction from the 8 directions (N, S, W, E, NE, NW, SE, SW) are recorded then they used to construct the database depending of the number of recorded minutiae point and their direction. Suppose P is the checked point and P1-P8 are neighbourhood pixels If CN = 3 then If P1 and P3 and P7 = 1 then direction = W Else if P1 and P3 and P5 = 1 then direction = S Else if P1 and P7 and P5 = then direction = N Else if P3 and P5 and P7 = 1 then direction = E Else if P4 and P3 and P5 = 1 then direction = SE Else if P3 and P2 and P1 = 1 then direction = SW Else if P3 and P5 and P6 = 1 then direction = NE Else if P4 and P8 and P5 = 1 then direction = NW End if If CN = 1 then If P1 = 1 then direction = W If P1 = 1 then direction = W If P3 = 1 then direction = S If P7 = 1 then direction = N If P5 = 1 then direction = E If P4 = 1 then direction = SE If P2 = 1 then direction = SW If P6 = 1 then direction = NE If P8 = 1 then direction = NW
  • 18. Fingerprint Recognition Using Minutiae-Based Features Page 18 7. Post-processing stage 7.1 Minutiae Matching When all minutiae points of two fingerprint images are extracted in selected region of interest. Now, minutiae matching are performed for verification. Basically, minutiae Matching is a process which completed in two steps: 1) Find Total Minutia Points: This step is used to calculate the total number of Ridge and Bifurcation points separately. And it compares the calculated value with the original image values. 2) Find Location of Minutiae Points: It works on the basis of Minutia Marking process. Simply, when minutia points marked on the image it also store the location of the point. This stored information it used to compare two different images at verification process. If both the images belong to the same person then the location of ridge/bifurcation will match. Otherwise matching of fingerprint images unsuccessful. 7.2 Remove False Minutiae In fingerprint recognition, the goal is too able to detect the minutiae point and to reduce the false minutiae in the fingerprint image. In order to remove false minutia, there are a few process that need to be going through which are minutia marking and false minutia removal. The procedures in removing false minutia are: 1. If the distance between one bifurcation and one termination is less than D and the two minutiae are in the same ridge (ml case). Remove both of them. Where D is the average inter-ridge width representing the average distance between two parallel neighboring ridges. 2. If the distance between two bifurcations is less than D and they are in the same ridge, remove the two bifurcations. 3. If two terminations are within a distance D and their directions are coincident with a small angle variation. And they suffice the condition that no any other termination is located between the two terminations. Then the two terminations are
  • 19. Fingerprint Recognition Using Minutiae-Based Features Page 19 8. Merits & Demerits Advantages  Physical attributes are much tougher to be faked than ID cards.  Fingerprints can’t be guessed unlike passwords.  Fingerprints can’t be misplaced unlike a card.  Fingerprints can’t be forgotten unlike passwords.  Sudden enhancement in the current security level.  Less security concerns leads to increased productivity. Disadvantages  It can be deceived by a picture or a mold of finger using Gelatin.  Fingerprints if stolen, can be a great threat to Security and intellectual property.  Requires a very large data base of fingerprints.  Some of the employees may find it uncomfortable to Have their fingerprint stored with the employer.
  • 20. Fingerprint Recognition Using Minutiae-Based Features Page 20 9. Applications & future scope Applications 1. Financial services (e.g. ATM ) 2. Immigration & border control (e.g. points of entry declared for frequent travelers, passport and visa cases ) 3. Social services (e.g. fraud preventation in entitlement programmers) 4. Health care (e.g. security measure for privacy or medical records) 5. Physical access control (e.g. at institutional, government & residential establishment) 6. Time & attendance (e.g. replacement of time punch card) 7. Computer Security (e.g. personal computer access, network access, Internet use, e- commerce, e-mail, encryption) 8. Telecommunications (e.g. mobile phones, call center technology, phone cards, televised shopping) 9. Law enforcement (e.g. criminal investigation, national ID, driving license, rehabilitation institutions/prison, home confinement, small gun) Further works which can be carried out include following. 1. To perform statistical experiment used in this project on a larger sample size & a conduct a full analysis of observed result. 2. An implementation of a smarter matching algorithm should be able to improve the verification & identification process. 3. Issue need to be addressed in the systematic way in developing a fool proof fingerprint based identification system for a wide scale development e.g. encryption security of fingerprint template detection of force fingers, privacy concern etc. 4. Implementation of on-line fingerprint verification & Identification system using biometric device.
  • 21. Fingerprint Recognition Using Minutiae-Based Features Page 21 10. Conclusion This seminar has concentrated on fingerprint based biometric identification & verification systems. The primary focus is subsequent extraction of minutiae by direct gray scale image extraction technique .There are two important operations in pre-processing stage as Histogram Equalization, and Selection of ROI. These two operations make this algorithm efficient. The Histogram Equalization enhanced the quality of Input-image, which actually help to produce accurate calculation. This research concludes that the Fingerprint Verification is possible even the quality of the fingerprint image got affected. The ROI based approach reduces the processing time of algorithm by working on segment not the complete image, which means it makes fingerprint matching faster. The verification is done for selected region that authenticate the pattern. The literature of this technique is deeply studied and experimentally executed in MATLAB.
  • 22. Fingerprint Recognition Using Minutiae-Based Features Page 22 11. References 1. Raymond Thai, ‘Fingerprint Image Enhancement and Minutiae-Extraction,” Thesis submitted to School of Computer Science and Software Engineering, University of Western Australia 2. AK Jain, A. Ross, and S. Prabhakar, Fingerprint Matching Using Minutiae and Texture Features , Proc. of International Conference on Image Processing, 2001 3. Digital Image Processing by Rafael C. Gonzalez and Richard E. Woods,Pearson Education, 2003 4. Digital Image Processing using MATLAB: Rafael C. Gonzalez, Richard E. Woods 2nd Edition, 2009 5. Fingerprint Image Enhancement and Minutiae Extraction by Raymond Thai 2002 6. Online Fingerprint Verification by Sharat Chikkerur CUBS, University of Buffalo