According to
British Standard
1
 Prof. Dr. Eng. Almoataz Abdelaziz
 Dr. Eng. Mahmoud Abdallah
2
 Ahmed Abdelshafy Mohamed
 Ahmed Khaled Afifi
 Aya Mohamed Adel
 Aya Mostafa Mohamed
 Kareem Hamdy Sakr
 Ziad Adel Gad
3
Generation Transmission Distribution
4
 Residential Model
 Pillar and Transformer
 Voltage Drop
 Short Circuit
 Earthing System
 Street Lighting
 Cost Estimation
 Bill of Quantity
5
Sockets
Ahmed Khaled
6
1. Normal Sockets
7
Room Purpose Minimum Number of
sockets (Twin)
Living room 4
Dining room 3
Kitchen 5
Bedroom 3
Corridor 1
Terrace 1
Garage 1
8
 for domestic loads: 100% of the largest point + 40%
of the remainder.
For example
Circuit(LS1): Reception (area1) & Terrace (area10)
I(LS1)=1+0.4(1*9))=4.6 A
I(C.B)=
4.6∗1.25
0.89∗0.79
= 8.17 𝐴 ≈ 10A .:. C.S.A = 2mm² C.S.A = 4mm²
9
Grouping FactorTemp. Factor
Circuit
No.
Current C.B C.S.A
LS1 4.6 10A 4mm²
LS2 4.6 10A 4mm²
LS3 4.6 10A 4mm²
LS4 4.6 10A 4mm²
LS5 4.6 10A 4mm²
10
Summary
2. Power Sockets
For example
Circuit (LP1): Bedroom(area7)
I(LP1)=
4∗746
230∗0.85∗0.8
=19.08 A P.F=0.85 , Eff=0.8 , V=230
I(C.B)=
19.08∗1.25
0.89∗0.79
= 33.92 A ≈ 40A .:. C.S.A = 10mm²
Summary
11
LP1 19.08 40A 10mm
²
LP2 10.23 26A 6mm²
12
Lighting
Aya Mohamed Adel
13
Area Illumination Level
[lux]
Salon 150
Bedroom 100
Bathroom 200
Kitchen 300
Corridor 100
Terrace 100
14
15
Lighting calculation approach
1. Manual
 N=
𝐸∗𝐴
𝐿𝐿𝐹∗𝑈𝐹∗𝑓
 I(LL)=
𝑁𝑥 𝑝
𝑉 𝐶𝑜𝑠𝜑
16
 K=
𝑎∗𝑏
ℎ(𝑎+𝑏)
𝜌 𝑐𝑒𝑖𝑙𝑖𝑛𝑔
𝜌 𝑤𝑎𝑙𝑙
𝜌 𝑓𝑙𝑜𝑜𝑟
K
0.7
0.5
0.2
0.7
0.3
0.2
0.75 0.38 0.32
1.00 0.44 0.38
17
For example
 Circuit (LL1): Reception(area1) +Terrace(area10)
+Corridor(area9)+Kitchen(area3)+Bedroom(area4)
 Reception (Area1)
N =
150 𝑥 32
0.4 𝑥 0.6 𝑥 6000
= 3.3 =4 Luminaires
18
 Corridor (Area9)
K =
1.2𝑥6.9
1.2+6.9 (3)
=0.34 ≈0.75.:. UF = 0.38
N =
100 𝑥 6
0.38 𝑥 0.6 𝑥 1800
= 1.4 = 2
19
2. Dialux
20
21
22
23
24
25
 I(LL1)=
2𝑥600 + 1 𝑥 22 + 2𝑥22 + 3 𝑥 28 +(1𝑥300)
230 𝑥 0.85
= 8.45A
I(C.B)=
8.45 𝑥 1.25
0.89 𝑥 0.79
= 15 ≈ 16A .:. C.S.A =2.5 mm²
C.S.A = 3mm²
26
Circuit
No.
Current C.B C.S.A
LL1 8.45 16A 3mm²
LL2 8.33 16A 3mm²
LL3 8.225 16A 3mm²
27
Power Factor
Aya Mohamed Adel
28
 𝑃𝑆𝑜𝑐𝑘𝑒𝑡𝑠 = ⅀𝐼 𝑥 𝑉 𝑥 0.8 , 𝑄 𝑆𝑜𝑐𝑘𝑒𝑡𝑠 = 𝑃𝑆𝑜𝑐𝑘𝑒𝑡𝑠 x tan 36.86
 𝑃ℎ𝑒𝑎𝑡𝑒𝑟 = 2000 watt , 𝑄ℎ𝑒𝑎𝑡𝑒𝑟= 0
 𝑃𝐴𝐶 = 𝐻𝑜𝑢𝑟𝑠𝑒 𝑝𝑜𝑤𝑒𝑟x 746 , 𝑄 𝐴𝐶 = 𝑃𝐴𝐶 x tan 36.86
 𝑃𝑖𝑛𝑐 = ⅀ 𝑃 , 𝑄𝑖𝑛𝑐 = 0
 𝑃𝑓𝑙 = ⅀ 𝑃 , 𝑄 𝑓𝑙= ⅀ 𝑃𝑥 tan 36.86
Then we get 𝑃𝑡𝑜𝑡𝑎𝑙 , 𝑄𝑡𝑜𝑡𝑎𝑙 , tan∅ =
𝑄 𝑡𝑜𝑡𝑎𝑙
𝑃 𝑡𝑜𝑡𝑎𝑙
, then we get ∅
and finally
 𝐜𝐨𝐬 ∅ ≈ 0.85
29
Main Current Calculations
Aya Mostafa Eldeeb
30
Phase Lines Total Current
A
LP1
LL3
27.3A
B
LS1
LS2
LS3
LP2
24.03A
C
LL1
LL2
LS4
LS5
25.98A
31
 Panel Balance
Average loading =
27.3+24.03+25.98
3
= 25.77
Deviation PHA = 27.3 – 25.77 = 1.53
Deviation PHB = 24.03 – 25.77 = -1.74
Deviation PHC = 25.98 – 25.77 = 0.21
%unbalance=
𝑚𝑎𝑥.𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝ℎ𝑎𝑠𝑒 𝑙𝑜𝑎𝑑𝑖𝑛𝑔
≤ 10%
=
1.74
25.77
x 100% = 6.75%
 I(CB)= 27.307*1.25 = 34.1 ≈ 40A
∴ CSA= (4x16mm²)+16 mm² (TNCS)
S = 3*V*I = 3*230*27.3 = 19 KVA
32
Energy Meter
33
 High efficiency
34
Pre paid meter
Aya Mostafa Eldeeb
35
 I(feeder)= current of flat x no. of floor flats x no. of
floors x no. of buildings x diversity
 S (apparent power)= 3 x V x I
36
 I(feeder)= 32.5 x 12 x 1x 0.41 = 159.9A
S = 3 x V x I= 3 x 230 x 99.7 = 110 KVA
 I(feeder)= 32.5 x12 x 2 x 0.35 = 273 A
S = 3 x V x I= 3 x 230 x 273= 188.4 KVA
I(cable)=310 A
Cable rating between Pillar & Building
= 3*300mm²+150mm²
37
 All pillars rating is 200 KVA
 All transformers rating is 1 MVA
38
39
40
Point of view Egyptian code British code
Diversity Factor For lighting circuit=0.5
For normal sockets=0.4
For heater<3000watt=1
For air conditioner=0.5
I feeder=current of
flat x no. of floor
flats x no. of floors x
no. of buildings x
diversity
41
Ahmed Abdelshafy
42
 Voltage drop =
𝑚𝑉
𝐴𝑚
(𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑) 𝑥 𝐼(𝐴) 𝑥 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚)
1000
, if CSA ≤
16 𝑚𝑚2
 Voltage drop =
𝐼 𝐴 𝑥 𝑉𝑟
2
+𝑉 𝑋
2
𝑥 𝑙𝑒𝑛𝑔ℎ𝑡(𝑚)
1000
, if CSA >
16 𝑚𝑚2
43
 Socket Circuit
CSA= 3x4 𝑚𝑚2, L= 20 m, mV/A/M=9.5 𝐼𝑙𝑜𝑎𝑑 =4.5 A
VD =
4.5 𝑥 20 𝑥 9.5
1000
= 0.87
VD% =
0.87 𝑥 100
230
= 0.37% ≤ 2%
44
 Summary
45
Cable Length(m) Voltage
Drop(v)
Voltage
Drop%
I(LS1) (3*4) 20m 0.87 0.37%
I(LS2) (3*4) 14m 0.61 0.26%
I(LS3) (3*4) 15m 0.65 0.28%
I(LS4) (3*4) 25m 1.09 0.47%
I(LS5) (3*4) 17m 0.74 0.32%
I(LL1) (3*3) 20m 2.52 1.09%
I(LL2) (3*3) 20m 2.49 1.08%
I(LL3) (3*3) 25m 3.07 1.33%
I(LP1) (3*10) 13m 0.94 0.40%
I(LP2) (3*6) 8m 0.52 0.42%
Ahmed Abdelshafy
46
 Short circuit level at transformer = 500MVA
 𝐼𝑠𝑐 =
𝑈 𝑠
𝑍 𝑇
= 1.05
𝑈 𝑁
𝑍 𝑇
 Determination of impedances:
1. Transformers impedance:
From tables:
Transformer of rating 1 MVA:
 Rtr = 1.94milli-ohm
 Xtr = 7.76 milli-ohm
47
2. Aluminum cable from transformer to pillar:
Type of cable 2(4*300 mm²) and length equals (24.7 m)
 R=1.3585 (m.ohm)
 X= 1.729 (m.ohm)
48
3. Aluminum cable from pillar to coffree:
Type of cable (4*300 mm²) and length equals (46 m)
 R= 5.06 (m.ohm)
 X= 3.22 (m.ohm)
49
4. Aluminum cable from coffree to distribution
board:
Type of cable (4*16 mm²) and length equals (13 m)
 R= 26.8 (m.ohm)
 X is Neglected as C.S.A is smaller than 25 mm²
50
Short circuit current calculation:
1. Calculation of s.c current just after transformer.
 Ztransformer=8(m.ohm)
 Itransf=
230 𝑥 1.05
8
=30.1875 ≈31 KA
51
2. Calculation of s.c current from transformer to pillar.
(Impedance of transformer + impedance of first Al
cable) =A
 Za= 1.3585 + 1.84 2 + (7.76 + 1.729)²=10.05(m.ohm)
 IscA=
230 𝑥 1.05
10.05
=24 KA
52
3. Calculation of s.c current from pillar to coffree.
(Impedance of transformer + impedance of first Al cable +
impedance of second Al cable) =B
 Zb= 5.06 + 1.94 + 1.3585 2 + (7.76 + 1.729 + 3.22)² =
15.22(m.ohm)
 IscB=
230 𝑥 1.05
15.22
=15.87 ≈16 KA
53
4. Calculation of s.c current from coffree to
riser.(Impedance of transformer + impedance of first
Al cable + impedance of second Al cable+ impedance
of riser) =C
 Zc= 5.06 + 1.3585 + 1.94 + 21 2 + (7.76 + 1.729 + 3.22)² =
31.6(m.ohm)
 IscC=
230 𝑥 1.05
31.6
=7.6≈ 10KA
54
Ahmed Abdelshafy
55
56
 We are using TNC-S earthing system which gathers
safety and cost
57
Kareem Hamdy
58
 Purpose
 Types of lamp and poles
59
SODIUM LAMP
Advantages:
High efficacy
Low power consumption
Low cost consumption
60
Normal pole
6m : Side streets, public gardens
8m&10m : Traffic routes
12m&15m : High speed dual carriageways
High mast
18M or more : Airports, stadiums and large industrial areas
61
Factors affecting street lighting design
A. Distance between poles
B. Height(1)
C. Overhang(2)
D. Boom angle(3)
E. Setback(4)
62
Design speed
(Km/h)
Setback (m) Height (m)
50 0.8 5 or 6
80 1 8 or 10
100 1.5 12 or 15
63
According to British standard code:
How to calculate setback, arm length ,
overhang?
Arm length =
1
4
height of pole
Overhang = Arm length-setback
64
 Cont. Factors affecting street lighting design
65
Street Lighting Feeder Pillar
 Responsible for feeding street lighting circuits
 Contains three phase breakers connected on 4 core
cable to feed poles
 Contains a Photocell/Timer
66
Design using DIALux
67
File ⊲ Wizards ⊲ Quick Street Planning
68
69
Dialux select the class of street lighting according to:
 How high is the typical speed of the main user of the street?
 Weather type ?
 How many vehicles are there per day ?
 Does a conflict zone exist ?
 How is the street connected to other streets ?
70
71
Street Lighting requirements
A. Average luminance (L)
B. Overall uniformity (U0)
C. Longitudinal uniformity (U1)
D. Threshold increment (TI)
E. Surrounding ratio (SR)
These requirements depends on Road Type
72
Select luminaire
73
74
75
76
Street Lighting Summery
77
CSA(mm²)I(feeder
)
S(KVA
)
P(kw)No of
column
s
PillarTransform
er
1625.4617.647.530P5T5
1626.318.215.562P1T8
1617.812.310.542P2T8
1641.128.524.297P1T10
1637.3525.82290P1T11
1624.1916.7614.2
5
57P3T12
1628.4319.716.7
5
67P4T14
Total number of poles used = 445 poles
78
 Example(1):
Indoor Lighting Circuit
79
 Example(2):
Outdoor Cables
80
Summary
81
82
83
84
85
‫البريطانى‬ ‫للكود‬ ‫السعر‬ ‫اعمال‬ ‫نموذج‬
16,462574 Type A
6,178850 Type B
11,572256 Type C
8,600368 Type D
24,999214 Layout
67,813263 ‫االجمالى‬ ‫السعر‬‫للمشروع‬
86
87

FINAL

  • 1.
  • 2.
     Prof. Dr.Eng. Almoataz Abdelaziz  Dr. Eng. Mahmoud Abdallah 2
  • 3.
     Ahmed AbdelshafyMohamed  Ahmed Khaled Afifi  Aya Mohamed Adel  Aya Mostafa Mohamed  Kareem Hamdy Sakr  Ziad Adel Gad 3
  • 4.
  • 5.
     Residential Model Pillar and Transformer  Voltage Drop  Short Circuit  Earthing System  Street Lighting  Cost Estimation  Bill of Quantity 5
  • 6.
  • 7.
    1. Normal Sockets 7 RoomPurpose Minimum Number of sockets (Twin) Living room 4 Dining room 3 Kitchen 5 Bedroom 3 Corridor 1 Terrace 1 Garage 1
  • 8.
  • 9.
     for domesticloads: 100% of the largest point + 40% of the remainder. For example Circuit(LS1): Reception (area1) & Terrace (area10) I(LS1)=1+0.4(1*9))=4.6 A I(C.B)= 4.6∗1.25 0.89∗0.79 = 8.17 𝐴 ≈ 10A .:. C.S.A = 2mm² C.S.A = 4mm² 9 Grouping FactorTemp. Factor
  • 10.
    Circuit No. Current C.B C.S.A LS14.6 10A 4mm² LS2 4.6 10A 4mm² LS3 4.6 10A 4mm² LS4 4.6 10A 4mm² LS5 4.6 10A 4mm² 10 Summary
  • 11.
    2. Power Sockets Forexample Circuit (LP1): Bedroom(area7) I(LP1)= 4∗746 230∗0.85∗0.8 =19.08 A P.F=0.85 , Eff=0.8 , V=230 I(C.B)= 19.08∗1.25 0.89∗0.79 = 33.92 A ≈ 40A .:. C.S.A = 10mm² Summary 11 LP1 19.08 40A 10mm ² LP2 10.23 26A 6mm²
  • 12.
  • 13.
  • 14.
    Area Illumination Level [lux] Salon150 Bedroom 100 Bathroom 200 Kitchen 300 Corridor 100 Terrace 100 14
  • 15.
    15 Lighting calculation approach 1.Manual  N= 𝐸∗𝐴 𝐿𝐿𝐹∗𝑈𝐹∗𝑓  I(LL)= 𝑁𝑥 𝑝 𝑉 𝐶𝑜𝑠𝜑
  • 16.
    16  K= 𝑎∗𝑏 ℎ(𝑎+𝑏) 𝜌 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝜌𝑤𝑎𝑙𝑙 𝜌 𝑓𝑙𝑜𝑜𝑟 K 0.7 0.5 0.2 0.7 0.3 0.2 0.75 0.38 0.32 1.00 0.44 0.38
  • 17.
  • 18.
    For example  Circuit(LL1): Reception(area1) +Terrace(area10) +Corridor(area9)+Kitchen(area3)+Bedroom(area4)  Reception (Area1) N = 150 𝑥 32 0.4 𝑥 0.6 𝑥 6000 = 3.3 =4 Luminaires 18
  • 19.
     Corridor (Area9) K= 1.2𝑥6.9 1.2+6.9 (3) =0.34 ≈0.75.:. UF = 0.38 N = 100 𝑥 6 0.38 𝑥 0.6 𝑥 1800 = 1.4 = 2 19
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
     I(LL1)= 2𝑥600 +1 𝑥 22 + 2𝑥22 + 3 𝑥 28 +(1𝑥300) 230 𝑥 0.85 = 8.45A I(C.B)= 8.45 𝑥 1.25 0.89 𝑥 0.79 = 15 ≈ 16A .:. C.S.A =2.5 mm² C.S.A = 3mm² 26 Circuit No. Current C.B C.S.A LL1 8.45 16A 3mm² LL2 8.33 16A 3mm² LL3 8.225 16A 3mm²
  • 27.
  • 28.
  • 29.
     𝑃𝑆𝑜𝑐𝑘𝑒𝑡𝑠 =⅀𝐼 𝑥 𝑉 𝑥 0.8 , 𝑄 𝑆𝑜𝑐𝑘𝑒𝑡𝑠 = 𝑃𝑆𝑜𝑐𝑘𝑒𝑡𝑠 x tan 36.86  𝑃ℎ𝑒𝑎𝑡𝑒𝑟 = 2000 watt , 𝑄ℎ𝑒𝑎𝑡𝑒𝑟= 0  𝑃𝐴𝐶 = 𝐻𝑜𝑢𝑟𝑠𝑒 𝑝𝑜𝑤𝑒𝑟x 746 , 𝑄 𝐴𝐶 = 𝑃𝐴𝐶 x tan 36.86  𝑃𝑖𝑛𝑐 = ⅀ 𝑃 , 𝑄𝑖𝑛𝑐 = 0  𝑃𝑓𝑙 = ⅀ 𝑃 , 𝑄 𝑓𝑙= ⅀ 𝑃𝑥 tan 36.86 Then we get 𝑃𝑡𝑜𝑡𝑎𝑙 , 𝑄𝑡𝑜𝑡𝑎𝑙 , tan∅ = 𝑄 𝑡𝑜𝑡𝑎𝑙 𝑃 𝑡𝑜𝑡𝑎𝑙 , then we get ∅ and finally  𝐜𝐨𝐬 ∅ ≈ 0.85 29
  • 30.
  • 31.
    Phase Lines TotalCurrent A LP1 LL3 27.3A B LS1 LS2 LS3 LP2 24.03A C LL1 LL2 LS4 LS5 25.98A 31
  • 32.
     Panel Balance Averageloading = 27.3+24.03+25.98 3 = 25.77 Deviation PHA = 27.3 – 25.77 = 1.53 Deviation PHB = 24.03 – 25.77 = -1.74 Deviation PHC = 25.98 – 25.77 = 0.21 %unbalance= 𝑚𝑎𝑥.𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝ℎ𝑎𝑠𝑒 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 ≤ 10% = 1.74 25.77 x 100% = 6.75%  I(CB)= 27.307*1.25 = 34.1 ≈ 40A ∴ CSA= (4x16mm²)+16 mm² (TNCS) S = 3*V*I = 3*230*27.3 = 19 KVA 32
  • 33.
  • 34.
  • 35.
  • 36.
     I(feeder)= currentof flat x no. of floor flats x no. of floors x no. of buildings x diversity  S (apparent power)= 3 x V x I 36
  • 37.
     I(feeder)= 32.5x 12 x 1x 0.41 = 159.9A S = 3 x V x I= 3 x 230 x 99.7 = 110 KVA  I(feeder)= 32.5 x12 x 2 x 0.35 = 273 A S = 3 x V x I= 3 x 230 x 273= 188.4 KVA I(cable)=310 A Cable rating between Pillar & Building = 3*300mm²+150mm² 37
  • 38.
     All pillarsrating is 200 KVA  All transformers rating is 1 MVA 38
  • 39.
  • 40.
  • 41.
    Point of viewEgyptian code British code Diversity Factor For lighting circuit=0.5 For normal sockets=0.4 For heater<3000watt=1 For air conditioner=0.5 I feeder=current of flat x no. of floor flats x no. of floors x no. of buildings x diversity 41
  • 42.
  • 43.
     Voltage drop= 𝑚𝑉 𝐴𝑚 (𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑) 𝑥 𝐼(𝐴) 𝑥 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚) 1000 , if CSA ≤ 16 𝑚𝑚2  Voltage drop = 𝐼 𝐴 𝑥 𝑉𝑟 2 +𝑉 𝑋 2 𝑥 𝑙𝑒𝑛𝑔ℎ𝑡(𝑚) 1000 , if CSA > 16 𝑚𝑚2 43
  • 44.
     Socket Circuit CSA=3x4 𝑚𝑚2, L= 20 m, mV/A/M=9.5 𝐼𝑙𝑜𝑎𝑑 =4.5 A VD = 4.5 𝑥 20 𝑥 9.5 1000 = 0.87 VD% = 0.87 𝑥 100 230 = 0.37% ≤ 2% 44
  • 45.
     Summary 45 Cable Length(m)Voltage Drop(v) Voltage Drop% I(LS1) (3*4) 20m 0.87 0.37% I(LS2) (3*4) 14m 0.61 0.26% I(LS3) (3*4) 15m 0.65 0.28% I(LS4) (3*4) 25m 1.09 0.47% I(LS5) (3*4) 17m 0.74 0.32% I(LL1) (3*3) 20m 2.52 1.09% I(LL2) (3*3) 20m 2.49 1.08% I(LL3) (3*3) 25m 3.07 1.33% I(LP1) (3*10) 13m 0.94 0.40% I(LP2) (3*6) 8m 0.52 0.42%
  • 46.
  • 47.
     Short circuitlevel at transformer = 500MVA  𝐼𝑠𝑐 = 𝑈 𝑠 𝑍 𝑇 = 1.05 𝑈 𝑁 𝑍 𝑇  Determination of impedances: 1. Transformers impedance: From tables: Transformer of rating 1 MVA:  Rtr = 1.94milli-ohm  Xtr = 7.76 milli-ohm 47
  • 48.
    2. Aluminum cablefrom transformer to pillar: Type of cable 2(4*300 mm²) and length equals (24.7 m)  R=1.3585 (m.ohm)  X= 1.729 (m.ohm) 48
  • 49.
    3. Aluminum cablefrom pillar to coffree: Type of cable (4*300 mm²) and length equals (46 m)  R= 5.06 (m.ohm)  X= 3.22 (m.ohm) 49
  • 50.
    4. Aluminum cablefrom coffree to distribution board: Type of cable (4*16 mm²) and length equals (13 m)  R= 26.8 (m.ohm)  X is Neglected as C.S.A is smaller than 25 mm² 50
  • 51.
    Short circuit currentcalculation: 1. Calculation of s.c current just after transformer.  Ztransformer=8(m.ohm)  Itransf= 230 𝑥 1.05 8 =30.1875 ≈31 KA 51
  • 52.
    2. Calculation ofs.c current from transformer to pillar. (Impedance of transformer + impedance of first Al cable) =A  Za= 1.3585 + 1.84 2 + (7.76 + 1.729)²=10.05(m.ohm)  IscA= 230 𝑥 1.05 10.05 =24 KA 52
  • 53.
    3. Calculation ofs.c current from pillar to coffree. (Impedance of transformer + impedance of first Al cable + impedance of second Al cable) =B  Zb= 5.06 + 1.94 + 1.3585 2 + (7.76 + 1.729 + 3.22)² = 15.22(m.ohm)  IscB= 230 𝑥 1.05 15.22 =15.87 ≈16 KA 53
  • 54.
    4. Calculation ofs.c current from coffree to riser.(Impedance of transformer + impedance of first Al cable + impedance of second Al cable+ impedance of riser) =C  Zc= 5.06 + 1.3585 + 1.94 + 21 2 + (7.76 + 1.729 + 3.22)² = 31.6(m.ohm)  IscC= 230 𝑥 1.05 31.6 =7.6≈ 10KA 54
  • 55.
  • 56.
    56  We areusing TNC-S earthing system which gathers safety and cost
  • 57.
  • 58.
  • 59.
     Purpose  Typesof lamp and poles 59
  • 60.
    SODIUM LAMP Advantages: High efficacy Lowpower consumption Low cost consumption 60
  • 61.
    Normal pole 6m :Side streets, public gardens 8m&10m : Traffic routes 12m&15m : High speed dual carriageways High mast 18M or more : Airports, stadiums and large industrial areas 61
  • 62.
    Factors affecting streetlighting design A. Distance between poles B. Height(1) C. Overhang(2) D. Boom angle(3) E. Setback(4) 62
  • 63.
    Design speed (Km/h) Setback (m)Height (m) 50 0.8 5 or 6 80 1 8 or 10 100 1.5 12 or 15 63 According to British standard code: How to calculate setback, arm length , overhang?
  • 64.
    Arm length = 1 4 heightof pole Overhang = Arm length-setback 64
  • 65.
     Cont. Factorsaffecting street lighting design 65
  • 66.
    Street Lighting FeederPillar  Responsible for feeding street lighting circuits  Contains three phase breakers connected on 4 core cable to feed poles  Contains a Photocell/Timer 66
  • 67.
  • 68.
    File ⊲ Wizards⊲ Quick Street Planning 68
  • 69.
  • 70.
    Dialux select theclass of street lighting according to:  How high is the typical speed of the main user of the street?  Weather type ?  How many vehicles are there per day ?  Does a conflict zone exist ?  How is the street connected to other streets ? 70
  • 71.
  • 72.
    Street Lighting requirements A.Average luminance (L) B. Overall uniformity (U0) C. Longitudinal uniformity (U1) D. Threshold increment (TI) E. Surrounding ratio (SR) These requirements depends on Road Type 72
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
    Street Lighting Summery 77 CSA(mm²)I(feeder ) S(KVA ) P(kw)Noof column s PillarTransform er 1625.4617.647.530P5T5 1626.318.215.562P1T8 1617.812.310.542P2T8 1641.128.524.297P1T10 1637.3525.82290P1T11 1624.1916.7614.2 5 57P3T12 1628.4319.716.7 5 67P4T14 Total number of poles used = 445 poles
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
    ‫البريطانى‬ ‫للكود‬ ‫السعر‬‫اعمال‬ ‫نموذج‬ 16,462574 Type A 6,178850 Type B 11,572256 Type C 8,600368 Type D 24,999214 Layout 67,813263 ‫االجمالى‬ ‫السعر‬‫للمشروع‬ 86
  • 87.