Factorisation
By the end of the lesson you will be able to:
• Factorise quadratic expressions(trinomials) of 
the form: ax2
+bx+c
Factorise fully:
Factorise fully:
Let's try to factorise  
Which two terms multiply to make             ?
2x2
+7x+5
(            ) (            )
2x2
(            ) (            )
Now, to make the :5
(            ) (            )
2x 
 x 
2x 
 x 
+1  +5
Let's expand:
2x2
+10x+x+5
2x2
+11x+5
(            ) (            )2x 
 x 
+1  +5
We have to swap around the 1 and the 5
Now, expand again:
Always expand to check !!!!!!
Factorise:
3x2
+16x+21
(            ) (            )
List the factors of 21:
so it could be:
(3x +7) ( x + 3)or(3x +3) ( x + 7)
Expand to see which is the correct one. So
3x2
+16x+21  = (3x +7) ( x + 3)
Let's try to factorise 3x2
+13x­10
(            ) (            )
List the factors of -10:
The best way to find the correct pair is trial and
improvement
Now even worse!
4x2
­4x­3
Which two terms multiply to make ?4x2
It could be:
or(4x     )  ( x         )  (2x      )   ( 2x       )
List the factors of -3:
Now try the different possibilities until you find the
correct one
Factorise:
4x2
 ­25
solve worksheet "Factorisation " Ex D2
2 x3 
­ 11 x2 
+ 5x=
At the end of the lesson:
Factorise:

Factorising quadratic expressions 2