SlideShare a Scribd company logo
By Nofal Umair
Extreme values are termed “extrema”
Absolute Extrema: the point in question represents either the
maximum or minimum value of the function over the domain.
Relative Extrema: the point in question represents either the
maximum or minimum value of the function on a specified
segment of the domain (or in the “hood”).
Let’s take a look at an example and consider several points on a
function.
Take a look at this diagram. Notice the difference between
local and absolute extrema.
Although the concepts are easy to understand, be attuned to
the subtlety of the questions asked …
Example 1: on the closed interval find any relative extrema for
y = sin x and y = cos x
Example 2: Same as above but on the open interval
,
2 2
 

 
 
 
,
2 2
 

 
 
 
The Extreme Value Theorem:
If a function f is continuous on a closed interval [a, b], then f has both a
maximum and a minimum on the interval.
Question: So, by looking at a graph of a function, how can you find its
extrema?
What’s true about the
curve at its max and
min?
What’s the one
analytical tool we’ve
been studying all year?
To fully answer the question, we need to define some terms
and give you one theorem.
Critical Points – a point on the interior of the domain of a function f at
which
○ f’ = 0 or
○ f’ does not exist (is undefined).
Theorem: if a function f has a local maximum and/or minimum at
some interior point “c” of its domain, and if f’(c) exists, then
f’(c) = 0
SO, HOW DO YOU FIND EXTREMA???
1. Find all critical points (values)
2. Check the endpoints of the specified domain
A little Practice
Find the extrema of on the interval [-1, 2].
1. Find the critical numbers in f
2. Evaluate f at each critical number
3. Evaluate f at each endpoint
4. Compare. Least number is minimum, greatest number is maximum.
Answers are:
1. Critical numbers at x = 0 and x = 1
2. f(0) = 0 and f(1) = -1
3. Left endpoint has height of 7, right endpoint has height of 16
4. Min = -1, max = 16
4 3
( ) 3 4
f x x x
 
Why Need Of Derivative??????
 Derivatives have arisen from the need to manage the
risk arising from movements in markets beyond our
control ,which may severely impact the revenues and
costs of the firm.
 Derivatives can be used in a number of ways in
everyday life, especially with optimization.
Example:
The growth rate of any company , the profit or loss
it made, etc
CURVES
 You can easily graph any function by
knowing three things.
 1) ZEROS AND UNDEFINED SPOTS
 2) MAXIMUM AND MINIMUM
POINTS
 3) CONCAVITYAND INFLECTION
POINTS.
What the First Derivative Tells Us:
 Suppose that a function f has a derivative at
every point x of an interval I. Then:
increases on I if ( ) 0 for all in I.
f f x x
 
decreases on I if ( ) 0 for all in I.
f f x x
 
What This Means:
 In geometric terms, the first derivative tells
us that differentiable functions increase on
intervals where their graphs have positive
slopes and decrease on intervals where their
graphs have negative slopes.
 WHAT HAPPENS IF THE FIRST
DERIVATIVE IS ZERO?
When The First Derivative is
Zero
 A derivative has the intermediate value
property on any interval on which it is
defined.
 It will take on the value zero when it
changes signs over that interval.
 Thus, when the derivative changes signs on
an interval, the graph of f(x) must have a
horizontal tangent.
Relative Maxima and Minima
 If the derivative
changes sign, there
may be a local max or
min, as shown here.
 More on this later.
Concavity
 Concave down—”spills water”
 Concave up—”holds water”
 The graph of
is concave down on any interval where
and concave up on any interval where
( )
y f x

0
y 
0
y 
Points of Inflection
 A point on the curve where the concavity changes
is called a point of inflection.
 If the second derivative is zero for some x, we
may be able to find a point of inflection.
 It IS possible for the second derivative to be zero
at a point that is NOT a point of inflection.
 A point of inflection may occur where the second
derivative fails to exist.
Inflection Points
 You can tell where the function changes concavity
by finding the inflection points.
 Evaluate the function at those values where the
second derivative is zero;
 Take a look at the graph of the original function:
4 2
( ) 2
f x x x
 
The Graph
An Interesting Example
Suppose that the yield, r, in the % of students in a one
hour exam is given by:
r = 300t (1−t).
Where 0 < t < 1 is the time in hours.
1. At what moments is the yield zero?
2. At what moments does the yield increase or
decrease?
3. When is the biggest yield obtained and which is?
ERRORS AND APPROXIMATIONS
 We can use differentials to calculate small changes in
the dependent variable of a function corresponding
to small changes in the independent variable.
e.g

More Related Content

Similar to extremevaluesofafunctionapplicationsofderivative-130905112534-.pdf

Lesson 2 - Functions and their Graphs - NOTES.ppt
Lesson 2 - Functions and their Graphs - NOTES.pptLesson 2 - Functions and their Graphs - NOTES.ppt
Lesson 2 - Functions and their Graphs - NOTES.ppt
JaysonMagalong
 
Unit 1.2
Unit 1.2Unit 1.2
Unit 1.2
Mark Ryder
 
Lecture 11(relative extrema)
Lecture 11(relative extrema)Lecture 11(relative extrema)
Lecture 11(relative extrema)
FahadYaqoob5
 
Lecture 11(relative extrema)
Lecture 11(relative extrema)Lecture 11(relative extrema)
Lecture 11(relative extrema)
FahadYaqoob5
 
Lecture 11(relative extrema)
Lecture 11(relative extrema)Lecture 11(relative extrema)
Lecture 11(relative extrema)
FahadYaqoob5
 
maxima & Minima thoeyr&solved.Module-4pdf
maxima & Minima thoeyr&solved.Module-4pdfmaxima & Minima thoeyr&solved.Module-4pdf
maxima & Minima thoeyr&solved.Module-4pdf
RajuSingh806014
 
Lesson 4.1 Extreme Values
Lesson 4.1 Extreme ValuesLesson 4.1 Extreme Values
Lesson 4.1 Extreme ValuesSharon Henry
 
Applications of Differentiation
Applications of DifferentiationApplications of Differentiation
Applications of Differentiation
Joey Valdriz
 
Note introductions of functions
Note introductions of functionsNote introductions of functions
Note introductions of functions
SMK Tengku Intan Zaharah
 
Introduction to functions
Introduction to functionsIntroduction to functions
Introduction to functions
Elkin Guillen
 
HIGHER MATHEMATICS
HIGHER MATHEMATICSHIGHER MATHEMATICS
Applications Of Derivatives
Applications Of DerivativesApplications Of Derivatives
Applications Of Derivatives
Lindsey Sais
 
Lesson 1
Lesson 1Lesson 1
Lesson 1
urenaa
 
Edsc 304 lesson 1
Edsc 304 lesson 1Edsc 304 lesson 1
Edsc 304 lesson 1
urenaa
 
Introduction to Functions
Introduction to FunctionsIntroduction to Functions
Introduction to Functions
Melanie Loslo
 

Similar to extremevaluesofafunctionapplicationsofderivative-130905112534-.pdf (20)

Lesson 2 - Functions and their Graphs - NOTES.ppt
Lesson 2 - Functions and their Graphs - NOTES.pptLesson 2 - Functions and their Graphs - NOTES.ppt
Lesson 2 - Functions and their Graphs - NOTES.ppt
 
Unit 1.2
Unit 1.2Unit 1.2
Unit 1.2
 
Lecture 11(relative extrema)
Lecture 11(relative extrema)Lecture 11(relative extrema)
Lecture 11(relative extrema)
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
Lecture 11(relative extrema)
Lecture 11(relative extrema)Lecture 11(relative extrema)
Lecture 11(relative extrema)
 
Lecture 11(relative extrema)
Lecture 11(relative extrema)Lecture 11(relative extrema)
Lecture 11(relative extrema)
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
maxima & Minima thoeyr&solved.Module-4pdf
maxima & Minima thoeyr&solved.Module-4pdfmaxima & Minima thoeyr&solved.Module-4pdf
maxima & Minima thoeyr&solved.Module-4pdf
 
Lesson 4.1 Extreme Values
Lesson 4.1 Extreme ValuesLesson 4.1 Extreme Values
Lesson 4.1 Extreme Values
 
Applications of Differentiation
Applications of DifferentiationApplications of Differentiation
Applications of Differentiation
 
Lar calc10 ch03_sec1
Lar calc10 ch03_sec1Lar calc10 ch03_sec1
Lar calc10 ch03_sec1
 
Note introductions of functions
Note introductions of functionsNote introductions of functions
Note introductions of functions
 
Introduction to functions
Introduction to functionsIntroduction to functions
Introduction to functions
 
HIGHER MATHEMATICS
HIGHER MATHEMATICSHIGHER MATHEMATICS
HIGHER MATHEMATICS
 
Homework graphing
Homework   graphingHomework   graphing
Homework graphing
 
Applications Of Derivatives
Applications Of DerivativesApplications Of Derivatives
Applications Of Derivatives
 
Lemh105
Lemh105Lemh105
Lemh105
 
Lesson 1
Lesson 1Lesson 1
Lesson 1
 
Edsc 304 lesson 1
Edsc 304 lesson 1Edsc 304 lesson 1
Edsc 304 lesson 1
 
Introduction to Functions
Introduction to FunctionsIntroduction to Functions
Introduction to Functions
 

More from Waqas Mehmood

fubinis theorem.pdf
fubinis theorem.pdffubinis theorem.pdf
fubinis theorem.pdf
Waqas Mehmood
 
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
doubleintpptfinalllllfinal-100601222513-phpapp02.pdfdoubleintpptfinalllllfinal-100601222513-phpapp02.pdf
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
Waqas Mehmood
 
dotcrossproductofvectors-160530033752.pdf
dotcrossproductofvectors-160530033752.pdfdotcrossproductofvectors-160530033752.pdf
dotcrossproductofvectors-160530033752.pdf
Waqas Mehmood
 
Directional Derivative.pdf
Directional Derivative.pdfDirectional Derivative.pdf
Directional Derivative.pdf
Waqas Mehmood
 
14-131128204848-phpapp02.pdf
14-131128204848-phpapp02.pdf14-131128204848-phpapp02.pdf
14-131128204848-phpapp02.pdf
Waqas Mehmood
 
line integrals.pdf
line integrals.pdfline integrals.pdf
line integrals.pdf
Waqas Mehmood
 

More from Waqas Mehmood (6)

fubinis theorem.pdf
fubinis theorem.pdffubinis theorem.pdf
fubinis theorem.pdf
 
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
doubleintpptfinalllllfinal-100601222513-phpapp02.pdfdoubleintpptfinalllllfinal-100601222513-phpapp02.pdf
doubleintpptfinalllllfinal-100601222513-phpapp02.pdf
 
dotcrossproductofvectors-160530033752.pdf
dotcrossproductofvectors-160530033752.pdfdotcrossproductofvectors-160530033752.pdf
dotcrossproductofvectors-160530033752.pdf
 
Directional Derivative.pdf
Directional Derivative.pdfDirectional Derivative.pdf
Directional Derivative.pdf
 
14-131128204848-phpapp02.pdf
14-131128204848-phpapp02.pdf14-131128204848-phpapp02.pdf
14-131128204848-phpapp02.pdf
 
line integrals.pdf
line integrals.pdfline integrals.pdf
line integrals.pdf
 

Recently uploaded

erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
ronaldlakony0
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
NoelManyise1
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
sanjana502982
 

Recently uploaded (20)

erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
 

extremevaluesofafunctionapplicationsofderivative-130905112534-.pdf

  • 2. Extreme values are termed “extrema” Absolute Extrema: the point in question represents either the maximum or minimum value of the function over the domain. Relative Extrema: the point in question represents either the maximum or minimum value of the function on a specified segment of the domain (or in the “hood”). Let’s take a look at an example and consider several points on a function.
  • 3. Take a look at this diagram. Notice the difference between local and absolute extrema.
  • 4. Although the concepts are easy to understand, be attuned to the subtlety of the questions asked … Example 1: on the closed interval find any relative extrema for y = sin x and y = cos x Example 2: Same as above but on the open interval , 2 2          , 2 2         
  • 5. The Extreme Value Theorem: If a function f is continuous on a closed interval [a, b], then f has both a maximum and a minimum on the interval. Question: So, by looking at a graph of a function, how can you find its extrema? What’s true about the curve at its max and min? What’s the one analytical tool we’ve been studying all year?
  • 6. To fully answer the question, we need to define some terms and give you one theorem. Critical Points – a point on the interior of the domain of a function f at which ○ f’ = 0 or ○ f’ does not exist (is undefined). Theorem: if a function f has a local maximum and/or minimum at some interior point “c” of its domain, and if f’(c) exists, then f’(c) = 0 SO, HOW DO YOU FIND EXTREMA??? 1. Find all critical points (values) 2. Check the endpoints of the specified domain
  • 7. A little Practice Find the extrema of on the interval [-1, 2]. 1. Find the critical numbers in f 2. Evaluate f at each critical number 3. Evaluate f at each endpoint 4. Compare. Least number is minimum, greatest number is maximum. Answers are: 1. Critical numbers at x = 0 and x = 1 2. f(0) = 0 and f(1) = -1 3. Left endpoint has height of 7, right endpoint has height of 16 4. Min = -1, max = 16 4 3 ( ) 3 4 f x x x  
  • 8. Why Need Of Derivative??????  Derivatives have arisen from the need to manage the risk arising from movements in markets beyond our control ,which may severely impact the revenues and costs of the firm.  Derivatives can be used in a number of ways in everyday life, especially with optimization. Example: The growth rate of any company , the profit or loss it made, etc
  • 9. CURVES  You can easily graph any function by knowing three things.  1) ZEROS AND UNDEFINED SPOTS  2) MAXIMUM AND MINIMUM POINTS  3) CONCAVITYAND INFLECTION POINTS.
  • 10. What the First Derivative Tells Us:  Suppose that a function f has a derivative at every point x of an interval I. Then: increases on I if ( ) 0 for all in I. f f x x   decreases on I if ( ) 0 for all in I. f f x x  
  • 11. What This Means:  In geometric terms, the first derivative tells us that differentiable functions increase on intervals where their graphs have positive slopes and decrease on intervals where their graphs have negative slopes.  WHAT HAPPENS IF THE FIRST DERIVATIVE IS ZERO?
  • 12. When The First Derivative is Zero  A derivative has the intermediate value property on any interval on which it is defined.  It will take on the value zero when it changes signs over that interval.  Thus, when the derivative changes signs on an interval, the graph of f(x) must have a horizontal tangent.
  • 13. Relative Maxima and Minima  If the derivative changes sign, there may be a local max or min, as shown here.  More on this later.
  • 14. Concavity  Concave down—”spills water”  Concave up—”holds water”  The graph of is concave down on any interval where and concave up on any interval where ( ) y f x  0 y  0 y 
  • 15. Points of Inflection  A point on the curve where the concavity changes is called a point of inflection.  If the second derivative is zero for some x, we may be able to find a point of inflection.  It IS possible for the second derivative to be zero at a point that is NOT a point of inflection.  A point of inflection may occur where the second derivative fails to exist.
  • 16. Inflection Points  You can tell where the function changes concavity by finding the inflection points.  Evaluate the function at those values where the second derivative is zero;  Take a look at the graph of the original function: 4 2 ( ) 2 f x x x  
  • 18. An Interesting Example Suppose that the yield, r, in the % of students in a one hour exam is given by: r = 300t (1−t). Where 0 < t < 1 is the time in hours. 1. At what moments is the yield zero? 2. At what moments does the yield increase or decrease? 3. When is the biggest yield obtained and which is?
  • 19. ERRORS AND APPROXIMATIONS  We can use differentials to calculate small changes in the dependent variable of a function corresponding to small changes in the independent variable. e.g