Sl.no X1 X2 X3 X4
1 25.31 25.32 25.32 25.32
2 25.29 25.3 25.3 25.3
3 25.27 25.28 25.28 25.29
4 25.28 25.29 25.3 25.29
5 25.30 25.31 25.33 25.31
6 25.30 25.32 25.31 25.31
7 25.27 25.29 25.28 25.28
8 25.29 25.3 25.32 25.31
9 25.3 25.3 25.31 25.31
10 25.32 25.31 25.33 25.32
11 25.31 25.31 25.3 25.31
12 25.3 25.28 25.29 25.31
13 25.29 25.28 25.29 25.3
14 25.32 25.33 25.32 25.31
15 25.27 25.28 25.3 25.28
1 25.32 25.31 25.31 25.32
2 25.29 25.28 25.31 25.28
3 25.31 25.3 25.3 25.3
4 25.3 25.3 25.29 25.31
5 25.28 25.29 25.29 25.3
6 25.29 25.3 25.29 25.29
7 25.3 25.33 25.31 25.31
8 25.32 25.31 25.31 25.32
9 25.33 25.32 25.32 25.34
10 25.35 25.32 25.33 25.34
11 25.31 25.32 25.31 25.3
12 25.32 25.3 25.3 25.31
13 25.28 25.29 25.28 25.31
14 25.29 25.31 25.32 25.32
15 25.32 25.31 25.29 25.28
Step 1: Determine the total number of observations
N = 120
Step 2: Calculate the range of the data
Range = Maximum value – Minimum value
= 25.35- 25.27
= 0.08
Step 3: Determine the number of class intervals (k)
K = 1 + 3.33 log10(N)
= 1 + 3.33 log10(120)
= 8
Step 4: Determine the width of the class interval
Class interval = Range/K
= 0.08/8
= 0.01
Step 5: Construct the frequency distribution table
= Lowest value – ½(Least Count)
= 25.27 – ½(0.01)
= 25.265
Class Intervals Frequency
25.265 – 25.275 3
25.275 – 25.285 15
25.285 – 25.295 19
25.295 – 25.305 24
25.305 – 25.315 29
25.315 – 25.325 21
25.325 - 25.335 6
25.335 – 25.345 3
Sl.no Class interval Midpoint of
class
interval(X)
Frequency
(F)
F*X F*X2
1 25.265 – 25.275 25.27 3 75.81 1915.719
2 25.275 – 25.285 25.28 15 379.2 9586.176
3 25.285 – 25.295 25.29 19 480.51 12152.1
4 25.295 – 25.305 25.3 24 607.2 15362.16
5 25.305 – 25.315 25.31 29 733.99 18577.29
6 25.315 – 25.325 25.32 21 531.72 13463.15
7 25.325 - 25.335 25.33 6 151.98 3849.653
8 25.335 – 25.345 25.34 3 76.02 1926.347
Step 6: To calculate the Mean
𝑋̅ = ∑fx / N = 3036.43 / 120
= 25.303
Step 7: To calculate the Standard deviation
S.D = √ ∑fx2
- n𝑋̅2
/ n-1 = √76832.59– 120(25.303)2
/ 119
= 0.01602497
From the graph,
The data are normally distributed
25.3425.3225.3025.28
30
25
20
15
10
5
0
C1
Frequency
Histogram of C1
Sl.no X1 X2 X3 X4
1 25.3 25.31 25.31 25.32
2 25.33 25.32 25.31 25.31
3 25.28 25.29 25.29 25.28
4 25.29 25.31 25.29 25.3
5 25.3 25.31 25.32 25.31
6 25.26 25.32 25.3 25.31
7 25.28 25.29 25.31 25.3
8 25.3 25.29 25.31 25.31
9 25.31 25.29 25.29 25.3
10 25.31 25.3 25.31 25.27
11 25.29 25.28 25.3 25.3
12 25.29 25.3 25.32 25.31
13 25.33 25.31 25.31 25.29
14 25.34 25.32 25.3 25.31
15 25.31 25.32 25.32 25.28
1 25.32 25.31 25.31 25.31
2 25.32 25.32 25.31 25.33
3 25.27 25.3 25.28 25.29
4 25.28 25.3 25.29 25.29
5 25.32 25.31 25.31 25.3
6 25.28 25.29 25.28 25.29
7 25.28 25.29 25.29 25.3
8 25.34 25.31 25.29 25.29
9 25.29 25.3 25.31 25.3
10 25.31 25.32 25.31 25.32
11 25.31 25.28 25.29 25.28
12 25.29 25.28 25.3 25.32
13 25.3 25.32 25.32 25.29
14 25.32 25.31 25.3 25.3
15 25.31 25.28 25.27 25.24
Step 1: Determine the total number of observations
N = 120
Step 2: Calculate the range of the data
Range = Maximum value – Minimum value
= 25.34- 25.24
= 0.10
Step 3: Determine the number of class intervals (k)
K = 1 + 3.33 log10(N)
= 1 + 3.33 log10(120)
= 8
Step 4: Determine the width of the class interval
Class interval = Range/K
= 0.10/8
= 0.013
Step 5: Construct the frequency distribution table
= Lowest value – ½(Least Count)
= 25.24– ½(0.01)
= 25.235
Class Intervals Frequency
25.235 – 25.248 1
25.248 – 25.261 1
25.261 – 25.274 3
25.274 – 25.287 14
25.287 – 25.30 46
25.30 – 25.31 32
25.31 - 25.32 18
25.32 – 25.34 5
Sl.no Class interval Midpoint of
class
interval(X)
Frequency
(F)
F*X F*X2
1 25.235 – 25.248 25.2415 1 25.2415 637.1333
2 25.248 – 25.261 25.2545 1 25.2545 637.7898
3 25.261 – 25.274 25.2675 3 75.8025 1915.34
4 25.274 – 25.287 25.2805 14 353.927 8947.452
5 25.287 – 25.30 25.2935 46 1163.501 29429.01
6 25.30 – 25.31 25.305 32 809.76 20490.98
7 25.31 - 25.32 25.315 18 455.67 11535.29
8 25.32 – 25.34 25.33 5 126.65 3208.045
Step 6: To calculate the Mean
𝑋̅ = ∑fx / N = 3035.807 / 120
= 25.29839
Step 7: To calculate the Standard deviation
S.D = √ ∑fx2
- n𝑋̅2
/ n-1 = √76801.03– 120(25.29839)2
/ 119
= 0.01448448
From the graph, the data are normally distributed and the data are skewed to the right.
25.3425.3225.3025.2825.2625.24
35
30
25
20
15
10
5
0
C2
Frequency
Histogram of C2
Sl.no X1 X2 X3 X4
1 25.32 25.31 25.3 25.32
2 25.31 25.32 25.28 25.31
3 25.32 25.28 25.29 25.27
4 25.3 25.31 25.3 25.29
5 25.26 25.29 25.3 25.29
6 25.3 25.3 25.31 25.33
7 25.29 25.3 25.29 25.29
8 25.3 25.31 25.31 25.31
9 25.29 25.3 25.3 25.31
10 25.25 25.31 25.3 25.3
11 25.32 25.27 25.28 25.3
12 25.27 25.26 25.28 25.31
13 25.31 25.32 25.31 25.29
14 25.3 25.3 25.29 25.3
15 25.31 25.32 25.31 25.29
1 25.29 25.32 25.31 25.32
2 25.32 25.31 25.3 25.31
3 25.33 25.32 25.32 25.34
4 25.32 25.31 25.32 25.31
5 25.32 25.29 25.29 25.32
6 25.29 25.3 25.3 25.29
7 25.26 25.32 25.3 25.28
8 25.3 25.32 25.31 25.3
9 25.29 25.33 25.28 25.31
10 25.31 25.3 25.3 25.3
11 25.31 25.31 25.33 25.32
12 25.29 25.28 25.3 25.3
13 25.3 25.31 25.32 25.32
14 25.28 25.31 25.31 25.26
15 25.29 25.3 25.3 25.31
Step 1: Determine the total number of observations
N = 120
Step 2: Calculate the range of the data
Range = Maximum value – Minimum value
= 25.34- 25.25
= 0.09
Step 3: Determine the number of class intervals (k)
K = 1 + 3.33 log10(N)
= 1 + 3.33 log10(120)
= 8
Step 4: Determine the width of the class interval
Class interval = Range/K
= 0.09/8
= 0.011
Step 5: Construct the frequency distribution table
= Lowest value – ½(Least Count)
= 25.25– ½(0.01)
= 25.245
Class Intervals Frequency
25.245 -25.286 1
25.286 - 25.2675 4
25.2675 - 25.2787 3
25.2787 - 25.29 27
25.29 - 25.301 30
25.301 - 25.312 29
25.312 - 25.323 21
25.323 - 25.34 5
Sl.no Class interval Midpoint of
class
interval(X)
Frequency
(F)
F*X F*X2
1 25.245 -25.286 25.2655 1 25.2655 638.3455
2 25.286 - 25.2675 25.27675 4 101.107 2555.656
3 25.2675 - 25.2787 25.2731 3 75.8193 1916.189
4 25.2787 - 25.29 25.28435 27 682.6775 17261.06
5 25.29 - 25.301 25.2955 30 758.865 19195.87
6 25.301 - 25.312 25.3065 29 733.8885 18572.15
7 25.312 - 25.323 25.3175 21 531.6675 13460.49
8 25.323 - 25.34 25.3315 5 126.6575 3208.424
Step 6: To calculate the Mean
𝑋̅ = ∑fx / N = 3035.948/ 120
= 25.29
Step 7: To calculate the Standard deviation
S.D = √ ∑fx2
- n𝑋̅2
/ n-1 = √76808.18– 120(25.29)2
/ 119
= 0.1849
From the graph, the data are normally distributed and the data are skewed to the right.
25.3425.3225.3025.2825.26
30
25
20
15
10
5
0
C3
Frequency
Histogram of C3

Essential steps involved in plotting histogram

  • 1.
    Sl.no X1 X2X3 X4 1 25.31 25.32 25.32 25.32 2 25.29 25.3 25.3 25.3 3 25.27 25.28 25.28 25.29 4 25.28 25.29 25.3 25.29 5 25.30 25.31 25.33 25.31 6 25.30 25.32 25.31 25.31 7 25.27 25.29 25.28 25.28 8 25.29 25.3 25.32 25.31 9 25.3 25.3 25.31 25.31 10 25.32 25.31 25.33 25.32 11 25.31 25.31 25.3 25.31 12 25.3 25.28 25.29 25.31 13 25.29 25.28 25.29 25.3 14 25.32 25.33 25.32 25.31 15 25.27 25.28 25.3 25.28 1 25.32 25.31 25.31 25.32 2 25.29 25.28 25.31 25.28 3 25.31 25.3 25.3 25.3 4 25.3 25.3 25.29 25.31 5 25.28 25.29 25.29 25.3 6 25.29 25.3 25.29 25.29 7 25.3 25.33 25.31 25.31 8 25.32 25.31 25.31 25.32 9 25.33 25.32 25.32 25.34 10 25.35 25.32 25.33 25.34 11 25.31 25.32 25.31 25.3 12 25.32 25.3 25.3 25.31 13 25.28 25.29 25.28 25.31 14 25.29 25.31 25.32 25.32 15 25.32 25.31 25.29 25.28
  • 2.
    Step 1: Determinethe total number of observations N = 120 Step 2: Calculate the range of the data Range = Maximum value – Minimum value = 25.35- 25.27 = 0.08 Step 3: Determine the number of class intervals (k) K = 1 + 3.33 log10(N) = 1 + 3.33 log10(120) = 8 Step 4: Determine the width of the class interval Class interval = Range/K = 0.08/8 = 0.01 Step 5: Construct the frequency distribution table = Lowest value – ½(Least Count) = 25.27 – ½(0.01) = 25.265 Class Intervals Frequency 25.265 – 25.275 3 25.275 – 25.285 15 25.285 – 25.295 19 25.295 – 25.305 24 25.305 – 25.315 29 25.315 – 25.325 21 25.325 - 25.335 6 25.335 – 25.345 3
  • 3.
    Sl.no Class intervalMidpoint of class interval(X) Frequency (F) F*X F*X2 1 25.265 – 25.275 25.27 3 75.81 1915.719 2 25.275 – 25.285 25.28 15 379.2 9586.176 3 25.285 – 25.295 25.29 19 480.51 12152.1 4 25.295 – 25.305 25.3 24 607.2 15362.16 5 25.305 – 25.315 25.31 29 733.99 18577.29 6 25.315 – 25.325 25.32 21 531.72 13463.15 7 25.325 - 25.335 25.33 6 151.98 3849.653 8 25.335 – 25.345 25.34 3 76.02 1926.347 Step 6: To calculate the Mean 𝑋̅ = ∑fx / N = 3036.43 / 120 = 25.303 Step 7: To calculate the Standard deviation S.D = √ ∑fx2 - n𝑋̅2 / n-1 = √76832.59– 120(25.303)2 / 119 = 0.01602497 From the graph, The data are normally distributed 25.3425.3225.3025.28 30 25 20 15 10 5 0 C1 Frequency Histogram of C1
  • 4.
    Sl.no X1 X2X3 X4 1 25.3 25.31 25.31 25.32 2 25.33 25.32 25.31 25.31 3 25.28 25.29 25.29 25.28 4 25.29 25.31 25.29 25.3 5 25.3 25.31 25.32 25.31 6 25.26 25.32 25.3 25.31 7 25.28 25.29 25.31 25.3 8 25.3 25.29 25.31 25.31 9 25.31 25.29 25.29 25.3 10 25.31 25.3 25.31 25.27 11 25.29 25.28 25.3 25.3 12 25.29 25.3 25.32 25.31 13 25.33 25.31 25.31 25.29 14 25.34 25.32 25.3 25.31 15 25.31 25.32 25.32 25.28 1 25.32 25.31 25.31 25.31 2 25.32 25.32 25.31 25.33 3 25.27 25.3 25.28 25.29 4 25.28 25.3 25.29 25.29 5 25.32 25.31 25.31 25.3 6 25.28 25.29 25.28 25.29 7 25.28 25.29 25.29 25.3 8 25.34 25.31 25.29 25.29 9 25.29 25.3 25.31 25.3 10 25.31 25.32 25.31 25.32 11 25.31 25.28 25.29 25.28 12 25.29 25.28 25.3 25.32 13 25.3 25.32 25.32 25.29 14 25.32 25.31 25.3 25.3 15 25.31 25.28 25.27 25.24
  • 5.
    Step 1: Determinethe total number of observations N = 120 Step 2: Calculate the range of the data Range = Maximum value – Minimum value = 25.34- 25.24 = 0.10 Step 3: Determine the number of class intervals (k) K = 1 + 3.33 log10(N) = 1 + 3.33 log10(120) = 8 Step 4: Determine the width of the class interval Class interval = Range/K = 0.10/8 = 0.013 Step 5: Construct the frequency distribution table = Lowest value – ½(Least Count) = 25.24– ½(0.01) = 25.235 Class Intervals Frequency 25.235 – 25.248 1 25.248 – 25.261 1 25.261 – 25.274 3 25.274 – 25.287 14 25.287 – 25.30 46 25.30 – 25.31 32 25.31 - 25.32 18 25.32 – 25.34 5
  • 6.
    Sl.no Class intervalMidpoint of class interval(X) Frequency (F) F*X F*X2 1 25.235 – 25.248 25.2415 1 25.2415 637.1333 2 25.248 – 25.261 25.2545 1 25.2545 637.7898 3 25.261 – 25.274 25.2675 3 75.8025 1915.34 4 25.274 – 25.287 25.2805 14 353.927 8947.452 5 25.287 – 25.30 25.2935 46 1163.501 29429.01 6 25.30 – 25.31 25.305 32 809.76 20490.98 7 25.31 - 25.32 25.315 18 455.67 11535.29 8 25.32 – 25.34 25.33 5 126.65 3208.045 Step 6: To calculate the Mean 𝑋̅ = ∑fx / N = 3035.807 / 120 = 25.29839 Step 7: To calculate the Standard deviation S.D = √ ∑fx2 - n𝑋̅2 / n-1 = √76801.03– 120(25.29839)2 / 119 = 0.01448448 From the graph, the data are normally distributed and the data are skewed to the right. 25.3425.3225.3025.2825.2625.24 35 30 25 20 15 10 5 0 C2 Frequency Histogram of C2
  • 7.
    Sl.no X1 X2X3 X4 1 25.32 25.31 25.3 25.32 2 25.31 25.32 25.28 25.31 3 25.32 25.28 25.29 25.27 4 25.3 25.31 25.3 25.29 5 25.26 25.29 25.3 25.29 6 25.3 25.3 25.31 25.33 7 25.29 25.3 25.29 25.29 8 25.3 25.31 25.31 25.31 9 25.29 25.3 25.3 25.31 10 25.25 25.31 25.3 25.3 11 25.32 25.27 25.28 25.3 12 25.27 25.26 25.28 25.31 13 25.31 25.32 25.31 25.29 14 25.3 25.3 25.29 25.3 15 25.31 25.32 25.31 25.29 1 25.29 25.32 25.31 25.32 2 25.32 25.31 25.3 25.31 3 25.33 25.32 25.32 25.34 4 25.32 25.31 25.32 25.31 5 25.32 25.29 25.29 25.32 6 25.29 25.3 25.3 25.29 7 25.26 25.32 25.3 25.28 8 25.3 25.32 25.31 25.3 9 25.29 25.33 25.28 25.31 10 25.31 25.3 25.3 25.3 11 25.31 25.31 25.33 25.32 12 25.29 25.28 25.3 25.3 13 25.3 25.31 25.32 25.32 14 25.28 25.31 25.31 25.26 15 25.29 25.3 25.3 25.31
  • 8.
    Step 1: Determinethe total number of observations N = 120 Step 2: Calculate the range of the data Range = Maximum value – Minimum value = 25.34- 25.25 = 0.09 Step 3: Determine the number of class intervals (k) K = 1 + 3.33 log10(N) = 1 + 3.33 log10(120) = 8 Step 4: Determine the width of the class interval Class interval = Range/K = 0.09/8 = 0.011 Step 5: Construct the frequency distribution table = Lowest value – ½(Least Count) = 25.25– ½(0.01) = 25.245 Class Intervals Frequency 25.245 -25.286 1 25.286 - 25.2675 4 25.2675 - 25.2787 3 25.2787 - 25.29 27 25.29 - 25.301 30 25.301 - 25.312 29 25.312 - 25.323 21 25.323 - 25.34 5
  • 9.
    Sl.no Class intervalMidpoint of class interval(X) Frequency (F) F*X F*X2 1 25.245 -25.286 25.2655 1 25.2655 638.3455 2 25.286 - 25.2675 25.27675 4 101.107 2555.656 3 25.2675 - 25.2787 25.2731 3 75.8193 1916.189 4 25.2787 - 25.29 25.28435 27 682.6775 17261.06 5 25.29 - 25.301 25.2955 30 758.865 19195.87 6 25.301 - 25.312 25.3065 29 733.8885 18572.15 7 25.312 - 25.323 25.3175 21 531.6675 13460.49 8 25.323 - 25.34 25.3315 5 126.6575 3208.424 Step 6: To calculate the Mean 𝑋̅ = ∑fx / N = 3035.948/ 120 = 25.29 Step 7: To calculate the Standard deviation S.D = √ ∑fx2 - n𝑋̅2 / n-1 = √76808.18– 120(25.29)2 / 119 = 0.1849 From the graph, the data are normally distributed and the data are skewed to the right. 25.3425.3225.3025.2825.26 30 25 20 15 10 5 0 C3 Frequency Histogram of C3