SlideShare a Scribd company logo
1 of 7
DC Networks – Thevenin Theorem
An active network having two terminals A and B can be replaced by a constant
voltage source having an emf, E and an internal resistance, r.
The value of E is the open-circuit voltage between A and B and r is the
equivalent resistance of the circuit with load removed and the sources of
emf replaced by their internal resistances.
Thevenin theorem can be used to understand the effect of output resistance on
a voltage source under load conditions.
E
R1
A
B
R2
rint
RTH
VTH
A
B
= V
DC Networks – Thevenin Theorem
Use the following procedure to obtain the Thevenin equivalent for the circuit shown,
determine the terminal voltage VT and current through the load R3.
1. remove the load resistance from the circuit,
2. determine the open circuit voltage, VTH, across the break,
AR2 = 4Ω
B
E = 20V
R1= 8Ω R3 = 15Ω
rint = 2Ω
VT
(use the potential divider formula)
R1= 8Ω
A
B
R2 = 4Ω
VTH
rint = 2Ω
E = 20V
DC Networks – Thevenin Theorem
3. remove each source of emf and replace them with their internal resistances
4. dermine the Thevenin equivalent resistance, RTH ‘looking in’ at the break,
5. replace the load to the Thevenin equivalent circuit and determine the network parameters.
A
B
rint = 2Ω R1= 8Ω
R2 = 4Ω
RTH
B
A
RTH
RLOAD
VTH
I
V
Activity
1. Use Thevenin theorem to derive the terminal voltage VT and load current.
DC Networks – Thevenin Theorem
AR2 = 2Ω
R=20Ω
rint = 1Ω
E = 48V
R1=10Ω VT
B
2. Use Thevenin theorem to derive the terminal voltage VT and load current.
RL= 5ΩVB = 24V
3Ω
12Ω V
A
B
6Ω VT
Obtain the Thevenin equivalent circuit for the network shown and determine the value of
load resistor required for a current of 0.5A to flow between terminals AB.
DC Networks – Thevenin Theorem
-
+
R1 = 4Ω
B
A
R2 = 6Ω
pd across R1 and R2 = 5 – 2 = 3V
-
+
1 2 Using the potential divider theorem
pd across R2 = 3 x
pd across R2 = 3 x
6
4 + 6
R2
R1 + R2
= 1.8V
pd across R1 = 3 – 1.8 = 1.2V
Determine the voltage across R1 and R2
R1 = 4Ω
E1 = 5V
E1 = 5V E2 = 2V
B
A
R2 = 6Ω
E2 = 2V
Redraw the circuit indicating the pds and their polarity ( + ve side to highest source).
DC Networks – Thevenin Theorem
3
path 1 = 5 – 1.2 = 3.8V
path 2 = 2 + 1.8 = 3.8V
ETH = 3.8V
-
+
4Ω
B
A
6Ω
VR1 = 1.2V
5V
-
+
2V
VR2 = 1.8V
+ + --
The sum of the pd’s must be the same along both paths indicated,
tracing each path gives;
path
1
path
2
Replace each voltage source with its internal resistance (zero in this case).4
Looking into the circuit from the terminals AB, the 6Ω and 4Ω then appear in parallel.
4 x 6
4 + 6
= 2.4 ΩRTH =
DC Networks – Thevenin Theorem
4Ω
B
A
6Ω
Replace each voltage source with its internal resistance (zero in this case).4
Looking into the circuit from the terminals AB, the 6Ω and 4Ω then appear in parallel.
4 x 6
4 + 6
= 2.4 ΩRTH =
4
Draw the Thevenin equivalent circuit.5 For a load current IL of 0.5A to flow.6
RTOTAL =
ETH
IL
=
3.8
0.5
= 7.6 Ω
RL = RTOTAL – RTH = 7.6 – 2.4 = 5.2Ω
-
+
RTH = 2.4Ω
A
B
ETH 3.8V

More Related Content

More from sld1950

Computers numbering systems
Computers   numbering systemsComputers   numbering systems
Computers numbering systems
sld1950
 
Components transistors
Components   transistorsComponents   transistors
Components transistors
sld1950
 
Components operational amplifiers
Components  operational amplifiersComponents  operational amplifiers
Components operational amplifiers
sld1950
 
Components the diode
Components   the diodeComponents   the diode
Components the diode
sld1950
 
Components 555 timer
Components   555 timerComponents   555 timer
Components 555 timer
sld1950
 
Components resistors
Components   resistorsComponents   resistors
Components resistors
sld1950
 

More from sld1950 (6)

Computers numbering systems
Computers   numbering systemsComputers   numbering systems
Computers numbering systems
 
Components transistors
Components   transistorsComponents   transistors
Components transistors
 
Components operational amplifiers
Components  operational amplifiersComponents  operational amplifiers
Components operational amplifiers
 
Components the diode
Components   the diodeComponents   the diode
Components the diode
 
Components 555 timer
Components   555 timerComponents   555 timer
Components 555 timer
 
Components resistors
Components   resistorsComponents   resistors
Components resistors
 

Recently uploaded

Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
panagenda
 
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
UK Journal
 
Structuring Teams and Portfolios for Success
Structuring Teams and Portfolios for SuccessStructuring Teams and Portfolios for Success
Structuring Teams and Portfolios for Success
UXDXConf
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
FIDO Alliance
 

Recently uploaded (20)

Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
Intro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxIntro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptx
 
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdfWhere to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
 
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
Structuring Teams and Portfolios for Success
Structuring Teams and Portfolios for SuccessStructuring Teams and Portfolios for Success
Structuring Teams and Portfolios for Success
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
 
Collecting & Temporal Analysis of Behavioral Web Data - Tales From The Inside
Collecting & Temporal Analysis of Behavioral Web Data - Tales From The InsideCollecting & Temporal Analysis of Behavioral Web Data - Tales From The Inside
Collecting & Temporal Analysis of Behavioral Web Data - Tales From The Inside
 
Long journey of Ruby Standard library at RubyKaigi 2024
Long journey of Ruby Standard library at RubyKaigi 2024Long journey of Ruby Standard library at RubyKaigi 2024
Long journey of Ruby Standard library at RubyKaigi 2024
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptx
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
 

Elect principles 2 thevenin theorem

  • 1. DC Networks – Thevenin Theorem An active network having two terminals A and B can be replaced by a constant voltage source having an emf, E and an internal resistance, r. The value of E is the open-circuit voltage between A and B and r is the equivalent resistance of the circuit with load removed and the sources of emf replaced by their internal resistances. Thevenin theorem can be used to understand the effect of output resistance on a voltage source under load conditions. E R1 A B R2 rint RTH VTH A B = V
  • 2. DC Networks – Thevenin Theorem Use the following procedure to obtain the Thevenin equivalent for the circuit shown, determine the terminal voltage VT and current through the load R3. 1. remove the load resistance from the circuit, 2. determine the open circuit voltage, VTH, across the break, AR2 = 4Ω B E = 20V R1= 8Ω R3 = 15Ω rint = 2Ω VT (use the potential divider formula) R1= 8Ω A B R2 = 4Ω VTH rint = 2Ω E = 20V
  • 3. DC Networks – Thevenin Theorem 3. remove each source of emf and replace them with their internal resistances 4. dermine the Thevenin equivalent resistance, RTH ‘looking in’ at the break, 5. replace the load to the Thevenin equivalent circuit and determine the network parameters. A B rint = 2Ω R1= 8Ω R2 = 4Ω RTH B A RTH RLOAD VTH I V
  • 4. Activity 1. Use Thevenin theorem to derive the terminal voltage VT and load current. DC Networks – Thevenin Theorem AR2 = 2Ω R=20Ω rint = 1Ω E = 48V R1=10Ω VT B 2. Use Thevenin theorem to derive the terminal voltage VT and load current. RL= 5ΩVB = 24V 3Ω 12Ω V A B 6Ω VT
  • 5. Obtain the Thevenin equivalent circuit for the network shown and determine the value of load resistor required for a current of 0.5A to flow between terminals AB. DC Networks – Thevenin Theorem - + R1 = 4Ω B A R2 = 6Ω pd across R1 and R2 = 5 – 2 = 3V - + 1 2 Using the potential divider theorem pd across R2 = 3 x pd across R2 = 3 x 6 4 + 6 R2 R1 + R2 = 1.8V pd across R1 = 3 – 1.8 = 1.2V Determine the voltage across R1 and R2 R1 = 4Ω E1 = 5V E1 = 5V E2 = 2V B A R2 = 6Ω E2 = 2V
  • 6. Redraw the circuit indicating the pds and their polarity ( + ve side to highest source). DC Networks – Thevenin Theorem 3 path 1 = 5 – 1.2 = 3.8V path 2 = 2 + 1.8 = 3.8V ETH = 3.8V - + 4Ω B A 6Ω VR1 = 1.2V 5V - + 2V VR2 = 1.8V + + -- The sum of the pd’s must be the same along both paths indicated, tracing each path gives; path 1 path 2 Replace each voltage source with its internal resistance (zero in this case).4 Looking into the circuit from the terminals AB, the 6Ω and 4Ω then appear in parallel. 4 x 6 4 + 6 = 2.4 ΩRTH =
  • 7. DC Networks – Thevenin Theorem 4Ω B A 6Ω Replace each voltage source with its internal resistance (zero in this case).4 Looking into the circuit from the terminals AB, the 6Ω and 4Ω then appear in parallel. 4 x 6 4 + 6 = 2.4 ΩRTH = 4 Draw the Thevenin equivalent circuit.5 For a load current IL of 0.5A to flow.6 RTOTAL = ETH IL = 3.8 0.5 = 7.6 Ω RL = RTOTAL – RTH = 7.6 – 2.4 = 5.2Ω - + RTH = 2.4Ω A B ETH 3.8V