Teoría de Conjuntos 
Bachiller: 
Hurtado Valentina 
C.I: 23.997.291 
Republica Bolivariana de Venezuela 
Ministerio del Poder Popular para la Educación Superior 
I.U.P “Santiago Mariño” 
Escuela de Ing. de Sistemas. 
Sede Barcelona.
Para empezar se debe tener claro que… 
Un conjunto es la reunión de 
objetos bien definidos y 
diferenciables entre si, que se 
encuentran en un momento dado.
A continuación los siguientes conceptos: 
• Unión: Se llama unión de dos conjuntos A y B al conjunto formado por 
objetos que son elementos de A o de B, es decir: 
A u B 
• Intersección: Se llama intersección de dos conjuntos A y B al conjunto 
formado por objetos que son elementos de A y de B, es decir: 
A ∩ B 
Es el conjunto que contiene a todos los elementos de A que al mismo tiempo 
están en B.
Utilizaremos las siguientes leyes de Conjuntos: 
Propiedades Unión Intersección 
Idempotencia A u A= A A ∩ A= A 
Conmutativa A u B= B uA A ∩ B= B ∩A 
Asociativa A u (B u C)= (A u B) u C A ∩ (B ∩ C) = (A ∩ B) ∩ C 
Distributiva A u (B ∩ C)= (A u B) ∩ (A u C) A ∩ (B u C) = (A ∩ B) u (A ∩ C) 
Complementariedad A u A’ = U A ∩ A’ = Ø
Utilizaremos los conjuntos: 
A= (2, 6 , 8, 10, 13, 14, 27) 
B= (1, 6, 11, 14, 20, 27, 30) 
C= (4, 6, 8, 11, 17, 19, 22, 27, 35, 40, 41) 
D= ( A, B, C)
Ejercicios
1.Idempotencia 
 Formula: 
A uA= A 
A u A= (2, 6 , 8, 10, 13, 14, 27) u (2, 6 , 8, 10, 13, 14, 27) 
= (2, 6 , 8, 10, 13, 14, 27)
2. Conmutativa 
 Formula 
A u B= B u A 
A u B= A + B – A ∩ B 
A u B= (2, 6 , 8, 10, 13, 14, 27) +(1, 6, 11, 14, 20, 27, 30) – (6, 14, 27) 
A u B= (1, 2,8, 10, 11, 13, 20, 27, 30) 
Esto es igual a: 
B u A= B + A – B ∩ A 
B u A= (1, 6, 11, 14, 20, 27, 30) + (2, 6 , 8, 10, 13, 14, 27) - (6, 14, 27) 
B u A= (1, 2,8, 10, 11, 13, 20, 27, 30)
3. Asociativa 
 Formula 
A u (B u C)= (A u B) u C 
(B u C)= B + C – B ∩ C 
(B u C)= (1, 6, 11, 14, 20, 27, 30) + (4, 6, 8, 11, 17, 19, 22, 27, 35, 40, 41) 
– (6, 11, 27) 
B u C= (1, 6, 11, 14, 20, 27, 30, 4, 8, 17, 19, 22, 35, 40, 41) 
A u (B u C)= (2, 6 , 8, 10, 13, 14, 27) + (1, 6, 11, 14, 20, 27, 30, 4, 8, 17, 19, 
22, 35, 40, 41) – (6, 8, 14, 27) 
A u ( B u C)= (1, 2, 4, 6, 8, 10, 11, 13, 14, 17, 19, 20, 22, 27, 30,35, 40, 41)
4. Distributiva 
 Formula 
A u (B ∩ C)= (A u B) ∩ (A u C) 
Como A u B es conmutativa 
(B ∩ C)= (1, 6, 11, 14, 20, 27, 30) ∩ (4, 6, 8, 11, 17, 19, 22, 27, 35, 40, 41) 
(B ∩ C)= ( 6, 11,27) 
A u (B ∩ C)= {A+ ( B ∩ C) } – A ∩ (B ∩ C) 
A u (B ∩ C)= (2, 6 , 8, 10, 13, 14, 27) + ( 6, 11,27) 
A u (B ∩ C)= (2, 6, 8, 10, 11, 13, 14, 27)
4.1 Distributiva A u (B ∩ C)= (A u B) ∩ (A u C) si la 
formula es cumplida es distributiva. 
A u B= (2, 6 , 8, 10, 13, 14, 27) + (1, 6, 11, 14, 20, 27, 30) - (6, 14, 27) 
A u B= (1, 2,8, 10, 11, 13, 20, 27, 30) 
A u C= A + C- A ∩ C 
A u C= (2, 6 , 8, 10, 13, 14, 27) + (4, 6, 8, 11, 17, 19, 22, 27, 35, 40, 41) – 
(6, 8, 27) 
A u C= (2, 4, 6, 8, 10, 11, 13, 14, 17, 19, 22, 27, 35, 40, 41) 
(A u B) ∩ (A u C)= (1, 2,8, 10, 11, 13, 20, 27, 30) ∩ (2, 4, 6, 8, 10, 11, 13, 14, 
17, 19, 22, 27, 35, 40, 41) 
(A u B) ∩ (A u C)= (2, 8, 10, 11, 13, 27)
5.Complementariedad 
 Formula 
A ∩ A’ = Ø 
D= A 
D= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 
27) 
A= (2, 6 , 8, 10, 13, 14, 27) 
A’= (1, 3, 4, 5, 7, 9, 11, 12, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24, 25, 26) 
A u A’= A + A’
5.1 Complementariedad 
Si A u A’ = Ø 
el conjunto es de 
complementariedad. 
A u A’= A + A’ 
A u A’= (2, 6 , 8, 10, 13, 14, 27) + (1, 3, 4, 5, 
7, 9, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 
23, 24, 25, 26) 
A u A’= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 27)

Ejercicios sobre Teoría de conjuntos

  • 1.
    Teoría de Conjuntos Bachiller: Hurtado Valentina C.I: 23.997.291 Republica Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior I.U.P “Santiago Mariño” Escuela de Ing. de Sistemas. Sede Barcelona.
  • 2.
    Para empezar sedebe tener claro que… Un conjunto es la reunión de objetos bien definidos y diferenciables entre si, que se encuentran en un momento dado.
  • 3.
    A continuación lossiguientes conceptos: • Unión: Se llama unión de dos conjuntos A y B al conjunto formado por objetos que son elementos de A o de B, es decir: A u B • Intersección: Se llama intersección de dos conjuntos A y B al conjunto formado por objetos que son elementos de A y de B, es decir: A ∩ B Es el conjunto que contiene a todos los elementos de A que al mismo tiempo están en B.
  • 4.
    Utilizaremos las siguientesleyes de Conjuntos: Propiedades Unión Intersección Idempotencia A u A= A A ∩ A= A Conmutativa A u B= B uA A ∩ B= B ∩A Asociativa A u (B u C)= (A u B) u C A ∩ (B ∩ C) = (A ∩ B) ∩ C Distributiva A u (B ∩ C)= (A u B) ∩ (A u C) A ∩ (B u C) = (A ∩ B) u (A ∩ C) Complementariedad A u A’ = U A ∩ A’ = Ø
  • 5.
    Utilizaremos los conjuntos: A= (2, 6 , 8, 10, 13, 14, 27) B= (1, 6, 11, 14, 20, 27, 30) C= (4, 6, 8, 11, 17, 19, 22, 27, 35, 40, 41) D= ( A, B, C)
  • 6.
  • 7.
    1.Idempotencia  Formula: A uA= A A u A= (2, 6 , 8, 10, 13, 14, 27) u (2, 6 , 8, 10, 13, 14, 27) = (2, 6 , 8, 10, 13, 14, 27)
  • 8.
    2. Conmutativa Formula A u B= B u A A u B= A + B – A ∩ B A u B= (2, 6 , 8, 10, 13, 14, 27) +(1, 6, 11, 14, 20, 27, 30) – (6, 14, 27) A u B= (1, 2,8, 10, 11, 13, 20, 27, 30) Esto es igual a: B u A= B + A – B ∩ A B u A= (1, 6, 11, 14, 20, 27, 30) + (2, 6 , 8, 10, 13, 14, 27) - (6, 14, 27) B u A= (1, 2,8, 10, 11, 13, 20, 27, 30)
  • 9.
    3. Asociativa Formula A u (B u C)= (A u B) u C (B u C)= B + C – B ∩ C (B u C)= (1, 6, 11, 14, 20, 27, 30) + (4, 6, 8, 11, 17, 19, 22, 27, 35, 40, 41) – (6, 11, 27) B u C= (1, 6, 11, 14, 20, 27, 30, 4, 8, 17, 19, 22, 35, 40, 41) A u (B u C)= (2, 6 , 8, 10, 13, 14, 27) + (1, 6, 11, 14, 20, 27, 30, 4, 8, 17, 19, 22, 35, 40, 41) – (6, 8, 14, 27) A u ( B u C)= (1, 2, 4, 6, 8, 10, 11, 13, 14, 17, 19, 20, 22, 27, 30,35, 40, 41)
  • 10.
    4. Distributiva Formula A u (B ∩ C)= (A u B) ∩ (A u C) Como A u B es conmutativa (B ∩ C)= (1, 6, 11, 14, 20, 27, 30) ∩ (4, 6, 8, 11, 17, 19, 22, 27, 35, 40, 41) (B ∩ C)= ( 6, 11,27) A u (B ∩ C)= {A+ ( B ∩ C) } – A ∩ (B ∩ C) A u (B ∩ C)= (2, 6 , 8, 10, 13, 14, 27) + ( 6, 11,27) A u (B ∩ C)= (2, 6, 8, 10, 11, 13, 14, 27)
  • 11.
    4.1 Distributiva Au (B ∩ C)= (A u B) ∩ (A u C) si la formula es cumplida es distributiva. A u B= (2, 6 , 8, 10, 13, 14, 27) + (1, 6, 11, 14, 20, 27, 30) - (6, 14, 27) A u B= (1, 2,8, 10, 11, 13, 20, 27, 30) A u C= A + C- A ∩ C A u C= (2, 6 , 8, 10, 13, 14, 27) + (4, 6, 8, 11, 17, 19, 22, 27, 35, 40, 41) – (6, 8, 27) A u C= (2, 4, 6, 8, 10, 11, 13, 14, 17, 19, 22, 27, 35, 40, 41) (A u B) ∩ (A u C)= (1, 2,8, 10, 11, 13, 20, 27, 30) ∩ (2, 4, 6, 8, 10, 11, 13, 14, 17, 19, 22, 27, 35, 40, 41) (A u B) ∩ (A u C)= (2, 8, 10, 11, 13, 27)
  • 12.
    5.Complementariedad  Formula A ∩ A’ = Ø D= A D= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) A= (2, 6 , 8, 10, 13, 14, 27) A’= (1, 3, 4, 5, 7, 9, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26) A u A’= A + A’
  • 13.
    5.1 Complementariedad SiA u A’ = Ø el conjunto es de complementariedad. A u A’= A + A’ A u A’= (2, 6 , 8, 10, 13, 14, 27) + (1, 3, 4, 5, 7, 9, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26) A u A’= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27)