SlideShare a Scribd company logo
1 of 31
Download to read offline
Prof. Pier Luca Lanzi
Classiļ¬cation: Introduction
Data Mining andText Mining (UIC 583 @ Politecnico di Milano)
Prof. Pier Luca Lanzi
What is An Apple? 2
Prof. Pier Luca Lanzi
Are These Apples?
Prof. Pier Luca Lanzi
Prof. Pier Luca Lanzi
Contact Lenses Data 5
NoneReducedYesHypermetropePre-presbyopic
NoneNormalYesHypermetropePre-presbyopic
NoneReducedNoMyopePresbyopic
NoneNormalNoMyopePresbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedNoHypermetropePresbyopic
SoftNormalNoHypermetropePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic
SoftNormalNoHypermetropePre-presbyopic
NoneReducedNoHypermetropePre-presbyopic
HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
SoftNormalNoMyopePre-presbyopic
NoneReducedNoMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
SoftNormalNoHypermetropeYoung
NoneReducedNoHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung
SoftNormalNoMyopeYoung
NoneReducedNoMyopeYoung
Recommended lensesTear production rateAstigmatismSpectacle prescriptionAge
Prof. Pier Luca Lanzi
A Model for the Contact Lenses Data 6
If tear production rate = reduced then recommendation = none
If age = young and astigmatic = no
and tear production rate = normal then recommendation = soft
If age = pre-presbyopic and astigmatic = no
and tear production rate = normal then recommendation = soft
If age = presbyopic and spectacle prescription = myope
and astigmatic = no then recommendation = none
If spectacle prescription = hypermetrope and astigmatic = no
and tear production rate = normal then recommendation = soft
If spectacle prescription = myope and astigmatic = yes
and tear production rate = normal then recommendation = hard
If age young and astigmatic = yes
and tear production rate = normal then recommendation = hard
If age = pre-presbyopic
and spectacle prescription = hypermetrope
and astigmatic = yes then recommendation = none
If age = presbyopic and spectacle prescription = hypermetrope
and astigmatic = yes then recommendation = none
Prof. Pier Luca Lanzi
CPU Performance Data 7
0
0
32
128
CHMAX
0
0
8
16
CHMIN
Channels PerformanceCache
(Kb)
Main memory
(Kb)
Cycle time
(ns)
45040001000480209
67328000512480208
ā€¦
26932320008000292
19825660002561251
PRPCACHMMAXMMINMYCT
PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX
+ 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX
Prof. Pier Luca Lanzi
Classiļ¬cation vs. Prediction
ā€¢ā€Æ Classiļ¬cation
Ā§ļ‚§ā€ÆPredicts categorical class labels (discrete or nominal)
Ā§ļ‚§ā€ÆClassiļ¬es data (constructs a model) based on the training set
and the values (class labels) in a classifying attribute and uses it
in classifying new data
ā€¢ā€Æ Prediction
Ā§ļ‚§ā€ÆModels continuous-valued functions, i.e., predicts unknown or
missing values
ā€¢ā€Æ Applications
Ā§ļ‚§ā€ÆCredit approval
Ā§ļ‚§ā€ÆTarget marketing
Ā§ļ‚§ā€ÆMedical diagnosis
Ā§ļ‚§ā€ÆFraud detection
8
Prof. Pier Luca Lanzi
classiļ¬cation = model building + model usage
Prof. Pier Luca Lanzi
What is classiļ¬cation?
ā€¢ā€Æ Classiļ¬cation is a two-step Process
ā€¢ā€Æ Model construction
Ā§ļ‚§ā€ÆGiven a set of data representing examples of 
a target concept, build a model to ā€œexplainā€ the concept
ā€¢ā€Æ Model usage
Ā§ļ‚§ā€ÆThe classiļ¬cation model is used for classifying 
future or unknown cases
Ā§ļ‚§ā€ÆEstimate accuracy of the model
10
Prof. Pier Luca Lanzi
Classiļ¬cation: Model Construction 11
Classiļ¬cation
Algorithm
IF rank = ā€˜professorā€™
OR years  6
THEN tenured = ā€˜yesā€™
name rank years tenured
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no
Training
Data
Classiļ¬er
(Model)
Prof. Pier Luca Lanzi
Classiļ¬cation: Model Usage 12
tenured = yes
name rank years tenured
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes
Test
Data
Classiļ¬er
(Model)
Unseen Data
Jeff, Professor, 4
Prof. Pier Luca Lanzi
Evaluating Classiļ¬cation Methods
ā€¢ā€Æ Accuracy
Ā§ļ‚§ā€Æclassiļ¬er accuracy: predicting class label
Ā§ļ‚§ā€Æpredictor accuracy: guessing value of predicted attributes
ā€¢ā€Æ Speed
Ā§ļ‚§ā€Ætime to construct the model (training time)
Ā§ļ‚§ā€Ætime to use the model (classiļ¬cation/prediction time)
ā€¢ā€Æ Other Criteria
Ā§ļ‚§ā€ÆRobustness: handling noise and missing values
Ā§ļ‚§ā€ÆScalability: efļ¬ciency in disk-resident databases
Ā§ļ‚§ā€ÆInterpretability: understanding and insight provided
Ā§ļ‚§ā€ÆOther measures, e.g., goodness of rules, such as decision tree size
or compactness of classiļ¬cation rules
13
Prof. Pier Luca Lanzi
Example
Prof. Pier Luca Lanzi
The Weather Dataset:
Building the Model
Outlook Temp Humidity Windy Play
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Cool Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No
15
ā€¢ā€Æ Write one rule like ā€œif A=v1 then X, else if A=v2 thenY, ā€¦ā€ to
predict whether the player is going to play or not
ā€¢ā€Æ A is an attribute; vi are attribute values; X,Y are class labels
Prof. Pier Luca Lanzi
The Weather Dataset: 
Testing the Model
Outlook Temp Humidity Windy Play
Sunny Hot High False No
Rainy Mild High False Yes
Sunny Mild High False No
Rainy Mild Normal False Yes
16
Prof. Pier Luca Lanzi
Examples of Models
ā€¢ā€Æ if outlook = sunny then no (3 / 2) 
if outlook = overcast then yes (0 / 4) 
if outlook = rainy then yes (2 / 3) 

correct: 10 out of 14 training examples
ā€¢ā€Æ if outlook = sunny then yes (1 / 2)
if outlook = overcast then yes (0 / 4) 
if outlook = rainy then no (2 / 1) 

correct: 8 out of 10 training examples
17
Prof. Pier Luca Lanzi
The Machine Learning Perspective
Prof. Pier Luca Lanzi
The Machine Learning Perspective 
ā€¢ā€Æ Classiļ¬cation algorithms are methods of supervised Learning
ā€¢ā€Æ The experience E consists of a set of examples of a target
concept that have been prepared by a supervisor
ā€¢ā€Æ The task T consists of ļ¬nding an hypothesis that accurately
explains the target concept
ā€¢ā€Æ The performance P depends on how accurately the hypothesis h
explains the examples in E
19
Prof. Pier Luca Lanzi
The Machine Learning Perspective
ā€¢ā€Æ Let us deļ¬ne the problem domain as the set of instance X 
(for instance, X contains different different fruits)
ā€¢ā€Æ We deļ¬ne a concept over X as a function c which maps
elements of X into a range D or c:Xā†’ D
ā€¢ā€Æ The range D represents the type of concept analyzed
ā€¢ā€Æ For instance, c: X ā†’ {isApple, notAnApple}
20
Prof. Pier Luca Lanzi
The Machine Learning Perspective
ā€¢ā€Æ Experience E is a set of x,d pairs, with xāˆˆX and dāˆˆD.
ā€¢ā€Æ The task T consists of ļ¬nding an hypothesis h to explain E:
ā€¢ā€Æ āˆ€xāˆˆX h(x)=c(x)
ā€¢ā€Æ The set H of all the possible hypotheses h that can be used to
explain c it is called the hypothesis space
ā€¢ā€Æ The goodness of an hypothesis h can be evaluated as the
percentage of examples that are correctly explained by h

P(h) = | {x| xāˆˆX e h(x)=c(x)}| / |X|
21
Prof. Pier Luca Lanzi
Examples
ā€¢ā€Æ Concept Learning
when D={0,1}
ā€¢ā€Æ Supervised classiļ¬cation 
when D consists of a ļ¬nite number of labels
ā€¢ā€Æ Prediction
when D is a subset of Rn
22
Prof. Pier Luca Lanzi
The Machine Learning Perspective 
on Classiļ¬cation
ā€¢ā€Æ Supervised learning algorithms, given the examples in E, search
the hypotheses space H for the hypothesis h that best explains
the examples in E
ā€¢ā€Æ Learning is viewed as a search in the hypotheses space
23
Prof. Pier Luca Lanzi
Searching for Hypotheses
ā€¢ā€Æ The type of hypothesis required inļ¬‚uences the search algorithm
ā€¢ā€Æ The more complex the representation 
the more complex the search algorithm
ā€¢ā€Æ Many algorithms assume that it is possible to deļ¬ne a partial
ordering over the hypothesis space
ā€¢ā€Æ The hypothesis space can be searched using either a general to
speciļ¬c or a speciļ¬c-to-general strategy
24
Prof. Pier Luca Lanzi
Exploring the Hypothesis Space
ā€¢ā€Æ General to Speciļ¬c
Ā§ļ‚§ā€ÆStart with the most general hypothesis and then go on
through specialization steps
ā€¢ā€Æ Speciļ¬c to General
Ā§ļ‚§ā€ÆStart with the set of the most speciļ¬c hypothesis and
then go on through generalization steps
25
Prof. Pier Luca Lanzi
Inductive Bias
ā€¢ā€Æ Set of assumptions that together with the training data deductively justify the
classiļ¬cation assigned by the learner to future instances
ā€¢ā€Æ There can be a number of hypotheses consistent with training data
ā€¢ā€Æ Each learning algorithm has an inductive bias that imposes a preference on the
space of all possible hypotheses
26
Prof. Pier Luca Lanzi
Types of Inductive Bias
ā€¢ā€Æ Syntactic Bias
Ā§ļ‚§ā€ÆDepends on the language used to represent hypotheses
ā€¢ā€Æ Semantic Bias
Ā§ļ‚§ā€ÆDepends on the heuristics used to ļ¬lter hypotheses
ā€¢ā€Æ Preference Bias
Ā§ļ‚§ā€ÆDepends on the ability to rank and compare hypotheses
ā€¢ā€Æ Restriction Bias
Ā§ļ‚§ā€ÆDepends on the ability to restrict the search space
27
Prof. Pier Luca Lanzi
Why Are We Looking for h?
Prof. Pier Luca Lanzi
Inductive Learning Hypothesis
ā€¢ā€Æ Any hypothesis (h) found to approximate the target function (c) over a
sufļ¬ciently large set of training examples will also approximate the
target function (c) well over other unobserved examples.
ā€¢ā€Æ Training
Ā§ļ‚§ā€ÆThe hypothesis h is developed to explain the examples in ETrain
ā€¢ā€Æ Testing
Ā§ļ‚§ā€ÆThe hypothesis h is evaluated (veriļ¬ed) with respect to the
previously unseen examples in ETest
ā€¢ā€Æ The underlying hypothesis
Ā§ļ‚§ā€ÆIf h explains ETrain then it can also be used to explain other unseen
examples in ETest (not previously used to develop h)
29
Prof. Pier Luca Lanzi
Generalization and Overļ¬tting
ā€¢ā€Æ Generalization
Ā§ļ‚§ā€ÆWhen h explains ā€œwellā€ both ETrain and ETest we say that h is
general and that the method used to develop h has
adequately generalized
ā€¢ā€Æ Overļ¬tting
Ā§ļ‚§ā€ÆWhen h explains ETrain but not ETest we say that the method
used to develop h has overļ¬tted
Ā§ļ‚§ā€ÆWe have overļ¬tting when the hypothesis h explains ETrain too
accurately so that h is not general enough to be applied
outside ETrain
30
Prof. Pier Luca Lanzi
What are the general issues
for classiļ¬cation in Machine Learning?
ā€¢ā€Æ Type of training experience
Ā§ļ‚§ā€ÆDirect or indirect?
Ā§ļ‚§ā€ÆSupervised or not?
ā€¢ā€Æ Type of target function and performance
ā€¢ā€Æ Type of search algorithm
ā€¢ā€Æ Type of representation of the solution
ā€¢ā€Æ Type of inductive bias
31

More Related Content

What's hot

DMTM 2015 - 09 Density Based Clustering
DMTM 2015 - 09 Density Based ClusteringDMTM 2015 - 09 Density Based Clustering
DMTM 2015 - 09 Density Based ClusteringPier Luca Lanzi
Ā 
DMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluationDMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluationPier Luca Lanzi
Ā 
DMTM 2015 - 15 Classification Ensembles
DMTM 2015 - 15 Classification EnsemblesDMTM 2015 - 15 Classification Ensembles
DMTM 2015 - 15 Classification EnsemblesPier Luca Lanzi
Ā 
DMTM Lecture 04 Classification
DMTM Lecture 04 ClassificationDMTM Lecture 04 Classification
DMTM Lecture 04 ClassificationPier Luca Lanzi
Ā 
DMTM Lecture 11 Clustering
DMTM Lecture 11 ClusteringDMTM Lecture 11 Clustering
DMTM Lecture 11 ClusteringPier Luca Lanzi
Ā 
DMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph miningDMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph miningPier Luca Lanzi
Ā 
DMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clusteringDMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clusteringPier Luca Lanzi
Ā 
DMTM Lecture 03 Regression
DMTM Lecture 03 RegressionDMTM Lecture 03 Regression
DMTM Lecture 03 RegressionPier Luca Lanzi
Ā 
DMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethodsDMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethodsPier Luca Lanzi
Ā 
DMTM 2015 - 14 Evaluation of Classification Models
DMTM 2015 - 14 Evaluation of Classification ModelsDMTM 2015 - 14 Evaluation of Classification Models
DMTM 2015 - 14 Evaluation of Classification ModelsPier Luca Lanzi
Ā 
DMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesDMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesPier Luca Lanzi
Ā 
DMTM 2015 - 07 Hierarchical Clustering
DMTM 2015 - 07 Hierarchical ClusteringDMTM 2015 - 07 Hierarchical Clustering
DMTM 2015 - 07 Hierarchical ClusteringPier Luca Lanzi
Ā 
DMTM Lecture 05 Data representation
DMTM Lecture 05 Data representationDMTM Lecture 05 Data representation
DMTM Lecture 05 Data representationPier Luca Lanzi
Ā 
DMTM 2015 - 08 Representative-Based Clustering
DMTM 2015 - 08 Representative-Based ClusteringDMTM 2015 - 08 Representative-Based Clustering
DMTM 2015 - 08 Representative-Based ClusteringPier Luca Lanzi
Ā 
DMTM Lecture 06 Classification evaluation
DMTM Lecture 06 Classification evaluationDMTM Lecture 06 Classification evaluation
DMTM Lecture 06 Classification evaluationPier Luca Lanzi
Ā 
DMTM Lecture 16 Association rules
DMTM Lecture 16 Association rulesDMTM Lecture 16 Association rules
DMTM Lecture 16 Association rulesPier Luca Lanzi
Ā 
DMTM Lecture 07 Decision trees
DMTM Lecture 07 Decision treesDMTM Lecture 07 Decision trees
DMTM Lecture 07 Decision treesPier Luca Lanzi
Ā 
DMTM Lecture 19 Data exploration
DMTM Lecture 19 Data explorationDMTM Lecture 19 Data exploration
DMTM Lecture 19 Data explorationPier Luca Lanzi
Ā 
DMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clusteringDMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clusteringPier Luca Lanzi
Ā 
DMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rulesDMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rulesPier Luca Lanzi
Ā 

What's hot (20)

DMTM 2015 - 09 Density Based Clustering
DMTM 2015 - 09 Density Based ClusteringDMTM 2015 - 09 Density Based Clustering
DMTM 2015 - 09 Density Based Clustering
Ā 
DMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluationDMTM Lecture 15 Clustering evaluation
DMTM Lecture 15 Clustering evaluation
Ā 
DMTM 2015 - 15 Classification Ensembles
DMTM 2015 - 15 Classification EnsemblesDMTM 2015 - 15 Classification Ensembles
DMTM 2015 - 15 Classification Ensembles
Ā 
DMTM Lecture 04 Classification
DMTM Lecture 04 ClassificationDMTM Lecture 04 Classification
DMTM Lecture 04 Classification
Ā 
DMTM Lecture 11 Clustering
DMTM Lecture 11 ClusteringDMTM Lecture 11 Clustering
DMTM Lecture 11 Clustering
Ā 
DMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph miningDMTM Lecture 18 Graph mining
DMTM Lecture 18 Graph mining
Ā 
DMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clusteringDMTM Lecture 13 Representative based clustering
DMTM Lecture 13 Representative based clustering
Ā 
DMTM Lecture 03 Regression
DMTM Lecture 03 RegressionDMTM Lecture 03 Regression
DMTM Lecture 03 Regression
Ā 
DMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethodsDMTM Lecture 09 Other classificationmethods
DMTM Lecture 09 Other classificationmethods
Ā 
DMTM 2015 - 14 Evaluation of Classification Models
DMTM 2015 - 14 Evaluation of Classification ModelsDMTM 2015 - 14 Evaluation of Classification Models
DMTM 2015 - 14 Evaluation of Classification Models
Ā 
DMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensemblesDMTM Lecture 10 Classification ensembles
DMTM Lecture 10 Classification ensembles
Ā 
DMTM 2015 - 07 Hierarchical Clustering
DMTM 2015 - 07 Hierarchical ClusteringDMTM 2015 - 07 Hierarchical Clustering
DMTM 2015 - 07 Hierarchical Clustering
Ā 
DMTM Lecture 05 Data representation
DMTM Lecture 05 Data representationDMTM Lecture 05 Data representation
DMTM Lecture 05 Data representation
Ā 
DMTM 2015 - 08 Representative-Based Clustering
DMTM 2015 - 08 Representative-Based ClusteringDMTM 2015 - 08 Representative-Based Clustering
DMTM 2015 - 08 Representative-Based Clustering
Ā 
DMTM Lecture 06 Classification evaluation
DMTM Lecture 06 Classification evaluationDMTM Lecture 06 Classification evaluation
DMTM Lecture 06 Classification evaluation
Ā 
DMTM Lecture 16 Association rules
DMTM Lecture 16 Association rulesDMTM Lecture 16 Association rules
DMTM Lecture 16 Association rules
Ā 
DMTM Lecture 07 Decision trees
DMTM Lecture 07 Decision treesDMTM Lecture 07 Decision trees
DMTM Lecture 07 Decision trees
Ā 
DMTM Lecture 19 Data exploration
DMTM Lecture 19 Data explorationDMTM Lecture 19 Data exploration
DMTM Lecture 19 Data exploration
Ā 
DMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clusteringDMTM Lecture 12 Hierarchical clustering
DMTM Lecture 12 Hierarchical clustering
Ā 
DMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rulesDMTM Lecture 08 Classification rules
DMTM Lecture 08 Classification rules
Ā 

Viewers also liked

DMTM 2015 - 11 Decision Trees
DMTM 2015 - 11 Decision TreesDMTM 2015 - 11 Decision Trees
DMTM 2015 - 11 Decision TreesPier Luca Lanzi
Ā 
DMTM 2015 - 12 Classification Rules
DMTM 2015 - 12 Classification RulesDMTM 2015 - 12 Classification Rules
DMTM 2015 - 12 Classification RulesPier Luca Lanzi
Ā 
Course Introduction
Course IntroductionCourse Introduction
Course IntroductionPier Luca Lanzi
Ā 
DMTM 2015 - 19 Graph Mining
DMTM 2015 - 19 Graph MiningDMTM 2015 - 19 Graph Mining
DMTM 2015 - 19 Graph MiningPier Luca Lanzi
Ā 
Focus Junior - 14 Maggio 2016
Focus Junior - 14 Maggio 2016Focus Junior - 14 Maggio 2016
Focus Junior - 14 Maggio 2016Pier Luca Lanzi
Ā 
DMTM 2015 - 01 Course Introduction
DMTM 2015 - 01 Course IntroductionDMTM 2015 - 01 Course Introduction
DMTM 2015 - 01 Course IntroductionPier Luca Lanzi
Ā 
DMTM 2015 - 02 Data Mining
DMTM 2015 - 02 Data MiningDMTM 2015 - 02 Data Mining
DMTM 2015 - 02 Data MiningPier Luca Lanzi
Ā 
Course Organization
Course OrganizationCourse Organization
Course OrganizationPier Luca Lanzi
Ā 
DMTM 2015 - 18 Text Mining Part 2
DMTM 2015 - 18 Text Mining Part 2DMTM 2015 - 18 Text Mining Part 2
DMTM 2015 - 18 Text Mining Part 2Pier Luca Lanzi
Ā 
DMTM 2015 - 05 Association Rules
DMTM 2015 - 05 Association RulesDMTM 2015 - 05 Association Rules
DMTM 2015 - 05 Association RulesPier Luca Lanzi
Ā 
Machine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesMachine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesPier Luca Lanzi
Ā 
Idea Generation and Conceptualization
Idea Generation and ConceptualizationIdea Generation and Conceptualization
Idea Generation and ConceptualizationPier Luca Lanzi
Ā 
Introduction to Procedural Content Generation - Codemotion 29 Novembre 2014
Introduction to Procedural Content Generation - Codemotion 29 Novembre 2014Introduction to Procedural Content Generation - Codemotion 29 Novembre 2014
Introduction to Procedural Content Generation - Codemotion 29 Novembre 2014Pier Luca Lanzi
Ā 
Working with Formal Elements
Working with Formal ElementsWorking with Formal Elements
Working with Formal ElementsPier Luca Lanzi
Ā 
The Structure of Games
The Structure of GamesThe Structure of Games
The Structure of GamesPier Luca Lanzi
Ā 
Elements for the Theory of Fun
Elements for the Theory of FunElements for the Theory of Fun
Elements for the Theory of FunPier Luca Lanzi
Ā 
The Design Document
The Design DocumentThe Design Document
The Design DocumentPier Luca Lanzi
Ā 
Lecture 9: Machine Learning in Practice (2)
Lecture 9: Machine Learning in Practice (2)Lecture 9: Machine Learning in Practice (2)
Lecture 9: Machine Learning in Practice (2)Marina Santini
Ā 
Fitness Inheritance in Evolutionary and
Fitness Inheritance in Evolutionary andFitness Inheritance in Evolutionary and
Fitness Inheritance in Evolutionary andPier Luca Lanzi
Ā 

Viewers also liked (19)

DMTM 2015 - 11 Decision Trees
DMTM 2015 - 11 Decision TreesDMTM 2015 - 11 Decision Trees
DMTM 2015 - 11 Decision Trees
Ā 
DMTM 2015 - 12 Classification Rules
DMTM 2015 - 12 Classification RulesDMTM 2015 - 12 Classification Rules
DMTM 2015 - 12 Classification Rules
Ā 
Course Introduction
Course IntroductionCourse Introduction
Course Introduction
Ā 
DMTM 2015 - 19 Graph Mining
DMTM 2015 - 19 Graph MiningDMTM 2015 - 19 Graph Mining
DMTM 2015 - 19 Graph Mining
Ā 
Focus Junior - 14 Maggio 2016
Focus Junior - 14 Maggio 2016Focus Junior - 14 Maggio 2016
Focus Junior - 14 Maggio 2016
Ā 
DMTM 2015 - 01 Course Introduction
DMTM 2015 - 01 Course IntroductionDMTM 2015 - 01 Course Introduction
DMTM 2015 - 01 Course Introduction
Ā 
DMTM 2015 - 02 Data Mining
DMTM 2015 - 02 Data MiningDMTM 2015 - 02 Data Mining
DMTM 2015 - 02 Data Mining
Ā 
Course Organization
Course OrganizationCourse Organization
Course Organization
Ā 
DMTM 2015 - 18 Text Mining Part 2
DMTM 2015 - 18 Text Mining Part 2DMTM 2015 - 18 Text Mining Part 2
DMTM 2015 - 18 Text Mining Part 2
Ā 
DMTM 2015 - 05 Association Rules
DMTM 2015 - 05 Association RulesDMTM 2015 - 05 Association Rules
DMTM 2015 - 05 Association Rules
Ā 
Machine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification RulesMachine Learning and Data Mining: 12 Classification Rules
Machine Learning and Data Mining: 12 Classification Rules
Ā 
Idea Generation and Conceptualization
Idea Generation and ConceptualizationIdea Generation and Conceptualization
Idea Generation and Conceptualization
Ā 
Introduction to Procedural Content Generation - Codemotion 29 Novembre 2014
Introduction to Procedural Content Generation - Codemotion 29 Novembre 2014Introduction to Procedural Content Generation - Codemotion 29 Novembre 2014
Introduction to Procedural Content Generation - Codemotion 29 Novembre 2014
Ā 
Working with Formal Elements
Working with Formal ElementsWorking with Formal Elements
Working with Formal Elements
Ā 
The Structure of Games
The Structure of GamesThe Structure of Games
The Structure of Games
Ā 
Elements for the Theory of Fun
Elements for the Theory of FunElements for the Theory of Fun
Elements for the Theory of Fun
Ā 
The Design Document
The Design DocumentThe Design Document
The Design Document
Ā 
Lecture 9: Machine Learning in Practice (2)
Lecture 9: Machine Learning in Practice (2)Lecture 9: Machine Learning in Practice (2)
Lecture 9: Machine Learning in Practice (2)
Ā 
Fitness Inheritance in Evolutionary and
Fitness Inheritance in Evolutionary andFitness Inheritance in Evolutionary and
Fitness Inheritance in Evolutionary and
Ā 

Similar to DMTM 2015 - 10 Introduction to Classification

Machine Learning and Data Mining: 16 Classifiers Ensembles
Machine Learning and Data Mining: 16 Classifiers EnsemblesMachine Learning and Data Mining: 16 Classifiers Ensembles
Machine Learning and Data Mining: 16 Classifiers EnsemblesPier Luca Lanzi
Ā 
Machine Learning
Machine Learning Machine Learning
Machine Learning GaytriDhingra1
Ā 
AI -learning and machine learning.pptx
AI  -learning and machine learning.pptxAI  -learning and machine learning.pptx
AI -learning and machine learning.pptxGaytriDhingra1
Ā 
The T.A.P.E. system for effective corporate training
The T.A.P.E. system for effective corporate trainingThe T.A.P.E. system for effective corporate training
The T.A.P.E. system for effective corporate trainingAndy Clark
Ā 
S10
S10S10
S10butest
Ā 
S10
S10S10
S10butest
Ā 
Teaching Kids Programming using the Intentional Method
Teaching Kids Programming using the Intentional MethodTeaching Kids Programming using the Intentional Method
Teaching Kids Programming using the Intentional MethodLynn Langit
Ā 
Improving Communications With Soft Skill And Dialogue Simulations
Improving Communications With Soft Skill And Dialogue SimulationsImproving Communications With Soft Skill And Dialogue Simulations
Improving Communications With Soft Skill And Dialogue SimulationsEnspire Learning
Ā 
Human-Centric Machine Learning
Human-Centric Machine LearningHuman-Centric Machine Learning
Human-Centric Machine LearningRakuten Group, Inc.
Ā 
Learn from Example and Learn Probabilistic Model
Learn from Example and Learn Probabilistic ModelLearn from Example and Learn Probabilistic Model
Learn from Example and Learn Probabilistic ModelJunya Tanaka
Ā 
Action research workshop
Action research workshopAction research workshop
Action research workshopJOHNLOULUCENARIO1
Ā 
Teacher toolkit Pycon UK Sept 2018
Teacher toolkit Pycon UK Sept 2018Teacher toolkit Pycon UK Sept 2018
Teacher toolkit Pycon UK Sept 2018Sue Sentance
Ā 
ML-DecisionTrees.ppt
ML-DecisionTrees.pptML-DecisionTrees.ppt
ML-DecisionTrees.pptssuserec53e73
Ā 
ML-DecisionTrees.ppt
ML-DecisionTrees.pptML-DecisionTrees.ppt
ML-DecisionTrees.pptssuserec53e73
Ā 
ML-DecisionTrees.ppt
ML-DecisionTrees.pptML-DecisionTrees.ppt
ML-DecisionTrees.pptssuser71fb63
Ā 
Reinforcement Learning
Reinforcement LearningReinforcement Learning
Reinforcement Learningbutest
Ā 
Blooms_Abridged_Revised_Taxonomy.ppt
Blooms_Abridged_Revised_Taxonomy.pptBlooms_Abridged_Revised_Taxonomy.ppt
Blooms_Abridged_Revised_Taxonomy.pptMuhammadZiaSheikh
Ā 
ARTIFICIAL INTELLIGENCE---UNIT 4.pptx
ARTIFICIAL INTELLIGENCE---UNIT 4.pptxARTIFICIAL INTELLIGENCE---UNIT 4.pptx
ARTIFICIAL INTELLIGENCE---UNIT 4.pptxRuchitaMaaran
Ā 

Similar to DMTM 2015 - 10 Introduction to Classification (20)

Machine Learning and Data Mining: 16 Classifiers Ensembles
Machine Learning and Data Mining: 16 Classifiers EnsemblesMachine Learning and Data Mining: 16 Classifiers Ensembles
Machine Learning and Data Mining: 16 Classifiers Ensembles
Ā 
Machine Learning
Machine Learning Machine Learning
Machine Learning
Ā 
AI -learning and machine learning.pptx
AI  -learning and machine learning.pptxAI  -learning and machine learning.pptx
AI -learning and machine learning.pptx
Ā 
The T.A.P.E. system for effective corporate training
The T.A.P.E. system for effective corporate trainingThe T.A.P.E. system for effective corporate training
The T.A.P.E. system for effective corporate training
Ā 
Lecture-2.pdf
Lecture-2.pdfLecture-2.pdf
Lecture-2.pdf
Ā 
S10
S10S10
S10
Ā 
S10
S10S10
S10
Ā 
Teaching Kids Programming using the Intentional Method
Teaching Kids Programming using the Intentional MethodTeaching Kids Programming using the Intentional Method
Teaching Kids Programming using the Intentional Method
Ā 
Improving Communications With Soft Skill And Dialogue Simulations
Improving Communications With Soft Skill And Dialogue SimulationsImproving Communications With Soft Skill And Dialogue Simulations
Improving Communications With Soft Skill And Dialogue Simulations
Ā 
Human-Centric Machine Learning
Human-Centric Machine LearningHuman-Centric Machine Learning
Human-Centric Machine Learning
Ā 
Learn from Example and Learn Probabilistic Model
Learn from Example and Learn Probabilistic ModelLearn from Example and Learn Probabilistic Model
Learn from Example and Learn Probabilistic Model
Ā 
Action research workshop
Action research workshopAction research workshop
Action research workshop
Ā 
Teacher toolkit Pycon UK Sept 2018
Teacher toolkit Pycon UK Sept 2018Teacher toolkit Pycon UK Sept 2018
Teacher toolkit Pycon UK Sept 2018
Ā 
M18 learning
M18 learningM18 learning
M18 learning
Ā 
ML-DecisionTrees.ppt
ML-DecisionTrees.pptML-DecisionTrees.ppt
ML-DecisionTrees.ppt
Ā 
ML-DecisionTrees.ppt
ML-DecisionTrees.pptML-DecisionTrees.ppt
ML-DecisionTrees.ppt
Ā 
ML-DecisionTrees.ppt
ML-DecisionTrees.pptML-DecisionTrees.ppt
ML-DecisionTrees.ppt
Ā 
Reinforcement Learning
Reinforcement LearningReinforcement Learning
Reinforcement Learning
Ā 
Blooms_Abridged_Revised_Taxonomy.ppt
Blooms_Abridged_Revised_Taxonomy.pptBlooms_Abridged_Revised_Taxonomy.ppt
Blooms_Abridged_Revised_Taxonomy.ppt
Ā 
ARTIFICIAL INTELLIGENCE---UNIT 4.pptx
ARTIFICIAL INTELLIGENCE---UNIT 4.pptxARTIFICIAL INTELLIGENCE---UNIT 4.pptx
ARTIFICIAL INTELLIGENCE---UNIT 4.pptx
Ā 

More from Pier Luca Lanzi

11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i VideogiochiPier Luca Lanzi
Ā 
Breve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei VideogiochiBreve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei VideogiochiPier Luca Lanzi
Ā 
Global Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning WelcomeGlobal Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning WelcomePier Luca Lanzi
Ā 
Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018Pier Luca Lanzi
Ā 
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...Pier Luca Lanzi
Ā 
GGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di aperturaGGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di aperturaPier Luca Lanzi
Ā 
Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018Pier Luca Lanzi
Ā 
DMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringDMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringPier Luca Lanzi
Ā 
DMTM Lecture 01 Introduction
DMTM Lecture 01 IntroductionDMTM Lecture 01 Introduction
DMTM Lecture 01 IntroductionPier Luca Lanzi
Ā 
DMTM Lecture 02 Data mining
DMTM Lecture 02 Data miningDMTM Lecture 02 Data mining
DMTM Lecture 02 Data miningPier Luca Lanzi
Ā 
VDP2016 - Lecture 16 Rendering pipeline
VDP2016 - Lecture 16 Rendering pipelineVDP2016 - Lecture 16 Rendering pipeline
VDP2016 - Lecture 16 Rendering pipelinePier Luca Lanzi
Ā 
VDP2016 - Lecture 15 PCG with Unity
VDP2016 - Lecture 15 PCG with UnityVDP2016 - Lecture 15 PCG with Unity
VDP2016 - Lecture 15 PCG with UnityPier Luca Lanzi
Ā 
VDP2016 - Lecture 14 Procedural content generation
VDP2016 - Lecture 14 Procedural content generationVDP2016 - Lecture 14 Procedural content generation
VDP2016 - Lecture 14 Procedural content generationPier Luca Lanzi
Ā 

More from Pier Luca Lanzi (13)

11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi11 Settembre 2021 - Giocare con i Videogiochi
11 Settembre 2021 - Giocare con i Videogiochi
Ā 
Breve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei VideogiochiBreve Viaggio al Centro dei Videogiochi
Breve Viaggio al Centro dei Videogiochi
Ā 
Global Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning WelcomeGlobal Game Jam 19 @ POLIMI - Morning Welcome
Global Game Jam 19 @ POLIMI - Morning Welcome
Ā 
Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018Data Driven Game Design @ Campus Party 2018
Data Driven Game Design @ Campus Party 2018
Ā 
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
GGJ18 al Politecnico di Milano - Presentazione che precede la presentazione d...
Ā 
GGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di aperturaGGJ18 al Politecnico di Milano - Presentazione di apertura
GGJ18 al Politecnico di Milano - Presentazione di apertura
Ā 
Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018Presentation for UNITECH event - January 8, 2018
Presentation for UNITECH event - January 8, 2018
Ā 
DMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clusteringDMTM Lecture 14 Density based clustering
DMTM Lecture 14 Density based clustering
Ā 
DMTM Lecture 01 Introduction
DMTM Lecture 01 IntroductionDMTM Lecture 01 Introduction
DMTM Lecture 01 Introduction
Ā 
DMTM Lecture 02 Data mining
DMTM Lecture 02 Data miningDMTM Lecture 02 Data mining
DMTM Lecture 02 Data mining
Ā 
VDP2016 - Lecture 16 Rendering pipeline
VDP2016 - Lecture 16 Rendering pipelineVDP2016 - Lecture 16 Rendering pipeline
VDP2016 - Lecture 16 Rendering pipeline
Ā 
VDP2016 - Lecture 15 PCG with Unity
VDP2016 - Lecture 15 PCG with UnityVDP2016 - Lecture 15 PCG with Unity
VDP2016 - Lecture 15 PCG with Unity
Ā 
VDP2016 - Lecture 14 Procedural content generation
VDP2016 - Lecture 14 Procedural content generationVDP2016 - Lecture 14 Procedural content generation
VDP2016 - Lecture 14 Procedural content generation
Ā 

Recently uploaded

Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
Ā 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
Ā 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
Ā 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
Ā 
18-04-UA_REPORT_MEDIALITERAŠ”Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAŠ”Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAŠ”Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAŠ”Y_INDEX-DM_23-1-final-eng.pdfssuser54595a
Ā 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
Ā 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
Ā 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
Ā 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
Ā 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
Ā 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Ā 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
Ā 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
Ā 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
Ā 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
Ā 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
Ā 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
Ā 

Recently uploaded (20)

Model Call Girl in Bikash Puri Delhi reach out to us at šŸ”9953056974šŸ”
Model Call Girl in Bikash Puri  Delhi reach out to us at šŸ”9953056974šŸ”Model Call Girl in Bikash Puri  Delhi reach out to us at šŸ”9953056974šŸ”
Model Call Girl in Bikash Puri Delhi reach out to us at šŸ”9953056974šŸ”
Ā 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
Ā 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
Ā 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
Ā 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
Ā 
18-04-UA_REPORT_MEDIALITERAŠ”Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAŠ”Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAŠ”Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAŠ”Y_INDEX-DM_23-1-final-eng.pdf
Ā 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
Ā 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Ā 
CĆ³digo Creativo y Arte de Software | Unidad 1
CĆ³digo Creativo y Arte de Software | Unidad 1CĆ³digo Creativo y Arte de Software | Unidad 1
CĆ³digo Creativo y Arte de Software | Unidad 1
Ā 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Ā 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
Ā 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
Ā 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Ā 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
Ā 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
Ā 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
Ā 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
Ā 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
Ā 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
Ā 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Ā 

DMTM 2015 - 10 Introduction to Classification

  • 1. Prof. Pier Luca Lanzi Classiļ¬cation: Introduction Data Mining andText Mining (UIC 583 @ Politecnico di Milano)
  • 2. Prof. Pier Luca Lanzi What is An Apple? 2
  • 3. Prof. Pier Luca Lanzi Are These Apples?
  • 5. Prof. Pier Luca Lanzi Contact Lenses Data 5 NoneReducedYesHypermetropePre-presbyopic NoneNormalYesHypermetropePre-presbyopic NoneReducedNoMyopePresbyopic NoneNormalNoMyopePresbyopic NoneReducedYesMyopePresbyopic HardNormalYesMyopePresbyopic NoneReducedNoHypermetropePresbyopic SoftNormalNoHypermetropePresbyopic NoneReducedYesHypermetropePresbyopic NoneNormalYesHypermetropePresbyopic SoftNormalNoHypermetropePre-presbyopic NoneReducedNoHypermetropePre-presbyopic HardNormalYesMyopePre-presbyopic NoneReducedYesMyopePre-presbyopic SoftNormalNoMyopePre-presbyopic NoneReducedNoMyopePre-presbyopic hardNormalYesHypermetropeYoung NoneReducedYesHypermetropeYoung SoftNormalNoHypermetropeYoung NoneReducedNoHypermetropeYoung HardNormalYesMyopeYoung NoneReducedYesMyopeYoung SoftNormalNoMyopeYoung NoneReducedNoMyopeYoung Recommended lensesTear production rateAstigmatismSpectacle prescriptionAge
  • 6. Prof. Pier Luca Lanzi A Model for the Contact Lenses Data 6 If tear production rate = reduced then recommendation = none If age = young and astigmatic = no and tear production rate = normal then recommendation = soft If age = pre-presbyopic and astigmatic = no and tear production rate = normal then recommendation = soft If age = presbyopic and spectacle prescription = myope and astigmatic = no then recommendation = none If spectacle prescription = hypermetrope and astigmatic = no and tear production rate = normal then recommendation = soft If spectacle prescription = myope and astigmatic = yes and tear production rate = normal then recommendation = hard If age young and astigmatic = yes and tear production rate = normal then recommendation = hard If age = pre-presbyopic and spectacle prescription = hypermetrope and astigmatic = yes then recommendation = none If age = presbyopic and spectacle prescription = hypermetrope and astigmatic = yes then recommendation = none
  • 7. Prof. Pier Luca Lanzi CPU Performance Data 7 0 0 32 128 CHMAX 0 0 8 16 CHMIN Channels PerformanceCache (Kb) Main memory (Kb) Cycle time (ns) 45040001000480209 67328000512480208 ā€¦ 26932320008000292 19825660002561251 PRPCACHMMAXMMINMYCT PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX
  • 8. Prof. Pier Luca Lanzi Classiļ¬cation vs. Prediction ā€¢ā€Æ Classiļ¬cation Ā§ļ‚§ā€ÆPredicts categorical class labels (discrete or nominal) Ā§ļ‚§ā€ÆClassiļ¬es data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data ā€¢ā€Æ Prediction Ā§ļ‚§ā€ÆModels continuous-valued functions, i.e., predicts unknown or missing values ā€¢ā€Æ Applications Ā§ļ‚§ā€ÆCredit approval Ā§ļ‚§ā€ÆTarget marketing Ā§ļ‚§ā€ÆMedical diagnosis Ā§ļ‚§ā€ÆFraud detection 8
  • 9. Prof. Pier Luca Lanzi classiļ¬cation = model building + model usage
  • 10. Prof. Pier Luca Lanzi What is classiļ¬cation? ā€¢ā€Æ Classiļ¬cation is a two-step Process ā€¢ā€Æ Model construction Ā§ļ‚§ā€ÆGiven a set of data representing examples of a target concept, build a model to ā€œexplainā€ the concept ā€¢ā€Æ Model usage Ā§ļ‚§ā€ÆThe classiļ¬cation model is used for classifying future or unknown cases Ā§ļ‚§ā€ÆEstimate accuracy of the model 10
  • 11. Prof. Pier Luca Lanzi Classiļ¬cation: Model Construction 11 Classiļ¬cation Algorithm IF rank = ā€˜professorā€™ OR years 6 THEN tenured = ā€˜yesā€™ name rank years tenured Mike Assistant Prof 3 no Mary Assistant Prof 7 yes Bill Professor 2 yes Jim Associate Prof 7 yes Dave Assistant Prof 6 no Anne Associate Prof 3 no Training Data Classiļ¬er (Model)
  • 12. Prof. Pier Luca Lanzi Classiļ¬cation: Model Usage 12 tenured = yes name rank years tenured Tom Assistant Prof 2 no Merlisa Associate Prof 7 no George Professor 5 yes Joseph Assistant Prof 7 yes Test Data Classiļ¬er (Model) Unseen Data Jeff, Professor, 4
  • 13. Prof. Pier Luca Lanzi Evaluating Classiļ¬cation Methods ā€¢ā€Æ Accuracy Ā§ļ‚§ā€Æclassiļ¬er accuracy: predicting class label Ā§ļ‚§ā€Æpredictor accuracy: guessing value of predicted attributes ā€¢ā€Æ Speed Ā§ļ‚§ā€Ætime to construct the model (training time) Ā§ļ‚§ā€Ætime to use the model (classiļ¬cation/prediction time) ā€¢ā€Æ Other Criteria Ā§ļ‚§ā€ÆRobustness: handling noise and missing values Ā§ļ‚§ā€ÆScalability: efļ¬ciency in disk-resident databases Ā§ļ‚§ā€ÆInterpretability: understanding and insight provided Ā§ļ‚§ā€ÆOther measures, e.g., goodness of rules, such as decision tree size or compactness of classiļ¬cation rules 13
  • 14. Prof. Pier Luca Lanzi Example
  • 15. Prof. Pier Luca Lanzi The Weather Dataset: Building the Model Outlook Temp Humidity Windy Play Sunny Hot High True No Overcast Hot High False Yes Rainy Cool Normal False Yes Rainy Cool Normal True No Overcast Cool Normal True Yes Sunny Cool Normal False Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes Rainy Mild High True No 15 ā€¢ā€Æ Write one rule like ā€œif A=v1 then X, else if A=v2 thenY, ā€¦ā€ to predict whether the player is going to play or not ā€¢ā€Æ A is an attribute; vi are attribute values; X,Y are class labels
  • 16. Prof. Pier Luca Lanzi The Weather Dataset: Testing the Model Outlook Temp Humidity Windy Play Sunny Hot High False No Rainy Mild High False Yes Sunny Mild High False No Rainy Mild Normal False Yes 16
  • 17. Prof. Pier Luca Lanzi Examples of Models ā€¢ā€Æ if outlook = sunny then no (3 / 2) if outlook = overcast then yes (0 / 4) if outlook = rainy then yes (2 / 3) correct: 10 out of 14 training examples ā€¢ā€Æ if outlook = sunny then yes (1 / 2) if outlook = overcast then yes (0 / 4) if outlook = rainy then no (2 / 1) correct: 8 out of 10 training examples 17
  • 18. Prof. Pier Luca Lanzi The Machine Learning Perspective
  • 19. Prof. Pier Luca Lanzi The Machine Learning Perspective ā€¢ā€Æ Classiļ¬cation algorithms are methods of supervised Learning ā€¢ā€Æ The experience E consists of a set of examples of a target concept that have been prepared by a supervisor ā€¢ā€Æ The task T consists of ļ¬nding an hypothesis that accurately explains the target concept ā€¢ā€Æ The performance P depends on how accurately the hypothesis h explains the examples in E 19
  • 20. Prof. Pier Luca Lanzi The Machine Learning Perspective ā€¢ā€Æ Let us deļ¬ne the problem domain as the set of instance X (for instance, X contains different different fruits) ā€¢ā€Æ We deļ¬ne a concept over X as a function c which maps elements of X into a range D or c:Xā†’ D ā€¢ā€Æ The range D represents the type of concept analyzed ā€¢ā€Æ For instance, c: X ā†’ {isApple, notAnApple} 20
  • 21. Prof. Pier Luca Lanzi The Machine Learning Perspective ā€¢ā€Æ Experience E is a set of x,d pairs, with xāˆˆX and dāˆˆD. ā€¢ā€Æ The task T consists of ļ¬nding an hypothesis h to explain E: ā€¢ā€Æ āˆ€xāˆˆX h(x)=c(x) ā€¢ā€Æ The set H of all the possible hypotheses h that can be used to explain c it is called the hypothesis space ā€¢ā€Æ The goodness of an hypothesis h can be evaluated as the percentage of examples that are correctly explained by h P(h) = | {x| xāˆˆX e h(x)=c(x)}| / |X| 21
  • 22. Prof. Pier Luca Lanzi Examples ā€¢ā€Æ Concept Learning when D={0,1} ā€¢ā€Æ Supervised classiļ¬cation when D consists of a ļ¬nite number of labels ā€¢ā€Æ Prediction when D is a subset of Rn 22
  • 23. Prof. Pier Luca Lanzi The Machine Learning Perspective on Classiļ¬cation ā€¢ā€Æ Supervised learning algorithms, given the examples in E, search the hypotheses space H for the hypothesis h that best explains the examples in E ā€¢ā€Æ Learning is viewed as a search in the hypotheses space 23
  • 24. Prof. Pier Luca Lanzi Searching for Hypotheses ā€¢ā€Æ The type of hypothesis required inļ¬‚uences the search algorithm ā€¢ā€Æ The more complex the representation the more complex the search algorithm ā€¢ā€Æ Many algorithms assume that it is possible to deļ¬ne a partial ordering over the hypothesis space ā€¢ā€Æ The hypothesis space can be searched using either a general to speciļ¬c or a speciļ¬c-to-general strategy 24
  • 25. Prof. Pier Luca Lanzi Exploring the Hypothesis Space ā€¢ā€Æ General to Speciļ¬c Ā§ļ‚§ā€ÆStart with the most general hypothesis and then go on through specialization steps ā€¢ā€Æ Speciļ¬c to General Ā§ļ‚§ā€ÆStart with the set of the most speciļ¬c hypothesis and then go on through generalization steps 25
  • 26. Prof. Pier Luca Lanzi Inductive Bias ā€¢ā€Æ Set of assumptions that together with the training data deductively justify the classiļ¬cation assigned by the learner to future instances ā€¢ā€Æ There can be a number of hypotheses consistent with training data ā€¢ā€Æ Each learning algorithm has an inductive bias that imposes a preference on the space of all possible hypotheses 26
  • 27. Prof. Pier Luca Lanzi Types of Inductive Bias ā€¢ā€Æ Syntactic Bias Ā§ļ‚§ā€ÆDepends on the language used to represent hypotheses ā€¢ā€Æ Semantic Bias Ā§ļ‚§ā€ÆDepends on the heuristics used to ļ¬lter hypotheses ā€¢ā€Æ Preference Bias Ā§ļ‚§ā€ÆDepends on the ability to rank and compare hypotheses ā€¢ā€Æ Restriction Bias Ā§ļ‚§ā€ÆDepends on the ability to restrict the search space 27
  • 28. Prof. Pier Luca Lanzi Why Are We Looking for h?
  • 29. Prof. Pier Luca Lanzi Inductive Learning Hypothesis ā€¢ā€Æ Any hypothesis (h) found to approximate the target function (c) over a sufļ¬ciently large set of training examples will also approximate the target function (c) well over other unobserved examples. ā€¢ā€Æ Training Ā§ļ‚§ā€ÆThe hypothesis h is developed to explain the examples in ETrain ā€¢ā€Æ Testing Ā§ļ‚§ā€ÆThe hypothesis h is evaluated (veriļ¬ed) with respect to the previously unseen examples in ETest ā€¢ā€Æ The underlying hypothesis Ā§ļ‚§ā€ÆIf h explains ETrain then it can also be used to explain other unseen examples in ETest (not previously used to develop h) 29
  • 30. Prof. Pier Luca Lanzi Generalization and Overļ¬tting ā€¢ā€Æ Generalization Ā§ļ‚§ā€ÆWhen h explains ā€œwellā€ both ETrain and ETest we say that h is general and that the method used to develop h has adequately generalized ā€¢ā€Æ Overļ¬tting Ā§ļ‚§ā€ÆWhen h explains ETrain but not ETest we say that the method used to develop h has overļ¬tted Ā§ļ‚§ā€ÆWe have overļ¬tting when the hypothesis h explains ETrain too accurately so that h is not general enough to be applied outside ETrain 30
  • 31. Prof. Pier Luca Lanzi What are the general issues for classiļ¬cation in Machine Learning? ā€¢ā€Æ Type of training experience Ā§ļ‚§ā€ÆDirect or indirect? Ā§ļ‚§ā€ÆSupervised or not? ā€¢ā€Æ Type of target function and performance ā€¢ā€Æ Type of search algorithm ā€¢ā€Æ Type of representation of the solution ā€¢ā€Æ Type of inductive bias 31