1) The document is a dissertation submitted to ETH Zurich that studies invariant manifolds, passage through resonance, stability, and applies these concepts to a synchronous motor model.
2) It first develops theory for a general Hamiltonian system coupled to a linear system by weak periodic perturbations, showing the persistence of invariant manifolds. It then uses averaging techniques to analyze global dynamics, assuming a finite number of resonances.
3) It represents the reduced system in a way suitable for stability analysis, covering both non-degenerate and degenerate cases.
4) The second part applies these methods to explicitly model a miniature synchronous motor, analytically deriving approximations and numerically simulating and confirming the dynamics, showing approach