SlideShare a Scribd company logo
1Rectifier Device Data
Axial Lead Rectifiers
. . . employing the Schottky Barrier principle in a large area metal–to–silicon
power diode. State–of–the–art geometry features chrome barrier metal,
epitaxial construction with oxide passivation and metal overlap contact. Ideally
suited for use as rectifiers in low–voltage, high–frequency inverters, free
wheeling diodes, and polarity protection diodes.
• Extremely Low vF
• Low Stored Charge, Majority Carrier Conduction
• Low Power Loss/High Efficiency
Mechanical Characteristics
• Case: Epoxy, Molded
• Weight: 0.4 gram (approximately)
• Finish: All External Surfaces Corrosion Resistant and Terminal Leads are
Readily Solderable
• Lead and Mounting Surface Temperature for Soldering Purposes: 220°C
Max. for 10 Seconds, 1/16″ from case
• Shipped in plastic bags, 1000 per bag.
• Available Tape and Reeled, 5000 per reel, by adding a “RL” suffix to the
part number
• Polarity: Cathode Indicated by Polarity Band
• Marking: 1N5817, 1N5818, 1N5819
MAXIMUM RATINGS
Rating Symbol 1N5817 1N5818 1N5819 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 30 40 V
Non–Repetitive Peak Reverse Voltage VRSM 24 36 48 V
RMS Reverse Voltage VR(RMS) 14 21 28 V
Average Rectified Forward Current (2)
(VR(equiv) ≤ 0.2 VR(dc), TL = 90°C,
RθJA = 80°C/W, P.C. Board Mounting, see Note 2, TA = 55°C)
IO 1.0 A
Ambient Temperature (Rated VR(dc), PF(AV) = 0, RθJA = 80°C/W) TA 85 80 75 °C
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions, half–wave, single phase 60 Hz,
TL = 70°C)
IFSM 25 (for one cycle) A
Operating and Storage Junction Temperature Range (Reverse Voltage applied) TJ, Tstg –65 to +125 °C
Peak Operating Junction Temperature (Forward Current applied) TJ(pk) 150 °C
THERMAL CHARACTERISTICS (2)
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient RθJA 80 °C/W
ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted) (2)
Characteristic Symbol 1N5817 1N5818 1N5819 Unit
Maximum Instantaneous Forward Voltage (1) (iF = 0.1 A)
(iF = 1.0 A)
(iF = 3.0 A)
vF 0.32
0.45
0.75
0.33
0.55
0.875
0.34
0.6
0.9
V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (1) (TL = 25°C)
(TL = 100°C)
IR 1.0
10
1.0
10
1.0
10
mA
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.
(2) Lead Temperature reference is cathode lead 1/32″ from case.
Preferred devices are Motorola recommended choices for future use and best overall value.
© Motorola, Inc. 1996
Order this document
by 1N5817/D
MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
1N5817
1N5818
1N5819
SCHOTTKY BARRIER
RECTIFIERS
1 AMPERE
20, 30 and 40 VOLTS
CASE 59–04
1N5817 and 1N5819 are
Motorola Preferred Devices
Rev 3
125
115
105
95
85
75
2015107.05.04.03.02.0
TR,REFERENCETEMPERATURE(
°
C)
VR, DC REVERSE VOLTAGE (VOLTS)
Figure 1. Maximum Reference Temperature
1N5817
40 30 23
60
80
RθJA (°C/W) = 110
125
115
105
95
85
75
2015107.05.0 304.03.0
40 30 23
RθJA (°C/W) = 110
80
60
Figure 2. Maximum Reference Temperature
1N5818
125
115
105
95
85
75
2015107.05.0 304.0 40
RθJA (°C/W) = 110
60
80
Figure 3. Maximum Reference Temperature
1N5819
Circuit
Load
Half Wave
Resistive Capacitive*
Full Wave, Bridge
Resistive Capacitive
Full Wave, Center Tapped*†
Resistive Capacitive
Sine Wave
Square Wave
0.5
0.75
1.3
1.5
0.5
0.75
0.65
0.75
1.0
1.5
1.3
1.5
40
30
23
TR,REFERENCETEMPERATURE(C)
°
VR, DC REVERSE VOLTAGE (VOLTS)
VR, DC REVERSE VOLTAGE (VOLTS)
*Note that VR(PK) ≈ 2.0 Vin(PK). †Use line to center tap voltage for Vin.
Table 1. Values for Factor F
TR,REFERENCETEMPERATURE(
°
C)
1N5817 1N5818 1N5819
2 Rectifier Device Data
NOTE 1 — DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibility of thermal runaway
must be considered when operating this rectifier at reverse voltages
above 0.1 VRWM. Proper derating may be accomplished by use of
equation (1).
TA(max) =
where TA(max) =
TJ(max) =
PF(AV) =
PR(AV) =
RθJA =
TJ(max) – RθJAPF(AV) – RθJAPR(AV)
Maximum allowable ambient temperature
Maximum allowable junction temperature
(1)
Average forward power dissipation
(125°C or the temperature at which thermal
runaway occurs, whichever is lowest)
Average reverse power dissipation
Junction–to–ambient thermal resistance
Figures 1, 2, and 3 permit easier use of equation (1) by taking re-
verse power dissipation and thermal runaway into consideration. The
figures solve for a reference temperature as determined by equation
(2).
TR = TJ(max) – RθJAPR(AV) (2)
Substituting equation (2) into equation (1) yields:
TA(max) = TR – RθJAPF(AV) (3)
Inspection of equations (2) and (3) reveals that TR is the ambient
temperature at which thermal runaway occurs or where TJ = 125°C,
when forward power is zero. The transition from one boundary condi-
tion to the other is evident on the curves of Figures 1, 2, and 3 as a
differencein the rate of change of the slope in the vicinity of 115°C. The
dataof Figures 1, 2, and 3 is based upon dc conditions. For use in com-
mon rectifier circuits, Table 1 indicates suggested factors for an equiv-
alent dc voltage to use for conservative design, that is:
(4)VR(equiv) = Vin(PK) x F
The factor F is derived by considering the properties of the various rec-
tifier circuits and the reverse characteristics of Schottky diodes.
EXAMPLE:FindTA(max)for1N5818operatedina12–voltdcsupply
usingabridgecircuitwithcapacitivefiltersuchthatIDC=0.4A(IF(AV)=
0.5 A), I(FM)/I(AV) = 10, Input Voltage = 10 V(rms), RθJA = 80°C/W.
Step 1. Find VR(equiv). Read F = 0.65 from Table 1,
Step 1. Find ∴ VR(equiv) = (1.41)(10)(0.65) = 9.2 V.
Step 2. Find TR from Figure 2. Read TR = 109°C
Step 1. Find @ VR = 9.2 V and RθJA = 80°C/W.
Step 3. Find PF(AV) from Figure 4. **Read PF(AV) = 0.5 W
@
I(FM)
I(AV)
= 10 and IF(AV) = 0.5 A.
Step 4. Find TA(max) from equation (3).
Step 4. Find TA(max) = 109 – (80) (0.5) = 69°C.
**Values given are for the 1N5818. Power is slightly lower for the
1N5817 because of its lower forward voltage, and higher for the
1N5819.
1N5817 1N5818 1N5819
3Rectifier Device Data
7/8
20
40
50
90
80
70
60
30
10
3/45/81/23/81/4 1.01/81
RθJL,THERMALRESISTANCE,JUNCTION–TO–LEAD(°C/W)
BOTH LEADS TO HEATSINK,
EQUAL LENGTH
MAXIMUM
TYPICAL
L, LEAD LENGTH (INCHES)
Figure 4. Steady–State Thermal Resistance
5.0
3.0
2.0
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
4.02.01.00.80.60.40.2
PF(AV),AVERAGEPOWERDISSIPATION(WATTS)
IF(AV), AVERAGE FORWARD CURRENT (AMP)
dc
SQUARE WAVE
TJ ≈ 125°C
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01
10k2.0k1.0k5002001005020105.02.01.00.50.20.1 5.0k
r(t),TRANSIENTTHERMALRESISTANCE(NORMALIZED)
ZθJL(t) = ZθJL • r(t)
Ppk Ppk
tp
t1
TIME
DUTY CYCLE, D = tp/t1
PEAK POWER, Ppk, is peak of an
equivalent square power pulse.
∆TJL = Ppk • RθJL [D + (1 – D) • r(t1 + tp) + r(tp) – r(t1)]
where
∆TJL = the increase in junction temperature above the lead temperature
r(t) = normalized value of transient thermal resistance at time, t, from Figure 6, i.e.:
r(t) = r(t1 + tp) = normalized value of transient thermal resistance at time, t1 + tp.
t, TIME (ms)
NOTE 2 — MOUNTING DATA
Data shown for thermal resistance junction–to–ambient (RθJA) for
the mountings shown is to be used as typical guideline values for pre-
liminary engineering, or in case the tie point temperature cannot be
measured.
TYPICAL VALUES FOR RθJA IN STILL AIR
Mounting
Method 1/8 1/4 1/2 3/4
Lead Length, L (in)
RθJA
1
2
3
52
67
65
80
72
87
85
100
°C/W
°C/W
°C/W50
Mounting Method 1
P.C. Board with
1–1/2″ x 1–1/2″
copper surface.
Mounting Method 3
P.C. Board with
1–1/2″ x 1–1/2″
copper surface.
L L
L = 3/8″
BOARD GROUND
PLANE
VECTOR PIN MOUNTING
L L
Mounting Method 2
5
10
20
Sine Wave
I(FM)
I(AV)
= π (Resistive Load)
Capacitive
Loads {
Figure 5. Forward Power Dissipation
1N5817–19
Figure 6. Thermal Response
1N5817 1N5818 1N5819
4 Rectifier Device Data
100705.0
125
115
105
95
85
75
207.0 103.02.0 301.0 40
15
5.0
3.0
2.0
0.3
0.2
0.1
403612
30
20
1.0
0.5
0.05
0.03
2416 208.04.0 280 32
10
20
7.0
5.0
2.0
0.2
0.3
0.5
0.7
1.0
3.0
0.9 1.0 1.1
0.1
0.07
0.05
0.03
0.02
0.60.50.40.30.2 0.70.1 0.8
NOTE 3 — THERMAL CIRCUIT MODEL
(For heat conduction through the leads)
TA(A) TA(K)
RθS(A) RθL(A) RθJ(A) RθJ(K) RθL(K) RθS(K)
PD
TL(A) TC(A) TJ TC(K) TL(K)
vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
iF,INSTANTANEOUSFORWARDCURRENT(AMP)
Figure 7. Typical Forward Voltage
IFSM,PEAKSURGECURRENT(AMP)
NUMBER OF CYCLES
Figure 8. Maximum Non–Repetitive Surge Current
IR,REVERSECURRENT(mA)
VR, REVERSE VOLTAGE (VOLTS)
Figure 9. Typical Reverse Current
TC = 100°C
25°C
1 Cycle
TL = 70°C
f = 60 Hz
Surge Applied at
Rated Load Conditions
1N5817
1N5818
1N5819
TJ = 125°C
100°C
25°C
Use of the above model permits junction to lead thermal resistance
for any mounting configuration to be found. For a given total lead
length, lowest values occur when one side of the rectifier is brought
as close as possible to the heatsink. Terms in the model signify:
TA = Ambient Temperature TC = Case Temperature
TL = Lead Temperature TJ = Junction Temperature
RθS = Thermal Resistance, Heatsink to Ambient
RθL = Thermal Resistance, Lead to Heatsink
RθJ = Thermal Resistance, Junction to Case
PD = Power Dissipation
(Subscripts A and K refer to anode and cathode sides, respectively.)
Values for thermal resistance components are:
RθL = 100°C/W/in typically and 120°C/W/in maximum
RθJ = 36°C/W typically and 46°C/W maximum.
75°C
1N5817 1N5818 1N5819
5Rectifier Device Data
NOTE 4 — HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of majority carri-
er conduction, it is not subject to junction diode forward and reverse re-
covery transients due to minority carrier injection and stored charge.
Satisfactory circuit analysis work may be performed by using a model
consistingof an ideal diode in parallel with a variable capacitance. (See
Figure 10.)
Rectification efficiency measurements show that operation will be
satisfactory up to several megahertz. For example, relative waveform
rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the
ratio of dc power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine wave inputs.
However, in contrast to ordinary junction diodes, the loss in waveform
efficiency is not indicative of power loss: it is simply a result of reverse
current flow through the diode capacitance, which lowers the dc output
voltage.
10 200.8
70
200
100
50
30
20
10
6.04.02.01.00.6 8.00.4 40
C,CAPACITANCE(pF)
VR, REVERSE VOLTAGE (VOLTS)
Figure 10. Typical Capacitance
TJ = 25°C
f = 1.0 MHz
1N5819
1N5818
1N5817
1N5817 1N5818 1N5819
6 Rectifier Device Data
PACKAGE DIMENSIONS
ISSUE M
CASE 59–04
K
A
D
K
B
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 5.97 6.60 0.235 0.260
B 2.79 3.05 0.110 0.120
D 0.76 0.86 0.030 0.034
K 27.94 ––– 1.100 –––
NOTES:
1. ALL RULES AND NOTES ASSOCIATED WITH
JEDEC DO–41 OUTLINE SHALL APPLY.
2. POLARITY DENOTED BY CATHODE BAND.
3. LEAD DIAMETER NOT CONTROLLED WITHIN F
DIMENSION.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,including“Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
ordeath may occur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315
Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
1N5817/D◊

More Related Content

What's hot

Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413
ask0122
 
Hioki LCR Meter Application Guide
Hioki LCR Meter Application GuideHioki LCR Meter Application Guide
Hioki LCR Meter Application Guide
NIHON DENKEI SINGAPORE
 
Engineers australia 2019
Engineers australia 2019Engineers australia 2019
Engineers australia 2019
Majid Malekpour
 
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New FairchildOriginal MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
AUTHELECTRONIC
 
Original N-Channel Mosfet AOD472A 25V 55A TO-252 New Alpha&Omega
Original N-Channel Mosfet AOD472A 25V 55A TO-252 New Alpha&OmegaOriginal N-Channel Mosfet AOD472A 25V 55A TO-252 New Alpha&Omega
Original N-Channel Mosfet AOD472A 25V 55A TO-252 New Alpha&Omega
AUTHELECTRONIC
 
Pe step 2 (1 to 35)
Pe step 2 (1 to 35)Pe step 2 (1 to 35)
Pe step 2 (1 to 35)
Rajendra Gharase
 
Original N-Channel Mosfet IRF2805 2805 55V 75A TO-220 New IR
Original N-Channel Mosfet IRF2805 2805 55V 75A TO-220 New IROriginal N-Channel Mosfet IRF2805 2805 55V 75A TO-220 New IR
Original N-Channel Mosfet IRF2805 2805 55V 75A TO-220 New IR
AUTHELECTRONIC
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
AUTHELECTRONIC
 
Aon6414 a
Aon6414 aAon6414 a
Aon6414 a
Asep Himalaya
 
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New InfineonOriginal IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
authelectroniccom
 
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
authelectroniccom
 
EL4093 Datasheet
EL4093 DatasheetEL4093 Datasheet
EL4093 DatasheetChris Siu
 
Original N - Channel Mosfet IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
Original N - Channel Mosfet  IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IROriginal N - Channel Mosfet  IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
Original N - Channel Mosfet IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
AUTHELECTRONIC
 
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
AUTHELECTRONIC
 
Original IGBT N-CHANNEL GT15J321 15J321 15A 600V TO-220 New Toshiba
Original IGBT N-CHANNEL GT15J321 15J321 15A 600V TO-220 New ToshibaOriginal IGBT N-CHANNEL GT15J321 15J321 15A 600V TO-220 New Toshiba
Original IGBT N-CHANNEL GT15J321 15J321 15A 600V TO-220 New Toshiba
authelectroniccom
 
Cable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - ExampleCable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - Example
Leonardo ENERGY
 
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IROriginal N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
AUTHELECTRONIC
 
Datasheet ni
Datasheet niDatasheet ni
Datasheet ni
Nguyễn Khánh
 
INA34 Datasheet
INA34 DatasheetINA34 Datasheet
INA34 DatasheetChris Siu
 

What's hot (20)

Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413Fairchild semiconductor hgtg30n60a4d 320413
Fairchild semiconductor hgtg30n60a4d 320413
 
Hioki LCR Meter Application Guide
Hioki LCR Meter Application GuideHioki LCR Meter Application Guide
Hioki LCR Meter Application Guide
 
Engineers australia 2019
Engineers australia 2019Engineers australia 2019
Engineers australia 2019
 
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New FairchildOriginal MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
 
Original N-Channel Mosfet AOD472A 25V 55A TO-252 New Alpha&Omega
Original N-Channel Mosfet AOD472A 25V 55A TO-252 New Alpha&OmegaOriginal N-Channel Mosfet AOD472A 25V 55A TO-252 New Alpha&Omega
Original N-Channel Mosfet AOD472A 25V 55A TO-252 New Alpha&Omega
 
Pe step 2 (1 to 35)
Pe step 2 (1 to 35)Pe step 2 (1 to 35)
Pe step 2 (1 to 35)
 
Original N-Channel Mosfet IRF2805 2805 55V 75A TO-220 New IR
Original N-Channel Mosfet IRF2805 2805 55V 75A TO-220 New IROriginal N-Channel Mosfet IRF2805 2805 55V 75A TO-220 New IR
Original N-Channel Mosfet IRF2805 2805 55V 75A TO-220 New IR
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
 
Aon6414 a
Aon6414 aAon6414 a
Aon6414 a
 
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New InfineonOriginal IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
 
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
 
EL4093 Datasheet
EL4093 DatasheetEL4093 Datasheet
EL4093 Datasheet
 
Original N - Channel Mosfet IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
Original N - Channel Mosfet  IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IROriginal N - Channel Mosfet  IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
Original N - Channel Mosfet IRFR3709ZTRPBF FR3709Z 3709 FR3709 TO-252 New IR
 
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
 
Original IGBT N-CHANNEL GT15J321 15J321 15A 600V TO-220 New Toshiba
Original IGBT N-CHANNEL GT15J321 15J321 15A 600V TO-220 New ToshibaOriginal IGBT N-CHANNEL GT15J321 15J321 15A 600V TO-220 New Toshiba
Original IGBT N-CHANNEL GT15J321 15J321 15A 600V TO-220 New Toshiba
 
Cable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - ExampleCable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - Example
 
Tpc8118
Tpc8118Tpc8118
Tpc8118
 
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IROriginal N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
 
Datasheet ni
Datasheet niDatasheet ni
Datasheet ni
 
INA34 Datasheet
INA34 DatasheetINA34 Datasheet
INA34 Datasheet
 

Similar to Datasheet

Original N Channel Mosfet AOD5N50 D5N50 5N50 5A 500V TO-252 New
Original N Channel Mosfet AOD5N50 D5N50 5N50 5A 500V TO-252 NewOriginal N Channel Mosfet AOD5N50 D5N50 5N50 5A 500V TO-252 New
Original N Channel Mosfet AOD5N50 D5N50 5N50 5A 500V TO-252 New
AUTHELECTRONIC
 
Relays and its types - complete guide
Relays and its types - complete guideRelays and its types - complete guide
Relays and its types - complete guide
Slides Hub
 
Datasheet
DatasheetDatasheet
Datasheet
o7o1
 
APEC 2012 Slides - IPC-9592 Derating Guidance
APEC 2012 Slides - IPC-9592 Derating GuidanceAPEC 2012 Slides - IPC-9592 Derating Guidance
APEC 2012 Slides - IPC-9592 Derating Guidance
Alessandro Cervone
 
Lm 337 datasheet
Lm 337 datasheetLm 337 datasheet
Lm 337 datasheetAndy Medina
 
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPEVHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
htrindia
 
CT design aspects - Nageswar-6
CT design aspects - Nageswar-6CT design aspects - Nageswar-6
CT design aspects - Nageswar-6Nageswar Rao
 
Ohmite resistor-selection-guide
Ohmite resistor-selection-guideOhmite resistor-selection-guide
Ohmite resistor-selection-guide
Muhammad Iqbal
 
Datasheet
DatasheetDatasheet
Datasheet
juampere2
 
CT and VT.pptx
CT and VT.pptxCT and VT.pptx
CT and VT.pptx
MAHMOUDMOHAMED431205
 
Original N-Channel Mosfet IRFB3077PBF IRFB3077 3077 75V 120A TO-220 New IR
Original N-Channel Mosfet IRFB3077PBF IRFB3077 3077 75V 120A TO-220 New IROriginal N-Channel Mosfet IRFB3077PBF IRFB3077 3077 75V 120A TO-220 New IR
Original N-Channel Mosfet IRFB3077PBF IRFB3077 3077 75V 120A TO-220 New IR
AUTHELECTRONIC
 
Voltage Drop Calculation.pdf
Voltage Drop Calculation.pdfVoltage Drop Calculation.pdf
Voltage Drop Calculation.pdf
MesiasJohnFederico
 
Current Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirementsCurrent Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirements
ssuser39bdb9
 
Original IGBT G15M65DF2 STGF15M65DF2 G15M65 650V 15A TO-220 New ST
Original IGBT G15M65DF2 STGF15M65DF2 G15M65 650V 15A TO-220 New STOriginal IGBT G15M65DF2 STGF15M65DF2 G15M65 650V 15A TO-220 New ST
Original IGBT G15M65DF2 STGF15M65DF2 G15M65 650V 15A TO-220 New ST
authelectroniccom
 
Enhancing the Design of VRM for Testing Magnetic Components
Enhancing the Design of VRM for Testing Magnetic ComponentsEnhancing the Design of VRM for Testing Magnetic Components
Enhancing the Design of VRM for Testing Magnetic Components
IJERA Editor
 
CURRENT TRANSFORMER.pptx
CURRENT TRANSFORMER.pptxCURRENT TRANSFORMER.pptx
CURRENT TRANSFORMER.pptx
ManishPandya29
 
Acs712 sensor-arus
Acs712 sensor-arusAcs712 sensor-arus
Acs712 sensor-arus
Yosafat Indra Inasa
 

Similar to Datasheet (20)

TMT127-187-128-188
TMT127-187-128-188TMT127-187-128-188
TMT127-187-128-188
 
Original N Channel Mosfet AOD5N50 D5N50 5N50 5A 500V TO-252 New
Original N Channel Mosfet AOD5N50 D5N50 5N50 5A 500V TO-252 NewOriginal N Channel Mosfet AOD5N50 D5N50 5N50 5A 500V TO-252 New
Original N Channel Mosfet AOD5N50 D5N50 5N50 5A 500V TO-252 New
 
Relays and its types - complete guide
Relays and its types - complete guideRelays and its types - complete guide
Relays and its types - complete guide
 
Datasheet
DatasheetDatasheet
Datasheet
 
Spx29300 t 2.5-tr
Spx29300 t 2.5-trSpx29300 t 2.5-tr
Spx29300 t 2.5-tr
 
APEC 2012 Slides - IPC-9592 Derating Guidance
APEC 2012 Slides - IPC-9592 Derating GuidanceAPEC 2012 Slides - IPC-9592 Derating Guidance
APEC 2012 Slides - IPC-9592 Derating Guidance
 
Lm 337 datasheet
Lm 337 datasheetLm 337 datasheet
Lm 337 datasheet
 
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPEVHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
VHIA - WIRE WOUND RESISTORS SILICONE COATED TYPE
 
CT design aspects - Nageswar-6
CT design aspects - Nageswar-6CT design aspects - Nageswar-6
CT design aspects - Nageswar-6
 
Ohmite resistor-selection-guide
Ohmite resistor-selection-guideOhmite resistor-selection-guide
Ohmite resistor-selection-guide
 
Datasheet
DatasheetDatasheet
Datasheet
 
CT and VT.pptx
CT and VT.pptxCT and VT.pptx
CT and VT.pptx
 
5685802
56858025685802
5685802
 
Original N-Channel Mosfet IRFB3077PBF IRFB3077 3077 75V 120A TO-220 New IR
Original N-Channel Mosfet IRFB3077PBF IRFB3077 3077 75V 120A TO-220 New IROriginal N-Channel Mosfet IRFB3077PBF IRFB3077 3077 75V 120A TO-220 New IR
Original N-Channel Mosfet IRFB3077PBF IRFB3077 3077 75V 120A TO-220 New IR
 
Voltage Drop Calculation.pdf
Voltage Drop Calculation.pdfVoltage Drop Calculation.pdf
Voltage Drop Calculation.pdf
 
Current Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirementsCurrent Transformers parameter design and graphs - size and design requirements
Current Transformers parameter design and graphs - size and design requirements
 
Original IGBT G15M65DF2 STGF15M65DF2 G15M65 650V 15A TO-220 New ST
Original IGBT G15M65DF2 STGF15M65DF2 G15M65 650V 15A TO-220 New STOriginal IGBT G15M65DF2 STGF15M65DF2 G15M65 650V 15A TO-220 New ST
Original IGBT G15M65DF2 STGF15M65DF2 G15M65 650V 15A TO-220 New ST
 
Enhancing the Design of VRM for Testing Magnetic Components
Enhancing the Design of VRM for Testing Magnetic ComponentsEnhancing the Design of VRM for Testing Magnetic Components
Enhancing the Design of VRM for Testing Magnetic Components
 
CURRENT TRANSFORMER.pptx
CURRENT TRANSFORMER.pptxCURRENT TRANSFORMER.pptx
CURRENT TRANSFORMER.pptx
 
Acs712 sensor-arus
Acs712 sensor-arusAcs712 sensor-arus
Acs712 sensor-arus
 

Recently uploaded

APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC
 
History+of+E-commerce+Development+in+China-www.cfye-commerce.shop
History+of+E-commerce+Development+in+China-www.cfye-commerce.shopHistory+of+E-commerce+Development+in+China-www.cfye-commerce.shop
History+of+E-commerce+Development+in+China-www.cfye-commerce.shop
laozhuseo02
 
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
3ipehhoa
 
Comptia N+ Standard Networking lesson guide
Comptia N+ Standard Networking lesson guideComptia N+ Standard Networking lesson guide
Comptia N+ Standard Networking lesson guide
GTProductions1
 
JAVIER LASA-EXPERIENCIA digital 1986-2024.pdf
JAVIER LASA-EXPERIENCIA digital 1986-2024.pdfJAVIER LASA-EXPERIENCIA digital 1986-2024.pdf
JAVIER LASA-EXPERIENCIA digital 1986-2024.pdf
Javier Lasa
 
Internet-Security-Safeguarding-Your-Digital-World (1).pptx
Internet-Security-Safeguarding-Your-Digital-World (1).pptxInternet-Security-Safeguarding-Your-Digital-World (1).pptx
Internet-Security-Safeguarding-Your-Digital-World (1).pptx
VivekSinghShekhawat2
 
Latest trends in computer networking.pptx
Latest trends in computer networking.pptxLatest trends in computer networking.pptx
Latest trends in computer networking.pptx
JungkooksNonexistent
 
1.Wireless Communication System_Wireless communication is a broad term that i...
1.Wireless Communication System_Wireless communication is a broad term that i...1.Wireless Communication System_Wireless communication is a broad term that i...
1.Wireless Communication System_Wireless communication is a broad term that i...
JeyaPerumal1
 
BASIC C++ lecture NOTE C++ lecture 3.pptx
BASIC C++ lecture NOTE C++ lecture 3.pptxBASIC C++ lecture NOTE C++ lecture 3.pptx
BASIC C++ lecture NOTE C++ lecture 3.pptx
natyesu
 
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
3ipehhoa
 
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
ufdana
 
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
eutxy
 
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
3ipehhoa
 
This 7-second Brain Wave Ritual Attracts Money To You.!
This 7-second Brain Wave Ritual Attracts Money To You.!This 7-second Brain Wave Ritual Attracts Money To You.!
This 7-second Brain Wave Ritual Attracts Money To You.!
nirahealhty
 
test test test test testtest test testtest test testtest test testtest test ...
test test  test test testtest test testtest test testtest test testtest test ...test test  test test testtest test testtest test testtest test testtest test ...
test test test test testtest test testtest test testtest test testtest test ...
Arif0071
 
guildmasters guide to ravnica Dungeons & Dragons 5...
guildmasters guide to ravnica Dungeons & Dragons 5...guildmasters guide to ravnica Dungeons & Dragons 5...
guildmasters guide to ravnica Dungeons & Dragons 5...
Rogerio Filho
 
The+Prospects+of+E-Commerce+in+China.pptx
The+Prospects+of+E-Commerce+in+China.pptxThe+Prospects+of+E-Commerce+in+China.pptx
The+Prospects+of+E-Commerce+in+China.pptx
laozhuseo02
 
Multi-cluster Kubernetes Networking- Patterns, Projects and Guidelines
Multi-cluster Kubernetes Networking- Patterns, Projects and GuidelinesMulti-cluster Kubernetes Networking- Patterns, Projects and Guidelines
Multi-cluster Kubernetes Networking- Patterns, Projects and Guidelines
Sanjeev Rampal
 
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
keoku
 
How to Use Contact Form 7 Like a Pro.pptx
How to Use Contact Form 7 Like a Pro.pptxHow to Use Contact Form 7 Like a Pro.pptx
How to Use Contact Form 7 Like a Pro.pptx
Gal Baras
 

Recently uploaded (20)

APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
APNIC Foundation, presented by Ellisha Heppner at the PNG DNS Forum 2024
 
History+of+E-commerce+Development+in+China-www.cfye-commerce.shop
History+of+E-commerce+Development+in+China-www.cfye-commerce.shopHistory+of+E-commerce+Development+in+China-www.cfye-commerce.shop
History+of+E-commerce+Development+in+China-www.cfye-commerce.shop
 
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
原版仿制(uob毕业证书)英国伯明翰大学毕业证本科学历证书原版一模一样
 
Comptia N+ Standard Networking lesson guide
Comptia N+ Standard Networking lesson guideComptia N+ Standard Networking lesson guide
Comptia N+ Standard Networking lesson guide
 
JAVIER LASA-EXPERIENCIA digital 1986-2024.pdf
JAVIER LASA-EXPERIENCIA digital 1986-2024.pdfJAVIER LASA-EXPERIENCIA digital 1986-2024.pdf
JAVIER LASA-EXPERIENCIA digital 1986-2024.pdf
 
Internet-Security-Safeguarding-Your-Digital-World (1).pptx
Internet-Security-Safeguarding-Your-Digital-World (1).pptxInternet-Security-Safeguarding-Your-Digital-World (1).pptx
Internet-Security-Safeguarding-Your-Digital-World (1).pptx
 
Latest trends in computer networking.pptx
Latest trends in computer networking.pptxLatest trends in computer networking.pptx
Latest trends in computer networking.pptx
 
1.Wireless Communication System_Wireless communication is a broad term that i...
1.Wireless Communication System_Wireless communication is a broad term that i...1.Wireless Communication System_Wireless communication is a broad term that i...
1.Wireless Communication System_Wireless communication is a broad term that i...
 
BASIC C++ lecture NOTE C++ lecture 3.pptx
BASIC C++ lecture NOTE C++ lecture 3.pptxBASIC C++ lecture NOTE C++ lecture 3.pptx
BASIC C++ lecture NOTE C++ lecture 3.pptx
 
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
1比1复刻(bath毕业证书)英国巴斯大学毕业证学位证原版一模一样
 
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
一比一原版(CSU毕业证)加利福尼亚州立大学毕业证成绩单专业办理
 
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
一比一原版(LBS毕业证)伦敦商学院毕业证成绩单专业办理
 
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
急速办(bedfordhire毕业证书)英国贝德福特大学毕业证成绩单原版一模一样
 
This 7-second Brain Wave Ritual Attracts Money To You.!
This 7-second Brain Wave Ritual Attracts Money To You.!This 7-second Brain Wave Ritual Attracts Money To You.!
This 7-second Brain Wave Ritual Attracts Money To You.!
 
test test test test testtest test testtest test testtest test testtest test ...
test test  test test testtest test testtest test testtest test testtest test ...test test  test test testtest test testtest test testtest test testtest test ...
test test test test testtest test testtest test testtest test testtest test ...
 
guildmasters guide to ravnica Dungeons & Dragons 5...
guildmasters guide to ravnica Dungeons & Dragons 5...guildmasters guide to ravnica Dungeons & Dragons 5...
guildmasters guide to ravnica Dungeons & Dragons 5...
 
The+Prospects+of+E-Commerce+in+China.pptx
The+Prospects+of+E-Commerce+in+China.pptxThe+Prospects+of+E-Commerce+in+China.pptx
The+Prospects+of+E-Commerce+in+China.pptx
 
Multi-cluster Kubernetes Networking- Patterns, Projects and Guidelines
Multi-cluster Kubernetes Networking- Patterns, Projects and GuidelinesMulti-cluster Kubernetes Networking- Patterns, Projects and Guidelines
Multi-cluster Kubernetes Networking- Patterns, Projects and Guidelines
 
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
一比一原版(SLU毕业证)圣路易斯大学毕业证成绩单专业办理
 
How to Use Contact Form 7 Like a Pro.pptx
How to Use Contact Form 7 Like a Pro.pptxHow to Use Contact Form 7 Like a Pro.pptx
How to Use Contact Form 7 Like a Pro.pptx
 

Datasheet

  • 1. 1Rectifier Device Data Axial Lead Rectifiers . . . employing the Schottky Barrier principle in a large area metal–to–silicon power diode. State–of–the–art geometry features chrome barrier metal, epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low–voltage, high–frequency inverters, free wheeling diodes, and polarity protection diodes. • Extremely Low vF • Low Stored Charge, Majority Carrier Conduction • Low Power Loss/High Efficiency Mechanical Characteristics • Case: Epoxy, Molded • Weight: 0.4 gram (approximately) • Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable • Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case • Shipped in plastic bags, 1000 per bag. • Available Tape and Reeled, 5000 per reel, by adding a “RL” suffix to the part number • Polarity: Cathode Indicated by Polarity Band • Marking: 1N5817, 1N5818, 1N5819 MAXIMUM RATINGS Rating Symbol 1N5817 1N5818 1N5819 Unit Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage VRRM VRWM VR 20 30 40 V Non–Repetitive Peak Reverse Voltage VRSM 24 36 48 V RMS Reverse Voltage VR(RMS) 14 21 28 V Average Rectified Forward Current (2) (VR(equiv) ≤ 0.2 VR(dc), TL = 90°C, RθJA = 80°C/W, P.C. Board Mounting, see Note 2, TA = 55°C) IO 1.0 A Ambient Temperature (Rated VR(dc), PF(AV) = 0, RθJA = 80°C/W) TA 85 80 75 °C Non–Repetitive Peak Surge Current (Surge applied at rated load conditions, half–wave, single phase 60 Hz, TL = 70°C) IFSM 25 (for one cycle) A Operating and Storage Junction Temperature Range (Reverse Voltage applied) TJ, Tstg –65 to +125 °C Peak Operating Junction Temperature (Forward Current applied) TJ(pk) 150 °C THERMAL CHARACTERISTICS (2) Characteristic Symbol Max Unit Thermal Resistance, Junction to Ambient RθJA 80 °C/W ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted) (2) Characteristic Symbol 1N5817 1N5818 1N5819 Unit Maximum Instantaneous Forward Voltage (1) (iF = 0.1 A) (iF = 1.0 A) (iF = 3.0 A) vF 0.32 0.45 0.75 0.33 0.55 0.875 0.34 0.6 0.9 V Maximum Instantaneous Reverse Current @ Rated dc Voltage (1) (TL = 25°C) (TL = 100°C) IR 1.0 10 1.0 10 1.0 10 mA (1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%. (2) Lead Temperature reference is cathode lead 1/32″ from case. Preferred devices are Motorola recommended choices for future use and best overall value. © Motorola, Inc. 1996 Order this document by 1N5817/D MOTOROLA SEMICONDUCTOR TECHNICAL DATA 1N5817 1N5818 1N5819 SCHOTTKY BARRIER RECTIFIERS 1 AMPERE 20, 30 and 40 VOLTS CASE 59–04 1N5817 and 1N5819 are Motorola Preferred Devices Rev 3
  • 2. 125 115 105 95 85 75 2015107.05.04.03.02.0 TR,REFERENCETEMPERATURE( ° C) VR, DC REVERSE VOLTAGE (VOLTS) Figure 1. Maximum Reference Temperature 1N5817 40 30 23 60 80 RθJA (°C/W) = 110 125 115 105 95 85 75 2015107.05.0 304.03.0 40 30 23 RθJA (°C/W) = 110 80 60 Figure 2. Maximum Reference Temperature 1N5818 125 115 105 95 85 75 2015107.05.0 304.0 40 RθJA (°C/W) = 110 60 80 Figure 3. Maximum Reference Temperature 1N5819 Circuit Load Half Wave Resistive Capacitive* Full Wave, Bridge Resistive Capacitive Full Wave, Center Tapped*† Resistive Capacitive Sine Wave Square Wave 0.5 0.75 1.3 1.5 0.5 0.75 0.65 0.75 1.0 1.5 1.3 1.5 40 30 23 TR,REFERENCETEMPERATURE(C) ° VR, DC REVERSE VOLTAGE (VOLTS) VR, DC REVERSE VOLTAGE (VOLTS) *Note that VR(PK) ≈ 2.0 Vin(PK). †Use line to center tap voltage for Vin. Table 1. Values for Factor F TR,REFERENCETEMPERATURE( ° C) 1N5817 1N5818 1N5819 2 Rectifier Device Data NOTE 1 — DETERMINING MAXIMUM RATINGS Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 VRWM. Proper derating may be accomplished by use of equation (1). TA(max) = where TA(max) = TJ(max) = PF(AV) = PR(AV) = RθJA = TJ(max) – RθJAPF(AV) – RθJAPR(AV) Maximum allowable ambient temperature Maximum allowable junction temperature (1) Average forward power dissipation (125°C or the temperature at which thermal runaway occurs, whichever is lowest) Average reverse power dissipation Junction–to–ambient thermal resistance Figures 1, 2, and 3 permit easier use of equation (1) by taking re- verse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2). TR = TJ(max) – RθJAPR(AV) (2) Substituting equation (2) into equation (1) yields: TA(max) = TR – RθJAPF(AV) (3) Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where TJ = 125°C, when forward power is zero. The transition from one boundary condi- tion to the other is evident on the curves of Figures 1, 2, and 3 as a differencein the rate of change of the slope in the vicinity of 115°C. The dataof Figures 1, 2, and 3 is based upon dc conditions. For use in com- mon rectifier circuits, Table 1 indicates suggested factors for an equiv- alent dc voltage to use for conservative design, that is: (4)VR(equiv) = Vin(PK) x F The factor F is derived by considering the properties of the various rec- tifier circuits and the reverse characteristics of Schottky diodes. EXAMPLE:FindTA(max)for1N5818operatedina12–voltdcsupply usingabridgecircuitwithcapacitivefiltersuchthatIDC=0.4A(IF(AV)= 0.5 A), I(FM)/I(AV) = 10, Input Voltage = 10 V(rms), RθJA = 80°C/W. Step 1. Find VR(equiv). Read F = 0.65 from Table 1, Step 1. Find ∴ VR(equiv) = (1.41)(10)(0.65) = 9.2 V. Step 2. Find TR from Figure 2. Read TR = 109°C Step 1. Find @ VR = 9.2 V and RθJA = 80°C/W. Step 3. Find PF(AV) from Figure 4. **Read PF(AV) = 0.5 W @ I(FM) I(AV) = 10 and IF(AV) = 0.5 A. Step 4. Find TA(max) from equation (3). Step 4. Find TA(max) = 109 – (80) (0.5) = 69°C. **Values given are for the 1N5818. Power is slightly lower for the 1N5817 because of its lower forward voltage, and higher for the 1N5819.
  • 3. 1N5817 1N5818 1N5819 3Rectifier Device Data 7/8 20 40 50 90 80 70 60 30 10 3/45/81/23/81/4 1.01/81 RθJL,THERMALRESISTANCE,JUNCTION–TO–LEAD(°C/W) BOTH LEADS TO HEATSINK, EQUAL LENGTH MAXIMUM TYPICAL L, LEAD LENGTH (INCHES) Figure 4. Steady–State Thermal Resistance 5.0 3.0 2.0 1.0 0.7 0.5 0.3 0.2 0.1 0.07 0.05 4.02.01.00.80.60.40.2 PF(AV),AVERAGEPOWERDISSIPATION(WATTS) IF(AV), AVERAGE FORWARD CURRENT (AMP) dc SQUARE WAVE TJ ≈ 125°C 1.0 0.7 0.5 0.3 0.2 0.1 0.07 0.05 0.03 0.02 0.01 10k2.0k1.0k5002001005020105.02.01.00.50.20.1 5.0k r(t),TRANSIENTTHERMALRESISTANCE(NORMALIZED) ZθJL(t) = ZθJL • r(t) Ppk Ppk tp t1 TIME DUTY CYCLE, D = tp/t1 PEAK POWER, Ppk, is peak of an equivalent square power pulse. ∆TJL = Ppk • RθJL [D + (1 – D) • r(t1 + tp) + r(tp) – r(t1)] where ∆TJL = the increase in junction temperature above the lead temperature r(t) = normalized value of transient thermal resistance at time, t, from Figure 6, i.e.: r(t) = r(t1 + tp) = normalized value of transient thermal resistance at time, t1 + tp. t, TIME (ms) NOTE 2 — MOUNTING DATA Data shown for thermal resistance junction–to–ambient (RθJA) for the mountings shown is to be used as typical guideline values for pre- liminary engineering, or in case the tie point temperature cannot be measured. TYPICAL VALUES FOR RθJA IN STILL AIR Mounting Method 1/8 1/4 1/2 3/4 Lead Length, L (in) RθJA 1 2 3 52 67 65 80 72 87 85 100 °C/W °C/W °C/W50 Mounting Method 1 P.C. Board with 1–1/2″ x 1–1/2″ copper surface. Mounting Method 3 P.C. Board with 1–1/2″ x 1–1/2″ copper surface. L L L = 3/8″ BOARD GROUND PLANE VECTOR PIN MOUNTING L L Mounting Method 2 5 10 20 Sine Wave I(FM) I(AV) = π (Resistive Load) Capacitive Loads { Figure 5. Forward Power Dissipation 1N5817–19 Figure 6. Thermal Response
  • 4. 1N5817 1N5818 1N5819 4 Rectifier Device Data 100705.0 125 115 105 95 85 75 207.0 103.02.0 301.0 40 15 5.0 3.0 2.0 0.3 0.2 0.1 403612 30 20 1.0 0.5 0.05 0.03 2416 208.04.0 280 32 10 20 7.0 5.0 2.0 0.2 0.3 0.5 0.7 1.0 3.0 0.9 1.0 1.1 0.1 0.07 0.05 0.03 0.02 0.60.50.40.30.2 0.70.1 0.8 NOTE 3 — THERMAL CIRCUIT MODEL (For heat conduction through the leads) TA(A) TA(K) RθS(A) RθL(A) RθJ(A) RθJ(K) RθL(K) RθS(K) PD TL(A) TC(A) TJ TC(K) TL(K) vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS) iF,INSTANTANEOUSFORWARDCURRENT(AMP) Figure 7. Typical Forward Voltage IFSM,PEAKSURGECURRENT(AMP) NUMBER OF CYCLES Figure 8. Maximum Non–Repetitive Surge Current IR,REVERSECURRENT(mA) VR, REVERSE VOLTAGE (VOLTS) Figure 9. Typical Reverse Current TC = 100°C 25°C 1 Cycle TL = 70°C f = 60 Hz Surge Applied at Rated Load Conditions 1N5817 1N5818 1N5819 TJ = 125°C 100°C 25°C Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heatsink. Terms in the model signify: TA = Ambient Temperature TC = Case Temperature TL = Lead Temperature TJ = Junction Temperature RθS = Thermal Resistance, Heatsink to Ambient RθL = Thermal Resistance, Lead to Heatsink RθJ = Thermal Resistance, Junction to Case PD = Power Dissipation (Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are: RθL = 100°C/W/in typically and 120°C/W/in maximum RθJ = 36°C/W typically and 46°C/W maximum. 75°C
  • 5. 1N5817 1N5818 1N5819 5Rectifier Device Data NOTE 4 — HIGH FREQUENCY OPERATION Since current flow in a Schottky rectifier is the result of majority carri- er conduction, it is not subject to junction diode forward and reverse re- covery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consistingof an ideal diode in parallel with a variable capacitance. (See Figure 10.) Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss: it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage. 10 200.8 70 200 100 50 30 20 10 6.04.02.01.00.6 8.00.4 40 C,CAPACITANCE(pF) VR, REVERSE VOLTAGE (VOLTS) Figure 10. Typical Capacitance TJ = 25°C f = 1.0 MHz 1N5819 1N5818 1N5817
  • 6. 1N5817 1N5818 1N5819 6 Rectifier Device Data PACKAGE DIMENSIONS ISSUE M CASE 59–04 K A D K B DIM MIN MAX MIN MAX INCHESMILLIMETERS A 5.97 6.60 0.235 0.260 B 2.79 3.05 0.110 0.120 D 0.76 0.86 0.030 0.034 K 27.94 ––– 1.100 ––– NOTES: 1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO–41 OUTLINE SHALL APPLY. 2. POLARITY DENOTED BY CATHODE BAND. 3. LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,including“Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury ordeath may occur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315 Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 1N5817/D◊