SlideShare a Scribd company logo
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 1, Ver. I (Jan. 2014), PP 23-31
www.iosrjournals.org
www.iosrjournals.org 23 | Page
Intelligent Fault Identification System for Transmission Lines
Using Artificial Neural Network
Seema Singh1
, Mamatha K R2
,Thejaswini S3
1
(Associate Professor, Dept. of Electronics & Comm. Engg., BMS Institute of Technology, Bangalore, India)
2
(Assistant Professor, Dept. of Electronics & Comm. Engg., BMS Institute of Technology, Bangalore, India)
3
(Assistant Professor, Dept. of Telecommunication Engg., BMS Institute of Technology, Bangalore, India)
Abstract: Transmission and distribution lines are vital links between generating units and consumers. They are
exposed to atmosphere, hence chances of occurrence of fault in transmission line is very high, which has to be
immediately taken care of in order to minimize damage caused by it. This paper focuses on detecting the faults
on electric power transmission lines using artificial neural networks. A feed forward neural network is
employed, which is trained with back propagation algorithm. Analysis on neural networks with varying number
of hidden layers and neurons per hidden layer has been provided to validate the choice of the neural networks
in each step. The developed neural network is capable of detecting single line to ground and double line to
ground for all the three phases. Simulation is done using MATLAB Simulink to demonstrate that artificial
neural network based method are efficient in detecting faults on transmission lines and achieve satisfactory
performances. A 300km, 25kv transmission line is used to validate the proposed fault detection system.
Hardware implementation of neural network is done on TMS320C6713.
Keywords: Transmission Line, Asymmetric fault detection, Artificial neural network (ANN), Back Propagation
algorithm, DSP processor TMS320C6713, Code Composer Studio, MATLAB/Simulink
I. Introduction
The advent of large generating stations and highly interconnected transmission lines makes early fault
detection and rapid equipment isolation imperative to maintain system stability. Transmission line is used to
transfer power or voltage to long distance destination. Power or voltage generated from source is supplied to the
load through the Transmission Line. While transmitting, Transmission Line encounters various faults due to
momentary tree contact, a bird or an animal contact or due to other natural reasons such as thunderstorms or
lightning.
Earlier systems use conventional method for the fault detection which results in the late detection and
inaccurate results [1]-[5]. Conventional algorithms are based on deterministic computations on a well-defined
model for transmission line protection. Bergon model was extensively used to model transmission line.
Conventional distance relays consider power swing as a fault and tripping because of such malfunctioning
would lead to serious consequences for power system stability. To improve the performance, Neural Network
architecture is used which results in the earlier fault detection.
From quite a few years, intelligent based methods are being used in the process of fault detection.
Three major artificial intelligence based techniques that have been widely used in the power and automation
industry are:
 Expert System Techniques
 Artificial Neural Networks
 Fuzzy Logic Systems
Ref [6] used an adaptive neuro-fuzzy approach to develop an inference system for transmission line
fault classification and location. It incorporates the effects of power swings. Fault location is done using
wavelet-neuro-fuzzy combined approach. The wavelet transform captures the dynamic characteristics of fault
signals using wavelet multi-resolution analysis (MRA) coefficients. The fuzzy inference system (FIS) and the
adaptive-neuro-fuzzy inference system (ANFIS) are both used to extract important features from wavelet MRA
coefficients and thereby to reach conclusions regarding fault location. However, combination of different
approaches makes the system complicated. This work uses ANN based approach which uses the fluctuations in
current level as the key feature to detect faults. Neural network is capable of working with real time data and
responses to the changes in surrounding environment immediately and this makes the system more flexible for
the fault detection.
ANN based methods do not require a knowledge base for the detection of faults unlike the other
artificial intelligence based methods. The prime motive behind this work is that a very accurate fault detector
could make if employed in a power transmission and distribution system, in terms of the amount of money and
Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network
www.iosrjournals.org 24 | Page
time that can be saved. The main goal of Fault Detection is to detect a fault in the power system with the highest
practically achievable accuracy. When the physical dimensions and the size of the transmission lines are
considered, the accuracy with which the designed fault detector detects faults in the power system becomes very
important.
Special features of ANN for fault tolerant systems:
 ANN is made of massive interconnection of elementary processing units, information processing can be
carried out in a parallel distributed manner. This makes real time processing of large volumes of data more
readily realizable.
 ANN can model any degree of nonlinearity and thus are useful in solving these problems which are
inherently nonlinear.
 ANN approach is non-algorithmic and requires no prior knowledge functions relating the problem
variables. Also being non algorithmic, they do not make any approximations unlike as the case with most of
the mathematical models.
 ANN is capable of handling situations of incomplete information, corrupt data and thus is highly fault
tolerant.
As power system grow both in size and complexity, it becomes necessary to identify different faults
faster and more accurately using more powerful algorithms. Back propagation algorithm of neural network is
used for the fault diagnosis system. Different fault like single line to ground fault and double line to ground
faults are detected using ANN. Fault detector module of a transmission line protective scheme can be used to
start other relaying modules.
The basic block diagram of the work is shown in Figure 1. The Simulink model of 300 km transmission
line with sampling time 0.02s is used for simulation.
Fig 1: Block diagram for fault identification in transmission line using ANN
Simulink model of transmission line is used for validation of neural network based fault detection
system. Neural networks have an inherent parallel architecture with multiple input and output nodes, it can be
implemented to high speed parallel hardware with multivariable input and output. Neural network model in this
paper is implemented using DSP processor TMS320C6713.
II. Transmission line and asymmetric fault
Transmission lines are used for long distance power supply. Transmission lines, when interconnected
with each other, become transmission networks. High-voltage overhead conductors are not covered by
insulation. The conductor material is nearly always an aluminum alloy, made into several strands and possibly
reinforced with steel strands. Copper was sometimes used for overhead transmission but aluminum is lighter,
yields only marginally reduced performance, and costs much less. Overhead conductors are a commodity
supplied by several companies worldwide. Improved conductor material and shapes are regularly used to allow
increased capacity and modernize transmission circuits. High-voltage direct current (HVDC) is used to transmit
large amounts of power over long distances or for interconnections between asynchronous grids. The
Transmission line model, three phase source and three phase load is simulated using MATLAB/Simulink
powergui. Sampling is done to reduce complexity and increase simulation speed.
In an electric power system, a fault is any abnormal electric current. For example, a short circuit is a
fault in which current bypasses the normal load. An open-circuit fault occurs if a circuit is interrupted by some
failure. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between
Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network
www.iosrjournals.org 25 | Page
phases. In a "ground fault" or "earth fault", charge flows into the earth. The prospective short circuit current of a
fault can be calculated for power systems. In power systems, protective devices detect fault conditions and
operate circuit breakers and other devices to limit the loss of service due to a failure.
An asymmetric or unbalanced fault does not affect each of the three phases equally. There are three
common types of asymmetric faults, namely line to line, line to ground and double line to ground. Line-to-line
fault is a short circuit between lines, caused by ionization of air, or when lines come into physical contact, for
example due to a broken insulator. Line-to-ground - is a short circuit between one line and ground, very often
caused by physical contact, for example due to lightning or other storm damage. Double line-to-ground fault is
where two lines come into contact with the ground (and each other), also commonly due to storm damage.
Single line to ground and double line to ground fault is simulated using three phase fault block. It is capable of
introducing short circuit fault at the different interval of time. It can be visualized using the waveform of the
input and output current and voltages through scope.
III. ANN based fault detection system
Artificial intelligence, cognitive modeling, and neural networks are information processing paradigms
inspired by the way biological neural systems process data. Artificial intelligence and cognitive modeling try to
simulate some properties of biological neural networks. Artificial neural networks have been applied
successfully to speech recognition, image analysis and adaptive control, in order to construct software agents (in
computer and video games) or autonomous robots and specially in fault detection system [16], [17]. Neural
network theory has served both to better identify how the neurons in the brain function and to provide the basis
for efforts to create artificial intelligence. Fig 2 shows a single neuron. The following diagram shows a simple
neuron with:
Neuron consists of three basic components, namely weights, thresholds/biases and a single activation
function. Values w1, w2

wn are weights to determine the strength of input vector X = [x1, x2,
.., xn]T
. Each
input is multiplied with its associated weight of the neuron XT.W.
I= XT
.W = x1w1 + x2w2 + 

 + xnwn = ∑
Threshold, φ is the neuron‟s internal offset. The neuron fire or produces positive output only if the total
input I is above the threshold value. It affects the activation of the node output y as
Y = f(I) = f {∑ }
To generate the final output Y, the sum is passed on to a non- linear filter f called activation function or
transfer function, which releases the output Y. There are various activation functions which are chosen
depending on the type of problem to be solved by the network. The most common activation function includes
linear function, tangent hyperbolic function, threshold function and sigmoidal function. Most popular sigmoidal
function follows the transition equation shown below.
Y = f(I) = , where α is the slope of sigmoidal function followed.
Fig. 2: A single neuron and sigmoidal activation function
The capability of the neural network increases as number of neurons increases. This capability
multiplies as number of layers in neural network structure increases. Figure 3 shows multilayer neural network
with one hidden layer. The weights connecting neurons are varied continuously while training the neural
network. In NN applications, the challenge is to find the right values for the weights and the threshold. Various
algorithms are developed in neural network field depending on different problems and applications where it has
been used. Back Propagation, Radial Basis Functions, Multi-Layer Perceptron algorithm, Adaptive Resonance
Theory (ART), Self Organizing Maps (SOM) and Counter Propagation Networks (CPN) are few algorithms of
neural networks.
Various neural network architecture, training algorithms and transfer functions were studied to decide
upon the final neural network model for fault detection system. Back propagation algorithm, a supervised
learning is used as the network will be trained using the data created from the simulation model of transmission.
Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network
www.iosrjournals.org 26 | Page
Number of hidden layers and number of neurons in each layer can be varied depending on the complexity of the
problem to be solved.
The training data was created using Simulink model of 300 km long transmission line for various fault
cases. This training data consists of various vectors of the output and input current and voltage. Using these
values and the created target vector, neural network is trained to detect the fault at the different instants of time.
Training is done using back propagation training algorithm using “traingd” function of neural network toolbox
of MATLAB. The trained/updated neural network model for fault detection is converted to Simulink block
using neural network toolbox. This is done to make it usable with Simulink model of transmission line.
3.1 Training of the Neural Network
The neural network architecture with three hidden layers was fixed for the simulation purpose. Hidden
layers consist of 7-10-3 neurons as shown in Fig. 3. Input layer consists of three neurons which takes the current
of three phases of the transmission line. Output layer consists of one neuron which indicates if fault is there. A
threshold of 0.9 is fixed based on simulation in order to avoid false alarms. As shown in figure, the training
algorithm used is gradient descent variant of back propagation algorithm. Figure shows the number of iteration,
time taken to train the Neural Network. It also shows the different performance plots of the Neural Network
after training of the network.
The different training parameter encountered during the training process is gradient, mean square error
and validation check. For better training purpose, mean square error value should decrease when the training
process continues; validation check gives us maximum number of fails in the Neural Network training process.
These training parameter plots are shown in Fig. 4.
3.3 Performance Plot
As discussed earlier in this section, the training data is created using simulation model of transmission
lines. Single line to ground and double line to ground fault was introduced in different phases at different time
instants. This training data, when fed for training the neural network, is divided into three parts. The data
samples are divided into train, test and validation sets randomly by the program, in the ratio 0.7:0.15:0.15.
Fig 3: Neural network training in Simulink tool
Fig 4: Training parameter plots
Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network
www.iosrjournals.org 27 | Page
The figure 5 shows the performance of Neural Network when Neural Network is trained with particular input
vectors and target vectors. The plot shows that the variation of different parameters throughout the training
process.
After training is completed satisfactorily, the neural network is tested with the available sample data to
evaluate the performance of the updated trained neural network. If the performance is not up to the expectations,
some variations may me experimented with the neural network structure by varying number of hidden layers of
number of neurons in each layer. Different training algorithm may also be experimented with various activation
functions.
Fig 5: Performance plot
Once the neural network with satisfactory performance is developed, its Simulink model is developed
using „gensim‟ function so that it can be used with other block in the simulation model. Neural network
simulation model is shown in Fig. 6. The complete simulation set up is shown in Fig. 7.
Fig 6: Simulink model of developed neural network
IV. Simulation Set-up and Hardware Implementation
As discussed in previous section, transmission line with three phase source and load, three phase fault
and neural network based fault detection simulation models are developed to test the capability of the proposed
method. Transmission line model is generated with discrete state and pi section line. Using this model samples
are reduced from 1000 samples to 50 samples, which is feasible for real time application and easy for
implementation. Sampling time of this model is Ts= 0.02ms and simulation is done for 1 sec. With these
specifications, the current and voltage vectors consist of 51 samples. This simulation model of transmission line
with various fault cases is used to create training data which was used to train neural network.
A feed forward neural network with 3 hidden layers is used for fault detection purpose. The number of
neurons in all hidden layer can be varied to get the optimum performance. First hidden layer is fixed with 7
neurons, second with 10 neurons and last hidden layer with 3 neurons as shown in Fig. 3. Output layer has one
neuron, output indicates whether fault has occurred or not at different instants of time. This neural network
structure is trained using back propagation training algorithm for the training data of transmission line model.
This trained/updated neural network is capable of detecting faults. Detection of fault is successfully done for
single line to ground and double line to line ground for all the three phases.
The fault detection system successfully detects single line and double line to ground fault in
transmission line.
Hardware Implementation:
Fault detection system using neural network is implemented on DSP processor. Neural network model
parameters are studied and programmed using „C‟ language and the same is implemented in TMS320C6713
using code composer studio. DSP processor is used to verify the result for timing constraints.
Implementation of Neural Network on DSP Processor TMS320C6713 is difficult, because of the size
of the generated Neural Network. To overcome the difficulties faced while doing implementation, Neural
Network was modified as mentioned below:
Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network
www.iosrjournals.org 28 | Page
 Changing the input from floating point to the binary form. For eg. Input in floating point =0.04 is changed to
the input in binary form= 0 and Input in floating point = 0.92 is changed to the input in binary form=1.As
detection of line to ground fault is short circuit fault, input can be transformed to binary values.
 The size of the neural network is reduced, by changing the number of hidden layer to 1 and number of
neurons in the hidden layer to 4. This neural network could give satisfactory results for the transformed
binary values.
 Implementation of this neural network with one hidden layer of 4 neurons is preferred for the hardware,
which contains 16 weight values and 5 biases. Totally 21 values are required, which is easier for hardware
implementation and able to detect faults successfully.
Fig 7: Simulink model of Intelligent Fault identification system in transmission line model
V. Discussion Of The Results
In this work, an attempt was made to develop an intelligent fault identification system for transmission
lines using artificial neural network. Three phase current and voltages are in analog form and the waveform in
its analog form is shown in Fig. 8. It shows the continuous signals for all the three phases of the voltage before
sampling.
However, to design a fast and accurate fault detection system, it is important to sample it. The sampled
waveform at 0.2 s is shown in Fig. 9 for 1 s. This figure shows the discrete signals for all the three phases of the
voltages after sampling.
Fig 8: Waveform before sampling Fig 9 : Waveform after sampling
Various cases of single line to ground and double line to ground fault is tested for the developed fault
detection system. Test cases are listed in the table 1 and corresponding plots are shown in Fig. 10 to 21. Each
figure has four sub plots. First three sub plots show current levels at phase A, B and C. Fourth plot show neural
network output, which indicates the occurrence of fault by switching to a high level. Fault in one phase disturbs
other phase current as shown in all the result plots. Fig.22 shows fault detection from neural network
implemented in DSP Processor TMS320C6713.A slight delay is seen in the output when it is switching to „1‟ to
show occurrence of fault. This happens due to hardware delay.
Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network
www.iosrjournals.org 29 | Page
Fig 10: Fault detection for Single line to ground Fig 11: Fault detection for Single line to ground
fault in phase A at 4s fault in phase B at 4s
Fig 12: Fault detection for Single line to Fig 13: Fault detection for double line to ground
ground fault in phase C at 4s (Phase A and B) Fault at 4s
Fig 14: Fault detection for double line to ground (Phase B and C) Fault at 4s
Fig 15: Fault detection for double line to ground Fig 16: Fault detection for Single line to ground Fault
(Phase A and C) Fault at 4s in Phase A at 6s
Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network
www.iosrjournals.org 30 | Page
Fig 17: Fault detection for Single line to ground Fig 18: Fault detection for Single line to ground
Fault in Phase B at 6 s Fault in Phase C at 6s
Fig 19: Fault detection for double line to ground Fig 20: Fault detection for double line to ground
(Phase A and B) Fault at 6s (Phase B and C) Fault at 6s
Fig 21: Fault detection for double line to ground Fig 22: Neural network output from DSP Processor
(Phase A and C) Fault at 6s
Neural network is generalized and thus capable of finding any type of fault in the transmission line. The trained
Neural Network can detect Single line to ground and Double line to ground fault. Effects of the different system
parameters and conditions are studied. Extensive studies indicate that the network is able to detect faults earlier
and correctly and its performance is not affected by the changing network conditions.
VI. CONCLUSION
The proposed method uses an artificial neural network-based scheme for fast and reliable fault
detection. Various Asymmetric fault (Single line to ground and double line to ground fault) are simulated and an
ANN based algorithm is used for detection of these faults. Performance of the proposed scheme is evaluated
using various fault types and encouraging results are obtained.
Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network
www.iosrjournals.org 31 | Page
There are many applications for which the Digital Signal Processor becomes an ideal choice as they
provide the best possible combination of performance, power and cost. Most of the DSP applications can be
simplified into multiplications and additions, so the MAC (Multiply- Accumulate) formed a main functional unit
in early DSP processors. Neural network is a mathematical structure with combination of parallel MAC
operation in its each layer with different transfer functions like sigmoid and linear functions. Thus neural
network can be efficiently implemented on DSP processor using CC Studio as done in this work. Thus neural
network based analysis provides the solution much faster than the conventional methods without degrading the
accuracy.
Further work can be carried out by developing detection system to detect other asymmetric and
symmetric fault. Hardware implementation can be extended to more complex neural networks with higher
version of DSPs. FPGA may also be another alternative for hardware implementation with a comparative
analysis of the two possibilities of hardware.
Acknowledgements
The authors thank the students, Mamta Devi, Mohanakalyani B N, Pratibha C and Nagashree K Rao,
who played an important role in carrying out this work. The authors are also thankful to KSCST, Bangalore for
selecting and sponsoring this work.
REFERENCES
[1] Das R, Novosel D, “Review of fault location techniques for transmission and sub – transmission lines”, proceedings of 54th Annual
Georgia Tech Protective RelayingConference, 2000.
[2] IEEE guide for determining fault location on AC transmission and distribution lines.IEEE Power Engineering Society Publ., New
York, IEEE Std C37.114, 2005.
[3] Saha MM, Izykowski J, Rosolowski E, “Fault Location on Power Networks”, Springer publications, 2010.
[4] Magnago FH, Abur A, “Advanced techniques for transmission and distribution system fault location”, Proceedings of CIGRE –
Study committee 34 Colloquium and Meeting, Florence, 1999, paper 215.
[5] Tang Y, Wang HF, Aggarwal R K, “Fault indicators in transmission and distribution systems”, Proceedings of International
conference on Electric Utility Deregulation and Restructuring and Power Technologies – DRPT, 2000, pp. 238-243.
[6] Reddy MJ, Mohanta DK, “Adaptive-neuro-fuzzy inference system approach for transmission line fault classification and location
incorporating effects of power swings”, Proceedings of IET Generation, Transmission and Distribution, 2008, pp. 235 – 244.
[7] S. Haykin, Neural Networks, IEEE Press, New York, 1994.
[8] M. T. Hagan and M. B. Menhaj, “Training Feedforward Networks with the Marquardt Algorithm”, IEEE Trans. on Neural
Networks, Vol. 5, No. 6, 1994, pp. 989-993.
[9] FraukeGĂŒnther, Stefan Fritsch, “FraukeGĂŒnther and Stefan Fritsch”, Research Article, The R Journal Vol. 2(1), June 2010, pp 30-
38.
[10] Thomas Behan, “Investigation of Integer Neural Networks for low cost embedded System”, in Electrical and Computer Engineering
Commons”, Jan 2009, pp 5-15.
[11] Thomas Behan, Zaiya Liao, Lian Zhao, Chunting Yang, “Accelerating Integer Neural Networks on Low Cost DSPs”, World
Academy of Science, Engineering and Technology 2008, pp 439-442.
[12] M. Sayaye-Pasand, H. Khorashadi-Zadeh, “Transmission Line Fault Detection and Phase Selection using ANN”, in International
Conference on Power System Transients, 2003, pp. 1-6.
[13] TaharBouthiba, “Artificial Neural Network-based Fault Location in EHV Transmission Lines”, Electric Power System Research
[14] Aizenberg, N. Aizenberg and J. Vandewalle “Multi-valued and universal binary neurons: theory, learning, application””, Kluwer
Academic Publishers, Boston/Dordrecht/London, 2000.
[15] K. Hornik, M. Stinchcombe, H. White. “Multilayer Feedforward Neural Networks are Universal Approximators”, Neural Networks,
vol. 2, 1989, pp. 259-366.
[16] Seema Singh and T. V. Rama Murthy, “Neural Network based Sensor Fault Detection for Flight Control Systems”, International
Journal of Computer Applications (IJCA), Vol 59, No 13, Dec, 2012, pp 1-8.
[17] Seema Singh and T. V. Rama Murthy, “Neural Network based Sensor Fault Accommodation in Flight Control System, Journal of
Intelligent systems (JISYS), De Gruyter, Vol 22, Issue 3, September, 2013, pp 317-333

More Related Content

What's hot

Fault detection using iot PRESENTATION
Fault detection using iot PRESENTATIONFault detection using iot PRESENTATION
Fault detection using iot PRESENTATION
AnjanKumarHanumantha
 
Backpropagation Neural Network Modeling for Fault Location in Transmission Li...
Backpropagation Neural Network Modeling for Fault Location in Transmission Li...Backpropagation Neural Network Modeling for Fault Location in Transmission Li...
Backpropagation Neural Network Modeling for Fault Location in Transmission Li...
ijeei-iaes
 
Fault Location Of Transmission Line
Fault Location Of Transmission LineFault Location Of Transmission Line
Fault Location Of Transmission Line
CHIRANJEEB DASH
 
Power_and_Data_08-16-12_Final_Color
Power_and_Data_08-16-12_Final_ColorPower_and_Data_08-16-12_Final_Color
Power_and_Data_08-16-12_Final_Color
Alexander Rush
 
A Survey- Energy Efficient Techniques in WBAN
A Survey- Energy Efficient Techniques in WBANA Survey- Energy Efficient Techniques in WBAN
A Survey- Energy Efficient Techniques in WBAN
IRJET Journal
 
FUNDAMENTALS OF WSN
FUNDAMENTALS OF WSNFUNDAMENTALS OF WSN
FUNDAMENTALS OF WSN
Subramanyam Arige
 
Development of a Wavelet-ANFIS based fault location system for underground po...
Development of a Wavelet-ANFIS based fault location system for underground po...Development of a Wavelet-ANFIS based fault location system for underground po...
Development of a Wavelet-ANFIS based fault location system for underground po...
IOSRJEEE
 
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
sarasijdas
 
T0440899104
T0440899104T0440899104
T0440899104
IJERA Editor
 
A transient current based micro grid connected power system protection scheme...
A transient current based micro grid connected power system protection scheme...A transient current based micro grid connected power system protection scheme...
A transient current based micro grid connected power system protection scheme...
IJECEIAES
 
Opportunistic routing algorithm for relay node selection in wireless sensor n...
Opportunistic routing algorithm for relay node selection in wireless sensor n...Opportunistic routing algorithm for relay node selection in wireless sensor n...
Opportunistic routing algorithm for relay node selection in wireless sensor n...
LogicMindtech Nologies
 
40220140507004
4022014050700440220140507004
40220140507004
IAEME Publication
 
Artificial Neural Network Based Fault Classifier for Transmission Line Protec...
Artificial Neural Network Based Fault Classifier for Transmission Line Protec...Artificial Neural Network Based Fault Classifier for Transmission Line Protec...
Artificial Neural Network Based Fault Classifier for Transmission Line Protec...
IJERD Editor
 
fault
faultfault
fault
Ashu Kumar
 
K016136062
K016136062K016136062
K016136062
IOSR Journals
 
Automatic Fault Detection System with IOT Based
Automatic Fault Detection System with IOT BasedAutomatic Fault Detection System with IOT Based
Automatic Fault Detection System with IOT Based
YogeshIJTSRD
 

What's hot (16)

Fault detection using iot PRESENTATION
Fault detection using iot PRESENTATIONFault detection using iot PRESENTATION
Fault detection using iot PRESENTATION
 
Backpropagation Neural Network Modeling for Fault Location in Transmission Li...
Backpropagation Neural Network Modeling for Fault Location in Transmission Li...Backpropagation Neural Network Modeling for Fault Location in Transmission Li...
Backpropagation Neural Network Modeling for Fault Location in Transmission Li...
 
Fault Location Of Transmission Line
Fault Location Of Transmission LineFault Location Of Transmission Line
Fault Location Of Transmission Line
 
Power_and_Data_08-16-12_Final_Color
Power_and_Data_08-16-12_Final_ColorPower_and_Data_08-16-12_Final_Color
Power_and_Data_08-16-12_Final_Color
 
A Survey- Energy Efficient Techniques in WBAN
A Survey- Energy Efficient Techniques in WBANA Survey- Energy Efficient Techniques in WBAN
A Survey- Energy Efficient Techniques in WBAN
 
FUNDAMENTALS OF WSN
FUNDAMENTALS OF WSNFUNDAMENTALS OF WSN
FUNDAMENTALS OF WSN
 
Development of a Wavelet-ANFIS based fault location system for underground po...
Development of a Wavelet-ANFIS based fault location system for underground po...Development of a Wavelet-ANFIS based fault location system for underground po...
Development of a Wavelet-ANFIS based fault location system for underground po...
 
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
Brief Literature Review on Phasor Based Transmission Line Fault Location Algo...
 
T0440899104
T0440899104T0440899104
T0440899104
 
A transient current based micro grid connected power system protection scheme...
A transient current based micro grid connected power system protection scheme...A transient current based micro grid connected power system protection scheme...
A transient current based micro grid connected power system protection scheme...
 
Opportunistic routing algorithm for relay node selection in wireless sensor n...
Opportunistic routing algorithm for relay node selection in wireless sensor n...Opportunistic routing algorithm for relay node selection in wireless sensor n...
Opportunistic routing algorithm for relay node selection in wireless sensor n...
 
40220140507004
4022014050700440220140507004
40220140507004
 
Artificial Neural Network Based Fault Classifier for Transmission Line Protec...
Artificial Neural Network Based Fault Classifier for Transmission Line Protec...Artificial Neural Network Based Fault Classifier for Transmission Line Protec...
Artificial Neural Network Based Fault Classifier for Transmission Line Protec...
 
fault
faultfault
fault
 
K016136062
K016136062K016136062
K016136062
 
Automatic Fault Detection System with IOT Based
Automatic Fault Detection System with IOT BasedAutomatic Fault Detection System with IOT Based
Automatic Fault Detection System with IOT Based
 

Viewers also liked

Fault detection and diagnosis of high speed switching devices in power inverter
Fault detection and diagnosis of high speed switching devices in power inverterFault detection and diagnosis of high speed switching devices in power inverter
Fault detection and diagnosis of high speed switching devices in power inverter
eSAT Journals
 
S01043114121
S01043114121S01043114121
S01043114121
IOSR Journals
 
L1303077783
L1303077783L1303077783
L1303077783
IOSR Journals
 
H1802025259
H1802025259H1802025259
H1802025259
IOSR Journals
 
C012421626
C012421626C012421626
C012421626
IOSR Journals
 
F017633538
F017633538F017633538
F017633538
IOSR Journals
 
H010136066
H010136066H010136066
H010136066
IOSR Journals
 
H0213337
H0213337H0213337
H0213337
IOSR Journals
 
A010320106
A010320106A010320106
A010320106
IOSR Journals
 
K0815660
K0815660K0815660
K0815660
IOSR Journals
 
B012540914
B012540914B012540914
B012540914
IOSR Journals
 
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
89   jan-roger linna - 7032576 - capillary heating control and fault detectio...89   jan-roger linna - 7032576 - capillary heating control and fault detectio...
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
Mello_Patent_Registry
 
Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...
Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...
Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...
Atul Sharma
 
B0730406
B0730406B0730406
B0730406
IOSR Journals
 
H017514655
H017514655H017514655
H017514655
IOSR Journals
 
G017633943
G017633943G017633943
G017633943
IOSR Journals
 
F010244149
F010244149F010244149
F010244149
IOSR Journals
 
B0740410
B0740410B0740410
B0740410
IOSR Journals
 
C1103041623
C1103041623C1103041623
C1103041623
IOSR Journals
 
C017130912
C017130912C017130912
C017130912
IOSR Journals
 

Viewers also liked (20)

Fault detection and diagnosis of high speed switching devices in power inverter
Fault detection and diagnosis of high speed switching devices in power inverterFault detection and diagnosis of high speed switching devices in power inverter
Fault detection and diagnosis of high speed switching devices in power inverter
 
S01043114121
S01043114121S01043114121
S01043114121
 
L1303077783
L1303077783L1303077783
L1303077783
 
H1802025259
H1802025259H1802025259
H1802025259
 
C012421626
C012421626C012421626
C012421626
 
F017633538
F017633538F017633538
F017633538
 
H010136066
H010136066H010136066
H010136066
 
H0213337
H0213337H0213337
H0213337
 
A010320106
A010320106A010320106
A010320106
 
K0815660
K0815660K0815660
K0815660
 
B012540914
B012540914B012540914
B012540914
 
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
89   jan-roger linna - 7032576 - capillary heating control and fault detectio...89   jan-roger linna - 7032576 - capillary heating control and fault detectio...
89 jan-roger linna - 7032576 - capillary heating control and fault detectio...
 
Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...
Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...
Power-Quality-Improvement-Using-PI-and-Fuzzy-Logic-Controllers-Based-Shunt-Ac...
 
B0730406
B0730406B0730406
B0730406
 
H017514655
H017514655H017514655
H017514655
 
G017633943
G017633943G017633943
G017633943
 
F010244149
F010244149F010244149
F010244149
 
B0740410
B0740410B0740410
B0740410
 
C1103041623
C1103041623C1103041623
C1103041623
 
C017130912
C017130912C017130912
C017130912
 

Similar to Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network

Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
ijsc
 
Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...
ijsc
 
Distance protection scheme for transmission line using back propagation neura...
Distance protection scheme for transmission line using back propagation neura...Distance protection scheme for transmission line using back propagation neura...
Distance protection scheme for transmission line using back propagation neura...
eSAT Publishing House
 
25 9757 transmission paper id 0025 (ed l)
25 9757 transmission paper id 0025 (ed l)25 9757 transmission paper id 0025 (ed l)
25 9757 transmission paper id 0025 (ed l)
IAESIJEECS
 
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINEFUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
Journal For Research
 
38
3838
Azizan_2020_IOP_Conf._Ser.__Mater._Sci._Eng._767_012004.pdf
Azizan_2020_IOP_Conf._Ser.__Mater._Sci._Eng._767_012004.pdfAzizan_2020_IOP_Conf._Ser.__Mater._Sci._Eng._767_012004.pdf
Azizan_2020_IOP_Conf._Ser.__Mater._Sci._Eng._767_012004.pdf
SultanAlSaiari1
 
A Novel Back Up Wide Area Protection Technique for Power Transmission Grids U...
A Novel Back Up Wide Area Protection Technique for Power Transmission Grids U...A Novel Back Up Wide Area Protection Technique for Power Transmission Grids U...
A Novel Back Up Wide Area Protection Technique for Power Transmission Grids U...
Power System Operation
 
Transmission line short circuit analysis by impedance matrix method
Transmission line short circuit analysis by impedance matrix method Transmission line short circuit analysis by impedance matrix method
Transmission line short circuit analysis by impedance matrix method
IJECEIAES
 
Differential equation fault location algorithm with harmonic effects in power...
Differential equation fault location algorithm with harmonic effects in power...Differential equation fault location algorithm with harmonic effects in power...
Differential equation fault location algorithm with harmonic effects in power...
TELKOMNIKA JOURNAL
 
Lp3619931999
Lp3619931999Lp3619931999
Lp3619931999
IJERA Editor
 
Z35149151
Z35149151Z35149151
Z35149151
IJERA Editor
 
Enhanced two-terminal impedance-based fault location using sequence values
Enhanced two-terminal impedance-based fault location using  sequence valuesEnhanced two-terminal impedance-based fault location using  sequence values
Enhanced two-terminal impedance-based fault location using sequence values
IJECEIAES
 
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
Journal For Research
 
Paper Publication 163-143696093856-61
Paper Publication 163-143696093856-61Paper Publication 163-143696093856-61
Paper Publication 163-143696093856-61
sayaji nagargoje
 
Protection Technique for Complex Distribution Smart Grid Using Wireless Token...
Protection Technique for Complex Distribution Smart Grid Using Wireless Token...Protection Technique for Complex Distribution Smart Grid Using Wireless Token...
Protection Technique for Complex Distribution Smart Grid Using Wireless Token...
Power System Operation
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
ijceronline
 
Software Based Transmission Line Fault Analysis
Software Based Transmission Line Fault AnalysisSoftware Based Transmission Line Fault Analysis
Double Circuit Transmission Line Protection using Line Trap & Artificial Neur...
Double Circuit Transmission Line Protection using Line Trap & Artificial Neur...Double Circuit Transmission Line Protection using Line Trap & Artificial Neur...
Double Circuit Transmission Line Protection using Line Trap & Artificial Neur...
IRJET Journal
 
IRJET- Overhead Line Protection with Automatic Switch by using PLC Automation
IRJET- Overhead Line Protection with Automatic Switch by using PLC AutomationIRJET- Overhead Line Protection with Automatic Switch by using PLC Automation
IRJET- Overhead Line Protection with Automatic Switch by using PLC Automation
IRJET Journal
 

Similar to Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network (20)

Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
Fault Diagnosis of a High Voltage Transmission Line Using Waveform Matching A...
 
Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...
 
Distance protection scheme for transmission line using back propagation neura...
Distance protection scheme for transmission line using back propagation neura...Distance protection scheme for transmission line using back propagation neura...
Distance protection scheme for transmission line using back propagation neura...
 
25 9757 transmission paper id 0025 (ed l)
25 9757 transmission paper id 0025 (ed l)25 9757 transmission paper id 0025 (ed l)
25 9757 transmission paper id 0025 (ed l)
 
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINEFUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
FUZZY LOGIC APPROACH FOR FAULT DIAGNOSIS OF THREE PHASE TRANSMISSION LINE
 
38
3838
38
 
Azizan_2020_IOP_Conf._Ser.__Mater._Sci._Eng._767_012004.pdf
Azizan_2020_IOP_Conf._Ser.__Mater._Sci._Eng._767_012004.pdfAzizan_2020_IOP_Conf._Ser.__Mater._Sci._Eng._767_012004.pdf
Azizan_2020_IOP_Conf._Ser.__Mater._Sci._Eng._767_012004.pdf
 
A Novel Back Up Wide Area Protection Technique for Power Transmission Grids U...
A Novel Back Up Wide Area Protection Technique for Power Transmission Grids U...A Novel Back Up Wide Area Protection Technique for Power Transmission Grids U...
A Novel Back Up Wide Area Protection Technique for Power Transmission Grids U...
 
Transmission line short circuit analysis by impedance matrix method
Transmission line short circuit analysis by impedance matrix method Transmission line short circuit analysis by impedance matrix method
Transmission line short circuit analysis by impedance matrix method
 
Differential equation fault location algorithm with harmonic effects in power...
Differential equation fault location algorithm with harmonic effects in power...Differential equation fault location algorithm with harmonic effects in power...
Differential equation fault location algorithm with harmonic effects in power...
 
Lp3619931999
Lp3619931999Lp3619931999
Lp3619931999
 
Z35149151
Z35149151Z35149151
Z35149151
 
Enhanced two-terminal impedance-based fault location using sequence values
Enhanced two-terminal impedance-based fault location using  sequence valuesEnhanced two-terminal impedance-based fault location using  sequence values
Enhanced two-terminal impedance-based fault location using sequence values
 
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
DETECTION OF FAULT LOCATION IN TRANSMISSION LINE USING INTERNET OF THINGS (IOT)
 
Paper Publication 163-143696093856-61
Paper Publication 163-143696093856-61Paper Publication 163-143696093856-61
Paper Publication 163-143696093856-61
 
Protection Technique for Complex Distribution Smart Grid Using Wireless Token...
Protection Technique for Complex Distribution Smart Grid Using Wireless Token...Protection Technique for Complex Distribution Smart Grid Using Wireless Token...
Protection Technique for Complex Distribution Smart Grid Using Wireless Token...
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Software Based Transmission Line Fault Analysis
Software Based Transmission Line Fault AnalysisSoftware Based Transmission Line Fault Analysis
Software Based Transmission Line Fault Analysis
 
Double Circuit Transmission Line Protection using Line Trap & Artificial Neur...
Double Circuit Transmission Line Protection using Line Trap & Artificial Neur...Double Circuit Transmission Line Protection using Line Trap & Artificial Neur...
Double Circuit Transmission Line Protection using Line Trap & Artificial Neur...
 
IRJET- Overhead Line Protection with Automatic Switch by using PLC Automation
IRJET- Overhead Line Protection with Automatic Switch by using PLC AutomationIRJET- Overhead Line Protection with Automatic Switch by using PLC Automation
IRJET- Overhead Line Protection with Automatic Switch by using PLC Automation
 

More from IOSR Journals

A011140104
A011140104A011140104
A011140104
IOSR Journals
 
M0111397100
M0111397100M0111397100
M0111397100
IOSR Journals
 
L011138596
L011138596L011138596
L011138596
IOSR Journals
 
K011138084
K011138084K011138084
K011138084
IOSR Journals
 
J011137479
J011137479J011137479
J011137479
IOSR Journals
 
I011136673
I011136673I011136673
I011136673
IOSR Journals
 
G011134454
G011134454G011134454
G011134454
IOSR Journals
 
H011135565
H011135565H011135565
H011135565
IOSR Journals
 
F011134043
F011134043F011134043
F011134043
IOSR Journals
 
E011133639
E011133639E011133639
E011133639
IOSR Journals
 
D011132635
D011132635D011132635
D011132635
IOSR Journals
 
C011131925
C011131925C011131925
C011131925
IOSR Journals
 
B011130918
B011130918B011130918
B011130918
IOSR Journals
 
A011130108
A011130108A011130108
A011130108
IOSR Journals
 
I011125160
I011125160I011125160
I011125160
IOSR Journals
 
H011124050
H011124050H011124050
H011124050
IOSR Journals
 
G011123539
G011123539G011123539
G011123539
IOSR Journals
 
F011123134
F011123134F011123134
F011123134
IOSR Journals
 
E011122530
E011122530E011122530
E011122530
IOSR Journals
 
D011121524
D011121524D011121524
D011121524
IOSR Journals
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

Building Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and MilvusBuilding Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and Milvus
Zilliz
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
Jakub Marek
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Safe Software
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
saastr
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
saastr
 
HCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAUHCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAU
panagenda
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
shyamraj55
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
Zilliz
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
Jason Packer
 
AWS Cloud Cost Optimization Presentation.pptx
AWS Cloud Cost Optimization Presentation.pptxAWS Cloud Cost Optimization Presentation.pptx
AWS Cloud Cost Optimization Presentation.pptx
HarisZaheer8
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
kumardaparthi1024
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc
 
System Design Case Study: Building a Scalable E-Commerce Platform - Hiike
System Design Case Study: Building a Scalable E-Commerce Platform - HiikeSystem Design Case Study: Building a Scalable E-Commerce Platform - Hiike
System Design Case Study: Building a Scalable E-Commerce Platform - Hiike
Hiike
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
Chart Kalyan
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
Pixlogix Infotech
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
Tatiana Kojar
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
MichaelKnudsen27
 

Recently uploaded (20)

Building Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and MilvusBuilding Production Ready Search Pipelines with Spark and Milvus
Building Production Ready Search Pipelines with Spark and Milvus
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
 
HCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAUHCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAU
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
 
AWS Cloud Cost Optimization Presentation.pptx
AWS Cloud Cost Optimization Presentation.pptxAWS Cloud Cost Optimization Presentation.pptx
AWS Cloud Cost Optimization Presentation.pptx
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
 
System Design Case Study: Building a Scalable E-Commerce Platform - Hiike
System Design Case Study: Building a Scalable E-Commerce Platform - HiikeSystem Design Case Study: Building a Scalable E-Commerce Platform - Hiike
System Design Case Study: Building a Scalable E-Commerce Platform - Hiike
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
 

Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network

  • 1. IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 1, Ver. I (Jan. 2014), PP 23-31 www.iosrjournals.org www.iosrjournals.org 23 | Page Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network Seema Singh1 , Mamatha K R2 ,Thejaswini S3 1 (Associate Professor, Dept. of Electronics & Comm. Engg., BMS Institute of Technology, Bangalore, India) 2 (Assistant Professor, Dept. of Electronics & Comm. Engg., BMS Institute of Technology, Bangalore, India) 3 (Assistant Professor, Dept. of Telecommunication Engg., BMS Institute of Technology, Bangalore, India) Abstract: Transmission and distribution lines are vital links between generating units and consumers. They are exposed to atmosphere, hence chances of occurrence of fault in transmission line is very high, which has to be immediately taken care of in order to minimize damage caused by it. This paper focuses on detecting the faults on electric power transmission lines using artificial neural networks. A feed forward neural network is employed, which is trained with back propagation algorithm. Analysis on neural networks with varying number of hidden layers and neurons per hidden layer has been provided to validate the choice of the neural networks in each step. The developed neural network is capable of detecting single line to ground and double line to ground for all the three phases. Simulation is done using MATLAB Simulink to demonstrate that artificial neural network based method are efficient in detecting faults on transmission lines and achieve satisfactory performances. A 300km, 25kv transmission line is used to validate the proposed fault detection system. Hardware implementation of neural network is done on TMS320C6713. Keywords: Transmission Line, Asymmetric fault detection, Artificial neural network (ANN), Back Propagation algorithm, DSP processor TMS320C6713, Code Composer Studio, MATLAB/Simulink I. Introduction The advent of large generating stations and highly interconnected transmission lines makes early fault detection and rapid equipment isolation imperative to maintain system stability. Transmission line is used to transfer power or voltage to long distance destination. Power or voltage generated from source is supplied to the load through the Transmission Line. While transmitting, Transmission Line encounters various faults due to momentary tree contact, a bird or an animal contact or due to other natural reasons such as thunderstorms or lightning. Earlier systems use conventional method for the fault detection which results in the late detection and inaccurate results [1]-[5]. Conventional algorithms are based on deterministic computations on a well-defined model for transmission line protection. Bergon model was extensively used to model transmission line. Conventional distance relays consider power swing as a fault and tripping because of such malfunctioning would lead to serious consequences for power system stability. To improve the performance, Neural Network architecture is used which results in the earlier fault detection. From quite a few years, intelligent based methods are being used in the process of fault detection. Three major artificial intelligence based techniques that have been widely used in the power and automation industry are:  Expert System Techniques  Artificial Neural Networks  Fuzzy Logic Systems Ref [6] used an adaptive neuro-fuzzy approach to develop an inference system for transmission line fault classification and location. It incorporates the effects of power swings. Fault location is done using wavelet-neuro-fuzzy combined approach. The wavelet transform captures the dynamic characteristics of fault signals using wavelet multi-resolution analysis (MRA) coefficients. The fuzzy inference system (FIS) and the adaptive-neuro-fuzzy inference system (ANFIS) are both used to extract important features from wavelet MRA coefficients and thereby to reach conclusions regarding fault location. However, combination of different approaches makes the system complicated. This work uses ANN based approach which uses the fluctuations in current level as the key feature to detect faults. Neural network is capable of working with real time data and responses to the changes in surrounding environment immediately and this makes the system more flexible for the fault detection. ANN based methods do not require a knowledge base for the detection of faults unlike the other artificial intelligence based methods. The prime motive behind this work is that a very accurate fault detector could make if employed in a power transmission and distribution system, in terms of the amount of money and
  • 2. Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network www.iosrjournals.org 24 | Page time that can be saved. The main goal of Fault Detection is to detect a fault in the power system with the highest practically achievable accuracy. When the physical dimensions and the size of the transmission lines are considered, the accuracy with which the designed fault detector detects faults in the power system becomes very important. Special features of ANN for fault tolerant systems:  ANN is made of massive interconnection of elementary processing units, information processing can be carried out in a parallel distributed manner. This makes real time processing of large volumes of data more readily realizable.  ANN can model any degree of nonlinearity and thus are useful in solving these problems which are inherently nonlinear.  ANN approach is non-algorithmic and requires no prior knowledge functions relating the problem variables. Also being non algorithmic, they do not make any approximations unlike as the case with most of the mathematical models.  ANN is capable of handling situations of incomplete information, corrupt data and thus is highly fault tolerant. As power system grow both in size and complexity, it becomes necessary to identify different faults faster and more accurately using more powerful algorithms. Back propagation algorithm of neural network is used for the fault diagnosis system. Different fault like single line to ground fault and double line to ground faults are detected using ANN. Fault detector module of a transmission line protective scheme can be used to start other relaying modules. The basic block diagram of the work is shown in Figure 1. The Simulink model of 300 km transmission line with sampling time 0.02s is used for simulation. Fig 1: Block diagram for fault identification in transmission line using ANN Simulink model of transmission line is used for validation of neural network based fault detection system. Neural networks have an inherent parallel architecture with multiple input and output nodes, it can be implemented to high speed parallel hardware with multivariable input and output. Neural network model in this paper is implemented using DSP processor TMS320C6713. II. Transmission line and asymmetric fault Transmission lines are used for long distance power supply. Transmission lines, when interconnected with each other, become transmission networks. High-voltage overhead conductors are not covered by insulation. The conductor material is nearly always an aluminum alloy, made into several strands and possibly reinforced with steel strands. Copper was sometimes used for overhead transmission but aluminum is lighter, yields only marginally reduced performance, and costs much less. Overhead conductors are a commodity supplied by several companies worldwide. Improved conductor material and shapes are regularly used to allow increased capacity and modernize transmission circuits. High-voltage direct current (HVDC) is used to transmit large amounts of power over long distances or for interconnections between asynchronous grids. The Transmission line model, three phase source and three phase load is simulated using MATLAB/Simulink powergui. Sampling is done to reduce complexity and increase simulation speed. In an electric power system, a fault is any abnormal electric current. For example, a short circuit is a fault in which current bypasses the normal load. An open-circuit fault occurs if a circuit is interrupted by some failure. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between
  • 3. Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network www.iosrjournals.org 25 | Page phases. In a "ground fault" or "earth fault", charge flows into the earth. The prospective short circuit current of a fault can be calculated for power systems. In power systems, protective devices detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure. An asymmetric or unbalanced fault does not affect each of the three phases equally. There are three common types of asymmetric faults, namely line to line, line to ground and double line to ground. Line-to-line fault is a short circuit between lines, caused by ionization of air, or when lines come into physical contact, for example due to a broken insulator. Line-to-ground - is a short circuit between one line and ground, very often caused by physical contact, for example due to lightning or other storm damage. Double line-to-ground fault is where two lines come into contact with the ground (and each other), also commonly due to storm damage. Single line to ground and double line to ground fault is simulated using three phase fault block. It is capable of introducing short circuit fault at the different interval of time. It can be visualized using the waveform of the input and output current and voltages through scope. III. ANN based fault detection system Artificial intelligence, cognitive modeling, and neural networks are information processing paradigms inspired by the way biological neural systems process data. Artificial intelligence and cognitive modeling try to simulate some properties of biological neural networks. Artificial neural networks have been applied successfully to speech recognition, image analysis and adaptive control, in order to construct software agents (in computer and video games) or autonomous robots and specially in fault detection system [16], [17]. Neural network theory has served both to better identify how the neurons in the brain function and to provide the basis for efforts to create artificial intelligence. Fig 2 shows a single neuron. The following diagram shows a simple neuron with: Neuron consists of three basic components, namely weights, thresholds/biases and a single activation function. Values w1, w2

wn are weights to determine the strength of input vector X = [x1, x2,
.., xn]T . Each input is multiplied with its associated weight of the neuron XT.W. I= XT .W = x1w1 + x2w2 + 

 + xnwn = ∑ Threshold, φ is the neuron‟s internal offset. The neuron fire or produces positive output only if the total input I is above the threshold value. It affects the activation of the node output y as Y = f(I) = f {∑ } To generate the final output Y, the sum is passed on to a non- linear filter f called activation function or transfer function, which releases the output Y. There are various activation functions which are chosen depending on the type of problem to be solved by the network. The most common activation function includes linear function, tangent hyperbolic function, threshold function and sigmoidal function. Most popular sigmoidal function follows the transition equation shown below. Y = f(I) = , where α is the slope of sigmoidal function followed. Fig. 2: A single neuron and sigmoidal activation function The capability of the neural network increases as number of neurons increases. This capability multiplies as number of layers in neural network structure increases. Figure 3 shows multilayer neural network with one hidden layer. The weights connecting neurons are varied continuously while training the neural network. In NN applications, the challenge is to find the right values for the weights and the threshold. Various algorithms are developed in neural network field depending on different problems and applications where it has been used. Back Propagation, Radial Basis Functions, Multi-Layer Perceptron algorithm, Adaptive Resonance Theory (ART), Self Organizing Maps (SOM) and Counter Propagation Networks (CPN) are few algorithms of neural networks. Various neural network architecture, training algorithms and transfer functions were studied to decide upon the final neural network model for fault detection system. Back propagation algorithm, a supervised learning is used as the network will be trained using the data created from the simulation model of transmission.
  • 4. Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network www.iosrjournals.org 26 | Page Number of hidden layers and number of neurons in each layer can be varied depending on the complexity of the problem to be solved. The training data was created using Simulink model of 300 km long transmission line for various fault cases. This training data consists of various vectors of the output and input current and voltage. Using these values and the created target vector, neural network is trained to detect the fault at the different instants of time. Training is done using back propagation training algorithm using “traingd” function of neural network toolbox of MATLAB. The trained/updated neural network model for fault detection is converted to Simulink block using neural network toolbox. This is done to make it usable with Simulink model of transmission line. 3.1 Training of the Neural Network The neural network architecture with three hidden layers was fixed for the simulation purpose. Hidden layers consist of 7-10-3 neurons as shown in Fig. 3. Input layer consists of three neurons which takes the current of three phases of the transmission line. Output layer consists of one neuron which indicates if fault is there. A threshold of 0.9 is fixed based on simulation in order to avoid false alarms. As shown in figure, the training algorithm used is gradient descent variant of back propagation algorithm. Figure shows the number of iteration, time taken to train the Neural Network. It also shows the different performance plots of the Neural Network after training of the network. The different training parameter encountered during the training process is gradient, mean square error and validation check. For better training purpose, mean square error value should decrease when the training process continues; validation check gives us maximum number of fails in the Neural Network training process. These training parameter plots are shown in Fig. 4. 3.3 Performance Plot As discussed earlier in this section, the training data is created using simulation model of transmission lines. Single line to ground and double line to ground fault was introduced in different phases at different time instants. This training data, when fed for training the neural network, is divided into three parts. The data samples are divided into train, test and validation sets randomly by the program, in the ratio 0.7:0.15:0.15. Fig 3: Neural network training in Simulink tool Fig 4: Training parameter plots
  • 5. Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network www.iosrjournals.org 27 | Page The figure 5 shows the performance of Neural Network when Neural Network is trained with particular input vectors and target vectors. The plot shows that the variation of different parameters throughout the training process. After training is completed satisfactorily, the neural network is tested with the available sample data to evaluate the performance of the updated trained neural network. If the performance is not up to the expectations, some variations may me experimented with the neural network structure by varying number of hidden layers of number of neurons in each layer. Different training algorithm may also be experimented with various activation functions. Fig 5: Performance plot Once the neural network with satisfactory performance is developed, its Simulink model is developed using „gensim‟ function so that it can be used with other block in the simulation model. Neural network simulation model is shown in Fig. 6. The complete simulation set up is shown in Fig. 7. Fig 6: Simulink model of developed neural network IV. Simulation Set-up and Hardware Implementation As discussed in previous section, transmission line with three phase source and load, three phase fault and neural network based fault detection simulation models are developed to test the capability of the proposed method. Transmission line model is generated with discrete state and pi section line. Using this model samples are reduced from 1000 samples to 50 samples, which is feasible for real time application and easy for implementation. Sampling time of this model is Ts= 0.02ms and simulation is done for 1 sec. With these specifications, the current and voltage vectors consist of 51 samples. This simulation model of transmission line with various fault cases is used to create training data which was used to train neural network. A feed forward neural network with 3 hidden layers is used for fault detection purpose. The number of neurons in all hidden layer can be varied to get the optimum performance. First hidden layer is fixed with 7 neurons, second with 10 neurons and last hidden layer with 3 neurons as shown in Fig. 3. Output layer has one neuron, output indicates whether fault has occurred or not at different instants of time. This neural network structure is trained using back propagation training algorithm for the training data of transmission line model. This trained/updated neural network is capable of detecting faults. Detection of fault is successfully done for single line to ground and double line to line ground for all the three phases. The fault detection system successfully detects single line and double line to ground fault in transmission line. Hardware Implementation: Fault detection system using neural network is implemented on DSP processor. Neural network model parameters are studied and programmed using „C‟ language and the same is implemented in TMS320C6713 using code composer studio. DSP processor is used to verify the result for timing constraints. Implementation of Neural Network on DSP Processor TMS320C6713 is difficult, because of the size of the generated Neural Network. To overcome the difficulties faced while doing implementation, Neural Network was modified as mentioned below:
  • 6. Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network www.iosrjournals.org 28 | Page  Changing the input from floating point to the binary form. For eg. Input in floating point =0.04 is changed to the input in binary form= 0 and Input in floating point = 0.92 is changed to the input in binary form=1.As detection of line to ground fault is short circuit fault, input can be transformed to binary values.  The size of the neural network is reduced, by changing the number of hidden layer to 1 and number of neurons in the hidden layer to 4. This neural network could give satisfactory results for the transformed binary values.  Implementation of this neural network with one hidden layer of 4 neurons is preferred for the hardware, which contains 16 weight values and 5 biases. Totally 21 values are required, which is easier for hardware implementation and able to detect faults successfully. Fig 7: Simulink model of Intelligent Fault identification system in transmission line model V. Discussion Of The Results In this work, an attempt was made to develop an intelligent fault identification system for transmission lines using artificial neural network. Three phase current and voltages are in analog form and the waveform in its analog form is shown in Fig. 8. It shows the continuous signals for all the three phases of the voltage before sampling. However, to design a fast and accurate fault detection system, it is important to sample it. The sampled waveform at 0.2 s is shown in Fig. 9 for 1 s. This figure shows the discrete signals for all the three phases of the voltages after sampling. Fig 8: Waveform before sampling Fig 9 : Waveform after sampling Various cases of single line to ground and double line to ground fault is tested for the developed fault detection system. Test cases are listed in the table 1 and corresponding plots are shown in Fig. 10 to 21. Each figure has four sub plots. First three sub plots show current levels at phase A, B and C. Fourth plot show neural network output, which indicates the occurrence of fault by switching to a high level. Fault in one phase disturbs other phase current as shown in all the result plots. Fig.22 shows fault detection from neural network implemented in DSP Processor TMS320C6713.A slight delay is seen in the output when it is switching to „1‟ to show occurrence of fault. This happens due to hardware delay.
  • 7. Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network www.iosrjournals.org 29 | Page Fig 10: Fault detection for Single line to ground Fig 11: Fault detection for Single line to ground fault in phase A at 4s fault in phase B at 4s Fig 12: Fault detection for Single line to Fig 13: Fault detection for double line to ground ground fault in phase C at 4s (Phase A and B) Fault at 4s Fig 14: Fault detection for double line to ground (Phase B and C) Fault at 4s Fig 15: Fault detection for double line to ground Fig 16: Fault detection for Single line to ground Fault (Phase A and C) Fault at 4s in Phase A at 6s
  • 8. Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network www.iosrjournals.org 30 | Page Fig 17: Fault detection for Single line to ground Fig 18: Fault detection for Single line to ground Fault in Phase B at 6 s Fault in Phase C at 6s Fig 19: Fault detection for double line to ground Fig 20: Fault detection for double line to ground (Phase A and B) Fault at 6s (Phase B and C) Fault at 6s Fig 21: Fault detection for double line to ground Fig 22: Neural network output from DSP Processor (Phase A and C) Fault at 6s Neural network is generalized and thus capable of finding any type of fault in the transmission line. The trained Neural Network can detect Single line to ground and Double line to ground fault. Effects of the different system parameters and conditions are studied. Extensive studies indicate that the network is able to detect faults earlier and correctly and its performance is not affected by the changing network conditions. VI. CONCLUSION The proposed method uses an artificial neural network-based scheme for fast and reliable fault detection. Various Asymmetric fault (Single line to ground and double line to ground fault) are simulated and an ANN based algorithm is used for detection of these faults. Performance of the proposed scheme is evaluated using various fault types and encouraging results are obtained.
  • 9. Intelligent Fault Identification System for Transmission Lines Using Artificial Neural Network www.iosrjournals.org 31 | Page There are many applications for which the Digital Signal Processor becomes an ideal choice as they provide the best possible combination of performance, power and cost. Most of the DSP applications can be simplified into multiplications and additions, so the MAC (Multiply- Accumulate) formed a main functional unit in early DSP processors. Neural network is a mathematical structure with combination of parallel MAC operation in its each layer with different transfer functions like sigmoid and linear functions. Thus neural network can be efficiently implemented on DSP processor using CC Studio as done in this work. Thus neural network based analysis provides the solution much faster than the conventional methods without degrading the accuracy. Further work can be carried out by developing detection system to detect other asymmetric and symmetric fault. Hardware implementation can be extended to more complex neural networks with higher version of DSPs. FPGA may also be another alternative for hardware implementation with a comparative analysis of the two possibilities of hardware. Acknowledgements The authors thank the students, Mamta Devi, Mohanakalyani B N, Pratibha C and Nagashree K Rao, who played an important role in carrying out this work. The authors are also thankful to KSCST, Bangalore for selecting and sponsoring this work. REFERENCES [1] Das R, Novosel D, “Review of fault location techniques for transmission and sub – transmission lines”, proceedings of 54th Annual Georgia Tech Protective RelayingConference, 2000. [2] IEEE guide for determining fault location on AC transmission and distribution lines.IEEE Power Engineering Society Publ., New York, IEEE Std C37.114, 2005. [3] Saha MM, Izykowski J, Rosolowski E, “Fault Location on Power Networks”, Springer publications, 2010. [4] Magnago FH, Abur A, “Advanced techniques for transmission and distribution system fault location”, Proceedings of CIGRE – Study committee 34 Colloquium and Meeting, Florence, 1999, paper 215. [5] Tang Y, Wang HF, Aggarwal R K, “Fault indicators in transmission and distribution systems”, Proceedings of International conference on Electric Utility Deregulation and Restructuring and Power Technologies – DRPT, 2000, pp. 238-243. [6] Reddy MJ, Mohanta DK, “Adaptive-neuro-fuzzy inference system approach for transmission line fault classification and location incorporating effects of power swings”, Proceedings of IET Generation, Transmission and Distribution, 2008, pp. 235 – 244. [7] S. Haykin, Neural Networks, IEEE Press, New York, 1994. [8] M. T. Hagan and M. B. Menhaj, “Training Feedforward Networks with the Marquardt Algorithm”, IEEE Trans. on Neural Networks, Vol. 5, No. 6, 1994, pp. 989-993. [9] FraukeGĂŒnther, Stefan Fritsch, “FraukeGĂŒnther and Stefan Fritsch”, Research Article, The R Journal Vol. 2(1), June 2010, pp 30- 38. [10] Thomas Behan, “Investigation of Integer Neural Networks for low cost embedded System”, in Electrical and Computer Engineering Commons”, Jan 2009, pp 5-15. [11] Thomas Behan, Zaiya Liao, Lian Zhao, Chunting Yang, “Accelerating Integer Neural Networks on Low Cost DSPs”, World Academy of Science, Engineering and Technology 2008, pp 439-442. [12] M. Sayaye-Pasand, H. Khorashadi-Zadeh, “Transmission Line Fault Detection and Phase Selection using ANN”, in International Conference on Power System Transients, 2003, pp. 1-6. [13] TaharBouthiba, “Artificial Neural Network-based Fault Location in EHV Transmission Lines”, Electric Power System Research [14] Aizenberg, N. Aizenberg and J. Vandewalle “Multi-valued and universal binary neurons: theory, learning, application””, Kluwer Academic Publishers, Boston/Dordrecht/London, 2000. [15] K. Hornik, M. Stinchcombe, H. White. “Multilayer Feedforward Neural Networks are Universal Approximators”, Neural Networks, vol. 2, 1989, pp. 259-366. [16] Seema Singh and T. V. Rama Murthy, “Neural Network based Sensor Fault Detection for Flight Control Systems”, International Journal of Computer Applications (IJCA), Vol 59, No 13, Dec, 2012, pp 1-8. [17] Seema Singh and T. V. Rama Murthy, “Neural Network based Sensor Fault Accommodation in Flight Control System, Journal of Intelligent systems (JISYS), De Gruyter, Vol 22, Issue 3, September, 2013, pp 317-333