SlideShare a Scribd company logo
Constrained DFT
(CDFT) in CP2K
CP2K UK User Meeting 2018, January 12
Nico Holmberg
Contents
โ€ข Introduction: what is CDFT and why use it?
โ€ข Theoretical basis of CDFT in brief
โ€ข CDFT implementation in CP2K
o Algorithmic framework
o Overview of features using examples
โ€ข Summary
12.1.2018
2
Introduction
โ€ข CDFT allows creation of charge and spin localized states
12.1.2018
3
Introduction
โ€ข CDFT allows creation of charge and spin localized states
โ€ข Why are such states needed?
12.1.2018
3
Introduction
โ€ข CDFT allows creation of charge and spin localized states
โ€ข Why are such states needed?
o Charge transfer phenomena
12.1.2018
3
Introduction
โ€ข CDFT allows creation of charge and spin localized states
โ€ข Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
12.1.2018
3
Introduction
โ€ข CDFT allows creation of charge and spin localized states
โ€ข Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
o Treating self-interaction error due to spurious electron delocalization
12.1.2018
3
Introduction
โ€ข CDFT allows creation of charge and spin localized states
โ€ข Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
o Treating self-interaction error due to spurious electron delocalization
o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian)
12.1.2018
3
Introduction
โ€ข CDFT allows creation of charge and spin localized states
โ€ข Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
o Treating self-interaction error due to spurious electron delocalization
o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian)
o And moreโ€ฆ [1]
1. Kaduk, B.; Kowalczyk, T.; van Voorhis, T., Chem. Rev., 2012, 112, 321โˆ’370.
12.1.2018
3
Introduction
โ€ข CDFT allows creation of charge and spin localized states
โ€ข Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
o Treating self-interaction error due to spurious electron delocalization
o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian)
o And moreโ€ฆ [1]
โ€ข CDFT in CP2K [2] requires version 5.1 or newer
1. Kaduk, B.; Kowalczyk, T.; van Voorhis, T., Chem. Rev., 2012, 112, 321โˆ’370.
2. Holmberg, N.; Laasonen, K., J. Chem. Theory Comput., 2017, 13, 587โˆ’601. 12.1.2018
3
Generation of constrained states
โ€ข Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max
๐€๐€
min
๐œŒ๐œŒ
๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ
๐‘๐‘
๐œ†๐œ†๐‘๐‘ ๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘
10.1.2018
4
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
Generation of constrained states
โ€ข Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max
๐€๐€
min
๐œŒ๐œŒ
๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ
๐‘๐‘
๐œ†๐œ†๐‘๐‘ ๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
Generation of constrained states
โ€ข Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max
๐€๐€
min
๐œŒ๐œŒ
๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ
๐‘๐‘
๐œ†๐œ†๐‘๐‘ ๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘
โ€ข Weight function defines the type of constraint
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
Generation of constrained states
โ€ข Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max
๐€๐€
min
๐œŒ๐œŒ
๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ
๐‘๐‘
๐œ†๐œ†๐‘๐‘ ๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘
โ€ข Weight function defines the type of constraint
o Total density constraint (๐œŒ๐œŒโ†‘
+ ๐œŒ๐œŒโ†“
): ๐‘ค๐‘คโ†‘
= ๐‘ค๐‘คโ†“
= ๐‘ค๐‘ค
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
Generation of constrained states
โ€ข Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max
๐€๐€
min
๐œŒ๐œŒ
๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ
๐‘๐‘
๐œ†๐œ†๐‘๐‘ ๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘
โ€ข Weight function defines the type of constraint
o Total density constraint (๐œŒ๐œŒโ†‘
+ ๐œŒ๐œŒโ†“
): ๐‘ค๐‘คโ†‘
= ๐‘ค๐‘คโ†“
= ๐‘ค๐‘ค
o Magnetization density constraint (๐œŒ๐œŒโ†‘
โˆ’ ๐œŒ๐œŒโ†“
): ๐‘ค๐‘คโ†‘
= โˆ’๐‘ค๐‘คโ†“
= ๐‘ค๐‘ค
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
Generation of constrained states
โ€ข Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max
๐€๐€
min
๐œŒ๐œŒ
๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ
๐‘๐‘
๐œ†๐œ†๐‘๐‘ ๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘
โ€ข Weight function defines the type of constraint
o Total density constraint (๐œŒ๐œŒโ†‘
+ ๐œŒ๐œŒโ†“
): ๐‘ค๐‘คโ†‘
= ๐‘ค๐‘คโ†“
= ๐‘ค๐‘ค
o Magnetization density constraint (๐œŒ๐œŒโ†‘
โˆ’ ๐œŒ๐œŒโ†“
): ๐‘ค๐‘คโ†‘
= โˆ’๐‘ค๐‘คโ†“
= ๐‘ค๐‘ค
o Spin specific constraint (๐œŒ๐œŒโ†‘): ๐‘ค๐‘คโ†‘ = ๐‘ค๐‘ค, ๐‘ค๐‘คโ†“ = 0
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
CDFT weight function
โ€ข Constructed as sum of normalized
atomic weight functions
๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ = ๏ฟฝ๏ฟฝ
๐‘–๐‘–โˆˆ๐’ž๐’ž
๐‘๐‘๐‘–๐‘– ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) ๏ฟฝ
๐‘–๐‘–
๐‘๐‘
๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“)
10.1.2018
5
CDFT weight function
โ€ข Constructed as sum of normalized
atomic weight functions
๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ = ๏ฟฝ๏ฟฝ
๐‘–๐‘–โˆˆ๐’ž๐’ž
๐‘๐‘๐‘–๐‘– ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) ๏ฟฝ
๐‘–๐‘–
๐‘๐‘
๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“)
โ€ข CP2K uses Becke partitioning
o Smoothed Voronoi-like scheme
10.1.2018
5
CDFT weight function
โ€ข Constructed as sum of normalized
atomic weight functions
๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ = ๏ฟฝ๏ฟฝ
๐‘–๐‘–โˆˆ๐’ž๐’ž
๐‘๐‘๐‘–๐‘– ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) ๏ฟฝ
๐‘–๐‘–
๐‘๐‘
๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“)
โ€ข CP2K uses Becke partitioning
o Smoothed Voronoi-like scheme
o Atomic sizes can be taken into account
(recommended)
10.1.2018
5
CDFT weight function
โ€ข Constructed as sum of normalized
atomic weight functions
๐‘ค๐‘ค๐‘๐‘
๐‘–๐‘–
๐’“๐’“ = ๏ฟฝ๏ฟฝ
๐‘–๐‘–โˆˆ๐’ž๐’ž
๐‘๐‘๐‘–๐‘– ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) ๏ฟฝ
๐‘–๐‘–
๐‘๐‘
๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“)
โ€ข CP2K uses Becke partitioning
o Smoothed Voronoi-like scheme
o Atomic sizes can be taken into account
(recommended)
โˆ’ E.g. oxygen has positive charge in water
without adjustment
10.1.2018
5
Optimization of the CDFT energy (1/2)
โ€ข Constraints are satisfied when
๐’„๐’„ ๐€๐€ =
๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค1
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘๐‘1
โ‹ฎ
= ๐ŸŽ๐ŸŽ
10.1.2018
6
Optimization of the CDFT energy (1/2)
โ€ข Constraints are satisfied when
๐’„๐’„ ๐€๐€ =
๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค1
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘๐‘1
โ‹ฎ
= ๐ŸŽ๐ŸŽ
โ€ข In practice, ๐€๐€ iteratively optimized until ๐ฆ๐ฆ๐š๐š๐š๐š ๐’„๐’„ ๐€๐€ โ‰ค ๐๐
10.1.2018
6
Optimization of the CDFT energy (1/2)
โ€ข Constraints are satisfied when
๐’„๐’„ ๐€๐€ =
๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค1
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘๐‘1
โ‹ฎ
= ๐ŸŽ๐ŸŽ
โ€ข In practice, ๐€๐€ iteratively optimized until ๐ฆ๐ฆ๐š๐š๐š๐š ๐’„๐’„ ๐€๐€ โ‰ค ๐๐
o Uses root-finding algorithms, e.g., Newtonโ€™s method
๐€๐€๐‘›๐‘›+1 = ๐€๐€๐‘›๐‘› โˆ’ ๐›ผ๐›ผ๐‘ฑ๐‘ฑ๐‘›๐‘›
โˆ’1
๐’„๐’„ ๐€๐€๐‘›๐‘›
10.1.2018
6
Optimization of the CDFT energy (1/2)
โ€ข Constraints are satisfied when
๐’„๐’„ ๐€๐€ =
๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ ๐‘ค๐‘ค1
๐‘–๐‘–
๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘๐‘1
โ‹ฎ
= ๐ŸŽ๐ŸŽ
โ€ข In practice, ๐€๐€ iteratively optimized until ๐ฆ๐ฆ๐š๐š๐š๐š ๐’„๐’„ ๐€๐€ โ‰ค ๐๐
o Uses root-finding algorithms, e.g., Newtonโ€™s method
๐€๐€๐‘›๐‘›+1 = ๐€๐€๐‘›๐‘› โˆ’ ๐›ผ๐›ผ๐‘ฑ๐‘ฑ๐‘›๐‘›
โˆ’1
๐’„๐’„ ๐€๐€๐‘›๐‘›
10.1.2018
6
Jacobian matrix,
approximated by
finite differences
Step size โˆˆ [โˆ’1, 0)
๐‘ฑ๐‘ฑ๐‘–๐‘–๐‘–๐‘– =
๐œ•๐œ•๐’„๐’„๐‘–๐‘–
๐œ•๐œ•๐€๐€๐‘—๐‘—
โ‰ˆ
๐’„๐’„๐‘–๐‘– ๐€๐€ + ๐œน๐œน๐‘—๐‘— โˆ’ ๐’„๐’„๐‘–๐‘–(๐€๐€)
๐œน๐œน๐‘—๐‘—
Optimization of the CDFT energy (2/2)
10.1.2018
7
Input
Constraints
converged
or max steps
reached?
Yes
New guess
for ๐€๐€
Output
CDFT loop
Store data for
mixed CDFT
Build Jacobian
(optional)
Optimize step
size?
Standard
CP2K SCF
Reduce
step size
No/Done
Yes
Yes
No
Defining constraints (1/2)
10.1.2018
7
&QS
...
&CDFT
TYPE_OF_CONSTRAINT BECKE
&OUTER_SCF ON
TYPE BECKE_CONSTRAINT
EXTRAPOLATION_ORDER 2
MAX_SCF 10
! Convergence threshold
EPS_SCF 1.0E-3
! Optimizer selection: now Newton's method with backtracking line search
OPTIMIZER NEWTON_LS
! Optimizer step size
STEP_SIZE -1.0
! Line search settings
MAX_LS 5
CONTINUE_LS
FACTOR_LS 0.5
! Finite difference settings for calculation of Jacobian matrix
JACOBIAN_STEP 1.0E-2
JACOBIAN_FREQ 1 1
JACOBIAN_TYPE FD1
JACOBIAN_RESTART FALSE
&END OUTER_SCF
&END CDFT Full example files at https://www.cp2k.org/howto:cdft
Defining constraints (2/2)
12.1.2018
8
&QS ! Constraint definitions
... ! Each repetition defines a constraint
&CDFT &ATOM_GROUP
... ATOMS 1
&END CDFT COEFF 1
&BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE
! Take atomic radii into account? &END ATOM_GROUP
ADJUST_SIZE FALSE ! No constraint but calculate charges
ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS
! Compute Becke charges? ATOMS 2
ATOMIC_CHARGES TRUE &END DUMMY_ATOMS
! Constraint strength and target values ! Print info about CDFT calculation
! Give one value per constraint &PROGRAM_RUN_INFO ON
STRENGTH ${BECKE_STR} &EACH
TARGET ${BECKE_TARGET} QS_SCF 1
! Cutoff scheme &END EACH
CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2
ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC
! Perform Becke partitioning only within the space FILENAME ./${NAME}
! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO
! (reduces cost for solvated systems) &END BECKE_CONSTRAINT
CAVITY_CONFINE TRUE &END QS
CAVITY_SHAPE VDW
EPS_CAVITY 1.0E-7
IN_MEMORY TRUE
SHOULD_SKIP TRUE
Defining constraints (2/2)
12.1.2018
8
&QS ! Constraint definitions
... ! Each repetition defines a constraint
&CDFT &ATOM_GROUP
... ATOMS 1
&END CDFT COEFF 1
&BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE
! Take atomic radii into account? &END ATOM_GROUP
ADJUST_SIZE FALSE ! No constraint but calculate charges
ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS
! Compute Becke charges? ATOMS 2
ATOMIC_CHARGES TRUE &END DUMMY_ATOMS
! Constraint strength and target values ! Print info about CDFT calculation
! Give one value per constraint &PROGRAM_RUN_INFO ON
STRENGTH ${BECKE_STR} &EACH
TARGET ${BECKE_TARGET} QS_SCF 1
! Cutoff scheme &END EACH
CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2
ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC
! Perform Becke partitioning only within the space FILENAME ./${NAME}
! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO
! (reduces cost for solvated systems) &END BECKE_CONSTRAINT
CAVITY_CONFINE TRUE &END QS
CAVITY_SHAPE VDW
EPS_CAVITY 1.0E-7
IN_MEMORY TRUE
SHOULD_SKIP TRUE
Use e.g. covalent radii
Defining constraints (2/2)
12.1.2018
8
&QS ! Constraint definitions
... ! Each repetition defines a constraint
&CDFT &ATOM_GROUP
... ATOMS 1
&END CDFT COEFF 1
&BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE
! Take atomic radii into account? &END ATOM_GROUP
ADJUST_SIZE FALSE ! No constraint but calculate charges
ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS
! Compute Becke charges? ATOMS 2
ATOMIC_CHARGES TRUE &END DUMMY_ATOMS
! Constraint strength and target values ! Print info about CDFT calculation
! Give one value per constraint &PROGRAM_RUN_INFO ON
STRENGTH ${BECKE_STR} &EACH
TARGET ${BECKE_TARGET} QS_SCF 1
! Cutoff scheme &END EACH
CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2
ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC
! Perform Becke partitioning only within the space FILENAME ./${NAME}
! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO
! (reduces cost for solvated systems) &END BECKE_CONSTRAINT
CAVITY_CONFINE TRUE &END QS
CAVITY_SHAPE VDW
EPS_CAVITY 1.0E-7
IN_MEMORY TRUE
SHOULD_SKIP TRUE
Use e.g. covalent radii
Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
(1/2)
โ€ข When ๐‘น๐‘น๐™๐™๐™๐™โˆ’๐™๐™๐™๐™ grows, charge should localize onto one Zn atom
10.1.2018
9
Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
(1/2)
โ€ข When ๐‘น๐‘น๐™๐™๐™๐™โˆ’๐™๐™๐™๐™ grows, charge should localize onto one Zn atom
โ€ข Standard GGA/hybrid functionals place +0.5 charge on both atoms
10.1.2018
9
Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
(1/2)
โ€ข When ๐‘น๐‘น๐™๐™๐™๐™โˆ’๐™๐™๐™๐™ grows, charge should localize onto one Zn atom
โ€ข Standard GGA/hybrid functionals place +0.5 charge on both atoms
โ€ข Force charge localization on first atom
10.1.2018
9
! Set initial constraint strength to 0 (restarting from DFT)
STRENGTH 0.0
! Constraint target is the number of valence electrons โ€“ 1
TARGET 11.0
&ATOM_GROUP
ATOMS 1
COEFF 1
CONSTRAINT_TYPE CHARGE
&END ATOM_GROUP
Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
(2/2)
โ€ข The default output file contains the CDFT SCF iterations
10.1.2018
10
New guess
for ๐€๐€
CDFT loop
Build Jacobian
(optional)
Optimize step
size?
Standard
CP2K SCF
Reduce
step size
No/Done
Yes
Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
(2/2)
โ€ข The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
10.1.2018
10
New guess
for ๐€๐€
CDFT loop
Build Jacobian
(optional)
Optimize step
size?
Standard
CP2K SCF
Reduce
step size
No/Done
Yes
Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
(2/2)
โ€ข The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
o Uses optimized solution from line search as restart if available
โ€ข The following files are created with (quasi-)Newton optimizers
o *.LineSearch.out: Electronic structure SCF and optimization of step size
10.1.2018
10
New guess
for ๐€๐€
CDFT loop
Build Jacobian
(optional)
Optimize step
size?
Standard
CP2K SCF
Reduce
step size
No/Done
Yes
Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
(2/2)
โ€ข The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
o Uses optimized solution from line search as restart if available
โ€ข The following files are created with (quasi-)Newton optimizers
o *.LineSearch.out: Electronic structure SCF and optimization of step size
o *.cdftLog: Summary of CDFT parameters and computed partial charges
10.1.2018
10
Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
(2/2)
โ€ข The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
o Uses optimized solution from line search as restart if available
โ€ข The following files are created with (quasi-)Newton optimizers
o *.LineSearch.out: Electronic structure SCF and optimization of step size
o *.cdftLog: Summary of CDFT parameters and computed partial charges
o *.JacobianInfo.out: Calculation of Jacobian matrix with perturbed ๐€๐€
10.1.2018
10
Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
(2/2)
โ€ข The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
o Uses optimized solution from line search as restart if available
โ€ข The following files are created with (quasi-)Newton optimizers
o *.LineSearch.out: Electronic structure SCF and optimization of step size
o *.cdftLog: Summary of CDFT parameters and computed partial charges
o *.JacobianInfo.out: Calculation of Jacobian matrix with perturbed ๐€๐€
o *.inverseJacobian: Restart file for inverse Jacobian matrix
10.1.2018
10
Standard CP2K SCF with
fixed values of constraint
strength and step size
CDFT SCF iteration
information
Constraint
information
Restarted from converged
density obtained during
line search
Fragment constraints (1/2)
โ€ข Number of valence electrons per
molecule not necessarily well
defined
12.1.2018
12
Fragment constraints (1/2)
โ€ข Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
12.1.2018
12
Fragment constraints (1/2)
โ€ข Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
o How to set constraint target value?
12.1.2018
12
Fragment constraints (1/2)
โ€ข Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
o How to set constraint target value?
โ€ข Use a fragment based constraint
12.1.2018
12
๏ฟฝ๐œŒ๐œŒA(๐’“๐’“) ๏ฟฝ๐œŒ๐œŒB(๐’“๐’“)
๏ฟฝ๐‘๐‘๐‘๐‘ = ๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ๐‘ค๐‘ค๐‘–๐‘–
๐’“๐’“ ๏ฟฝ๐œŒ๐œŒA
๐‘–๐‘–
๐’“๐’“ + ๏ฟฝ๐œŒ๐œŒB
๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“
Fragment constraints (1/2)
โ€ข Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
o How to set constraint target value?
โ€ข Use a fragment based constraint
o Only single-point calculations
12.1.2018
12
๏ฟฝ๐œŒ๐œŒA(๐’“๐’“) ๏ฟฝ๐œŒ๐œŒB(๐’“๐’“)
๏ฟฝ๐‘๐‘๐‘๐‘ = ๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ๐‘ค๐‘ค๐‘–๐‘–
๐’“๐’“ ๏ฟฝ๐œŒ๐œŒA
๐‘–๐‘–
๐’“๐’“ + ๏ฟฝ๐œŒ๐œŒB
๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“
Fragment constraints (1/2)
โ€ข Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
o How to set constraint target value?
โ€ข Use a fragment based constraint
o Only single-point calculations
โ€ข Cube read/write accelerated with
MPI I/O since r18131
12.1.2018
12
๏ฟฝ๐œŒ๐œŒA(๐’“๐’“) ๏ฟฝ๐œŒ๐œŒB(๐’“๐’“)
๏ฟฝ๐‘๐‘๐‘๐‘ = ๏ฟฝ
๐‘–๐‘–=โ†‘,โ†“
๏ฟฝ๐‘ค๐‘ค๐‘–๐‘–
๐’“๐’“ ๏ฟฝ๐œŒ๐œŒA
๐‘–๐‘–
๐’“๐’“ + ๏ฟฝ๐œŒ๐œŒB
๐‘–๐‘–
๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“
Fragment constraints (2/2)
โ€ข Charge transfer energies of
strongly interacting complexes
โˆ’ฮ”๐ธ๐ธCT = ๐ธ๐ธCDFT โˆ’ ๐ธ๐ธDFT
10.1.2018
13
Fragment constraints (2/2)
โ€ข Charge transfer energies of
strongly interacting complexes
โˆ’ฮ”๐ธ๐ธCT = ๐ธ๐ธCDFT โˆ’ ๐ธ๐ธDFT
10.1.2018
13
Energy of system with
charge transfer prevented
Fragment constraints (2/2)
โ€ข Charge transfer energies of
strongly interacting complexes
โˆ’ฮ”๐ธ๐ธCT = ๐ธ๐ธCDFT โˆ’ ๐ธ๐ธDFT
10.1.2018
13
Energy of system with
charge transfer prevented
Fragment Becke with atomic size adjustments
Becke
Becke with atomic size adjustments
BW:
BW+A:
FBB+A:
Fragment constraints (2/2)
โ€ข Charge transfer energies of
strongly interacting complexes
โˆ’ฮ”๐ธ๐ธCT = ๐ธ๐ธCDFT โˆ’ ๐ธ๐ธDFT
โ€ข Magnitude of charge transferred,
ฮ”๐‘ž๐‘ž , overestimated by non-
fragment constraints
10.1.2018
13
Energy of system with
charge transfer prevented
Fragment Becke with atomic size adjustments
Becke
Becke with atomic size adjustments
BW:
BW+A:
FBB+A:
Combining multiple CDFT states
โ€ข Additional properties can be computed from the interactions between
CDFT states
10.1.2018
14
Combining multiple CDFT states
โ€ข Additional properties can be computed from the interactions between
CDFT states
o Charge transfer kinetics (Marcus theory)
๐‘˜๐‘˜ab =
2๐œ‹๐œ‹
โ„
๐‘ฏ๐‘ฏab
2
๐‘‡๐‘‡
4๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‰๐œ‰
exp โˆ’
๐œ‰๐œ‰ + ฮ”๐ด๐ด 2
4๐œ‹๐œ‹๐‘˜๐‘˜๐‘‡๐‘‡๐œ‰๐œ‰
10.1.2018
14
Combining multiple CDFT states
โ€ข Additional properties can be computed from the interactions between
CDFT states
o Charge transfer kinetics (Marcus theory)
๐‘˜๐‘˜ab =
2๐œ‹๐œ‹
โ„
๐‘ฏ๐‘ฏab
2
๐‘‡๐‘‡
4๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‰๐œ‰
exp โˆ’
๐œ‰๐œ‰ + ฮ”๐ด๐ด 2
4๐œ‹๐œ‹๐‘˜๐‘˜๐‘‡๐‘‡๐œ‰๐œ‰
10.1.2018
14
Electronic coupling
Solvent reorganization energy
Reaction free energy
Combining multiple CDFT states
โ€ข Additional properties can be computed from the interactions between
CDFT states
o Charge transfer kinetics (Marcus theory)
๐‘˜๐‘˜ab =
2๐œ‹๐œ‹
โ„
๐‘ฏ๐‘ฏab
2
๐‘‡๐‘‡
4๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‰๐œ‰
exp โˆ’
๐œ‰๐œ‰ + ฮ”๐ด๐ด 2
4๐œ‹๐œ‹๐‘˜๐‘˜๐‘‡๐‘‡๐œ‰๐œ‰
o Configuration interaction within the basis of CDFT states
10.1.2018
14
Electronic coupling
Solvent reorganization energy
Reaction free energy
Combining multiple CDFT states
โ€ข Additional properties can be computed from the interactions between
CDFT states
o Charge transfer kinetics (Marcus theory)
๐‘˜๐‘˜ab =
2๐œ‹๐œ‹
โ„
๐‘ฏ๐‘ฏab
2
๐‘‡๐‘‡
4๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‰๐œ‰
exp โˆ’
๐œ‰๐œ‰ + ฮ”๐ด๐ด 2
4๐œ‹๐œ‹๐‘˜๐‘˜๐‘‡๐‘‡๐œ‰๐œ‰
o Configuration interaction within the basis of CDFT states
โ€ข Approximate electronic coupling with CDFT Kohn-Sham determinants
after orthogonalization [5]
๐‘ฏ๐‘ฏij โ‰ˆ ๐šฝ๐šฝCDFT
i ๏ฟฝ๐ป๐ปKS ๐šฝ๐šฝCDFT
j
=
๐ธ๐ธCDFT
i
+ ๐ธ๐ธCDFT
j
2
๐‘บ๐‘บ๐‘–๐‘–๐‘–๐‘– โˆ’ ๏ฟฝ
๐‘๐‘
๐šฝ๐šฝCDFT
i ๐œ†๐œ†๐‘๐‘
i
๐‘ค๐‘ค๐‘๐‘
i
(๐’“๐’“) + ๐œ†๐œ†๐‘๐‘
j
๐‘ค๐‘ค๐‘๐‘
j
(๐’“๐’“)
2 ๐šฝ๐šฝCDFT
j
10.1.2018
14
Electronic coupling
Solvent reorganization energy
Reaction free energy
5. Wu, Q.; van Voorhis, T., J. Chem. Phys., 2006, 125, 164105.
The mixed CDFT module&MULTIPLE_FORCE_EVALS # Zn+ Zn
FORCE_EVAL_ORDER 2 3 &FORCE_EVAL
MULTIPLE_SUBSYS FALSE @SET WFN_FILE ${WFN_FILE_1}
&END @SET RESTART ${RESTART_1}
&FORCE_EVAL @SET NAME ${PROJECT_NAME}-state1
METHOD MIXED @SET BECKE_TARGET ${BECKE_TARGET_1}
&MIXED @SET BECKE_STR ${BECKE_STR_1}
MIXING_TYPE MIXED_CDFT METHOD QS
NGROUPS 1 @include ${DFT_FILE}
&MIXED_CDFT &END FORCE_EVAL
! Calculate mixed CDFT properties every COUPLING step # Zn Zn+
COUPLING 1 &FORCE_EVAL
! Settings determining how forces are mixed @SET WFN_FILE ${WFN_FILE_2}
FORCE_STATES 1 2 @SET RESTART ${RESTART_2}
LAMBDA 1.0 @SET NAME ${PROJECT_NAME}-state2
! Orthogonalize CDFT states with Lowdin's method @SET BECKE_TARGET ${BECKE_TARGET_2}
LOWDIN TRUE @SET BECKE_STR ${BECKE_STR_2}
! Configuration interaction? METHOD QS
CI FALSE @include ${DFT_FILE}
&PRINT &END FORCE_EVAL
&PROGRAM_RUN_INFO ON
&END
&END PRINT
&END MIXED_CDFT
&END MIXED
@include subsys.inc
&END FORCE_EVAL
10.1.2018
15
Additional settings available and
explained in the manual
Electronic coupling in ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
10.1.2018
16
Zn+
Zn ๏ฟฝ๐ป๐ป ZnZn+
Electronic coupling in ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
10.1.2018
16
Zn+
Zn ๏ฟฝ๐ป๐ป ZnZn+
Electronic coupling in ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
10.1.2018
16
Zn+
Zn ๏ฟฝ๐ป๐ป ZnZn+
Different
orthogonalization
algorithms
Electronic coupling in ๐™๐™๐ง๐ง๐Ÿ๐Ÿ
+
10.1.2018
17
Zn+
Zn ๏ฟฝ๐ป๐ป ZnZn+
Different
orthogonalization
algorithms
Agrees with 5.49 mHartree
estimate from more expensive
wavefunction based method
CASSCF/MRCI+Q
CDFT in solvated systems
โ€ข Computational efficiency of
GPW/OT allows study of solvated
charge transfer processes at full
DFT level
12.1.2018
18
CDFT in solvated systems
โ€ข Computational efficiency of
GPW/OT allows study of solvated
charge transfer processes at full
DFT level
โ€ข Evaluating intramolecular charge
transfer kinetics in QTTFQโ€“
โ€ข 258 water, 12 ps (0.5 fs timestep)
โ€ข 48 s/timestep @ 384 MPI cores
(~120k core hours)
12.1.2018
18
List of CDFT capabilities in CP2K
โ€ข GPW and GAPW (no fragment constraint)
12.1.2018
19
List of CDFT capabilities in CP2K
โ€ข GPW and GAPW (no fragment constraint)
โ€ข Full DFT or QM/MM
12.1.2018
19
List of CDFT capabilities in CP2K
โ€ข GPW and GAPW (no fragment constraint)
โ€ข Full DFT or QM/MM
โ€ข Primarily for OT, diagonalization is supported but difficult to converge
12.1.2018
19
List of CDFT capabilities in CP2K
โ€ข GPW and GAPW (no fragment constraint)
โ€ข Full DFT or QM/MM
โ€ข Primarily for OT, diagonalization is supported but difficult to converge
โ€ข Energies and forces for an unlimited number of constraints (any type)
12.1.2018
19
List of CDFT capabilities in CP2K
โ€ข GPW and GAPW (no fragment constraint)
โ€ข Full DFT or QM/MM
โ€ข Primarily for OT, diagonalization is supported but difficult to converge
โ€ข Energies and forces for an unlimited number of constraints (any type)
โ€ข Mixed CDFT module supports
12.1.2018
19
List of CDFT capabilities in CP2K
โ€ข GPW and GAPW (no fragment constraint)
โ€ข Full DFT or QM/MM
โ€ข Primarily for OT, diagonalization is supported but difficult to converge
โ€ข Energies and forces for an unlimited number of constraints (any type)
โ€ข Mixed CDFT module supports
o Electronic couplings with various orthogonalization methods
12.1.2018
19
List of CDFT capabilities in CP2K
โ€ข GPW and GAPW (no fragment constraint)
โ€ข Full DFT or QM/MM
โ€ข Primarily for OT, diagonalization is supported but difficult to converge
โ€ข Energies and forces for an unlimited number of constraints (any type)
โ€ข Mixed CDFT module supports
o Electronic couplings with various orthogonalization methods
o Configuration interaction
12.1.2018
19
List of CDFT capabilities in CP2K
โ€ข GPW and GAPW (no fragment constraint)
โ€ข Full DFT or QM/MM
โ€ข Primarily for OT, diagonalization is supported but difficult to converge
โ€ข Energies and forces for an unlimited number of constraints (any type)
โ€ข Mixed CDFT module supports
o Electronic couplings with various orthogonalization methods
o Configuration interaction
o Removal of linearly-dependent MOs via SVD decomposition
12.1.2018
19
List of CDFT capabilities in CP2K
โ€ข GPW and GAPW (no fragment constraint)
โ€ข Full DFT or QM/MM
โ€ข Primarily for OT, diagonalization is supported but difficult to converge
โ€ข Energies and forces for an unlimited number of constraints (any type)
โ€ข Mixed CDFT module supports
o Electronic couplings with various orthogonalization methods
o Configuration interaction
o Removal of linearly-dependent MOs via SVD decomposition
o Electronic coupling reliability metrics
12.1.2018
19
Summary
โ€ข CDFT is a tool to study charge transfer phenomena
12.1.2018
20
Summary
โ€ข CDFT is a tool to study charge transfer phenomena
โ€ข Available in latest release version
12.1.2018
20
Summary
โ€ข CDFT is a tool to study charge transfer phenomena
โ€ข Available in latest release version
โ€ข Tutorial at https://www.cp2k.org/howto:cdft that complements regtests
12.1.2018
20
Summary
โ€ข CDFT is a tool to study charge transfer phenomena
โ€ข Available in latest release version
โ€ข Tutorial at https://www.cp2k.org/howto:cdft that complements regtests
o Summaries of CDFT theory and the CP2K implementation
o Walk throughs of example calculations
12.1.2018
20
Summary
โ€ข CDFT is a tool to study charge transfer phenomena
โ€ข Available in latest release version
โ€ข Tutorial at https://www.cp2k.org/howto:cdft that complements regtests
o Summaries of CDFT theory and the CP2K implementation
o Walk throughs of example calculations
โ€ข Help provided on Google groups if you encounter issues with CDFT
features
12.1.2018
20
Questions?

More Related Content

What's hot

01. Combating Drug Resistance.pptx
01. Combating Drug Resistance.pptx01. Combating Drug Resistance.pptx
01. Combating Drug Resistance.pptx
PurushothamKN1
ย 
Stereochemistry of Drugs
Stereochemistry of DrugsStereochemistry of Drugs
Stereochemistry of Drugs
Jim Mitroka
ย 
Phyllanthus niruri in liver dysfunction
Phyllanthus niruri in liver dysfunctionPhyllanthus niruri in liver dysfunction
Phyllanthus niruri in liver dysfunction
Priya Bardhan Ray
ย 
Salacia reticulata
Salacia reticulataSalacia reticulata
Salacia reticulata
abhishek0000002
ย 
Coumarin ; Synthesis and Medicinal properties
Coumarin ; Synthesis and Medicinal properties Coumarin ; Synthesis and Medicinal properties
Coumarin ; Synthesis and Medicinal properties
Dr.Mohd Kamil Hussain, Department of Chemistry, Govt Raza PG College Rampur
ย 
Quantitative structure activity relationships
Quantitative structure activity relationshipsQuantitative structure activity relationships
Quantitative structure activity relationships
Shilpa Harak
ย 
Protein-ligand docking
Protein-ligand dockingProtein-ligand docking
Protein-ligand docking
baoilleach
ย 
Knorr Pyrazole Synthesis (M. Pharm)
Knorr Pyrazole Synthesis (M. Pharm) Knorr Pyrazole Synthesis (M. Pharm)
Knorr Pyrazole Synthesis (M. Pharm)
MohdShafeeque4
ย 
Alkaloids
AlkaloidsAlkaloids
Alkaloids
Kannachem
ย 
Aromaticity and Organic Photochemistry for PG Chemistry Students
Aromaticity and Organic Photochemistry for PG Chemistry StudentsAromaticity and Organic Photochemistry for PG Chemistry Students
Aromaticity and Organic Photochemistry for PG Chemistry Students
Vajiravelu Sivamurugan
ย 
Natural products as leads for new pharmaceuticals
Natural products as leads  for new pharmaceuticalsNatural products as leads  for new pharmaceuticals
Natural products as leads for new pharmaceuticals
Shikha Popali
ย 
DIELS- ALDER REACTION
DIELS- ALDER REACTION DIELS- ALDER REACTION
DIELS- ALDER REACTION
VIPUL171213
ย 
Zingiberene [Best one]
Zingiberene [Best one]Zingiberene [Best one]
Zingiberene [Best one]
abdelrahman_asar
ย 
Heterocyclic compounds
Heterocyclic compoundsHeterocyclic compounds
Heterocyclic compounds
priyaswain27
ย 
DENOVO DRUG DESIGN AS PER PCI SYLLABUS
DENOVO DRUG DESIGN AS PER PCI SYLLABUSDENOVO DRUG DESIGN AS PER PCI SYLLABUS
DENOVO DRUG DESIGN AS PER PCI SYLLABUS
Shikha Popali
ย 
SYNTHON APPROACH
SYNTHON APPROACHSYNTHON APPROACH
SYNTHON APPROACH
Shikha Popali
ย 
Advanced Organic Chemistry - I
Advanced Organic Chemistry - IAdvanced Organic Chemistry - I
Advanced Organic Chemistry - I
Ajay Kumar
ย 
Active constituent of Phyllanthus niruri for liver dysfunction
Active constituent of Phyllanthus niruri for liver dysfunctionActive constituent of Phyllanthus niruri for liver dysfunction
Active constituent of Phyllanthus niruri for liver dysfunction
ASHOK GAUTAM
ย 
Hidrocarbonetos - Marco Aurรฉlio
Hidrocarbonetos - Marco AurรฉlioHidrocarbonetos - Marco Aurรฉlio
Hidrocarbonetos - Marco Aurรฉlio
Turma Olรญmpica
ย 
Structural Elucidation of Camphor
Structural Elucidation of  CamphorStructural Elucidation of  Camphor
Structural Elucidation of Camphor
Ramkumar kumar
ย 

What's hot (20)

01. Combating Drug Resistance.pptx
01. Combating Drug Resistance.pptx01. Combating Drug Resistance.pptx
01. Combating Drug Resistance.pptx
ย 
Stereochemistry of Drugs
Stereochemistry of DrugsStereochemistry of Drugs
Stereochemistry of Drugs
ย 
Phyllanthus niruri in liver dysfunction
Phyllanthus niruri in liver dysfunctionPhyllanthus niruri in liver dysfunction
Phyllanthus niruri in liver dysfunction
ย 
Salacia reticulata
Salacia reticulataSalacia reticulata
Salacia reticulata
ย 
Coumarin ; Synthesis and Medicinal properties
Coumarin ; Synthesis and Medicinal properties Coumarin ; Synthesis and Medicinal properties
Coumarin ; Synthesis and Medicinal properties
ย 
Quantitative structure activity relationships
Quantitative structure activity relationshipsQuantitative structure activity relationships
Quantitative structure activity relationships
ย 
Protein-ligand docking
Protein-ligand dockingProtein-ligand docking
Protein-ligand docking
ย 
Knorr Pyrazole Synthesis (M. Pharm)
Knorr Pyrazole Synthesis (M. Pharm) Knorr Pyrazole Synthesis (M. Pharm)
Knorr Pyrazole Synthesis (M. Pharm)
ย 
Alkaloids
AlkaloidsAlkaloids
Alkaloids
ย 
Aromaticity and Organic Photochemistry for PG Chemistry Students
Aromaticity and Organic Photochemistry for PG Chemistry StudentsAromaticity and Organic Photochemistry for PG Chemistry Students
Aromaticity and Organic Photochemistry for PG Chemistry Students
ย 
Natural products as leads for new pharmaceuticals
Natural products as leads  for new pharmaceuticalsNatural products as leads  for new pharmaceuticals
Natural products as leads for new pharmaceuticals
ย 
DIELS- ALDER REACTION
DIELS- ALDER REACTION DIELS- ALDER REACTION
DIELS- ALDER REACTION
ย 
Zingiberene [Best one]
Zingiberene [Best one]Zingiberene [Best one]
Zingiberene [Best one]
ย 
Heterocyclic compounds
Heterocyclic compoundsHeterocyclic compounds
Heterocyclic compounds
ย 
DENOVO DRUG DESIGN AS PER PCI SYLLABUS
DENOVO DRUG DESIGN AS PER PCI SYLLABUSDENOVO DRUG DESIGN AS PER PCI SYLLABUS
DENOVO DRUG DESIGN AS PER PCI SYLLABUS
ย 
SYNTHON APPROACH
SYNTHON APPROACHSYNTHON APPROACH
SYNTHON APPROACH
ย 
Advanced Organic Chemistry - I
Advanced Organic Chemistry - IAdvanced Organic Chemistry - I
Advanced Organic Chemistry - I
ย 
Active constituent of Phyllanthus niruri for liver dysfunction
Active constituent of Phyllanthus niruri for liver dysfunctionActive constituent of Phyllanthus niruri for liver dysfunction
Active constituent of Phyllanthus niruri for liver dysfunction
ย 
Hidrocarbonetos - Marco Aurรฉlio
Hidrocarbonetos - Marco AurรฉlioHidrocarbonetos - Marco Aurรฉlio
Hidrocarbonetos - Marco Aurรฉlio
ย 
Structural Elucidation of Camphor
Structural Elucidation of  CamphorStructural Elucidation of  Camphor
Structural Elucidation of Camphor
ย 

Similar to CP2K: How to use the constrained DFT module

IRJET- A New Approach to Economic Load Dispatch by using Improved QEMA ba...
IRJET-  	  A New Approach to Economic Load Dispatch by using Improved QEMA ba...IRJET-  	  A New Approach to Economic Load Dispatch by using Improved QEMA ba...
IRJET- A New Approach to Economic Load Dispatch by using Improved QEMA ba...
IRJET Journal
ย 
NREL PV seminar
NREL PV seminarNREL PV seminar
NREL PV seminar
Suzanne Wallace
ย 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
cseij
ย 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
cseij
ย 
IRJET- Optimal Generation Scheduling for Thermal Units
IRJET-  	  Optimal Generation Scheduling for Thermal UnitsIRJET-  	  Optimal Generation Scheduling for Thermal Units
IRJET- Optimal Generation Scheduling for Thermal Units
IRJET Journal
ย 
IRJET- Optimal Generation Scheduling for Thermal Units
IRJET- Optimal Generation Scheduling for Thermal UnitsIRJET- Optimal Generation Scheduling for Thermal Units
IRJET- Optimal Generation Scheduling for Thermal Units
IRJET Journal
ย 
Scalable trust-region method for deep reinforcement learning using Kronecker-...
Scalable trust-region method for deep reinforcement learning using Kronecker-...Scalable trust-region method for deep reinforcement learning using Kronecker-...
Scalable trust-region method for deep reinforcement learning using Kronecker-...
Willy Marroquin (WillyDevNET)
ย 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
Jiahao Chen
ย 
27.docking protein-protein and protein-ligand
27.docking protein-protein and protein-ligand27.docking protein-protein and protein-ligand
27.docking protein-protein and protein-ligand
Abhijeet Kadam
ย 
7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt
GustavoGuilln4
ย 
Molecular docking
Molecular dockingMolecular docking
Advanced SOM & K Mean Method for Load Curve Clustering
Advanced SOM & K Mean Method for Load Curve Clustering Advanced SOM & K Mean Method for Load Curve Clustering
Advanced SOM & K Mean Method for Load Curve Clustering
IJECEIAES
ย 
Insight from energy surfaces: structure prediction by lattice energy explora...
Insight from energy surfaces:  structure prediction by lattice energy explora...Insight from energy surfaces:  structure prediction by lattice energy explora...
Insight from energy surfaces: structure prediction by lattice energy explora...
GraemeDay
ย 
CDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networksCDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networks
Marco Antoniotti
ย 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Christos Kallidonis
ย 
Optimal control of electrodynamic tether orbit transfers
Optimal control of electrodynamic tether orbit transfersOptimal control of electrodynamic tether orbit transfers
Optimal control of electrodynamic tether orbit transfers
Francisco Carvalho
ย 
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum DataAutomated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
aimsnist
ย 
Phonons & Phonopy: Pro Tips (2014)
Phonons & Phonopy: Pro Tips (2014)Phonons & Phonopy: Pro Tips (2014)
Phonons & Phonopy: Pro Tips (2014)
Jonathan Skelton
ย 
Pattern recognition binoy k means clustering
Pattern recognition binoy  k means clusteringPattern recognition binoy  k means clustering
Pattern recognition binoy k means clustering
108kaushik
ย 
Bu31485490
Bu31485490Bu31485490
Bu31485490
IJERA Editor
ย 

Similar to CP2K: How to use the constrained DFT module (20)

IRJET- A New Approach to Economic Load Dispatch by using Improved QEMA ba...
IRJET-  	  A New Approach to Economic Load Dispatch by using Improved QEMA ba...IRJET-  	  A New Approach to Economic Load Dispatch by using Improved QEMA ba...
IRJET- A New Approach to Economic Load Dispatch by using Improved QEMA ba...
ย 
NREL PV seminar
NREL PV seminarNREL PV seminar
NREL PV seminar
ย 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
ย 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
ย 
IRJET- Optimal Generation Scheduling for Thermal Units
IRJET-  	  Optimal Generation Scheduling for Thermal UnitsIRJET-  	  Optimal Generation Scheduling for Thermal Units
IRJET- Optimal Generation Scheduling for Thermal Units
ย 
IRJET- Optimal Generation Scheduling for Thermal Units
IRJET- Optimal Generation Scheduling for Thermal UnitsIRJET- Optimal Generation Scheduling for Thermal Units
IRJET- Optimal Generation Scheduling for Thermal Units
ย 
Scalable trust-region method for deep reinforcement learning using Kronecker-...
Scalable trust-region method for deep reinforcement learning using Kronecker-...Scalable trust-region method for deep reinforcement learning using Kronecker-...
Scalable trust-region method for deep reinforcement learning using Kronecker-...
ย 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
ย 
27.docking protein-protein and protein-ligand
27.docking protein-protein and protein-ligand27.docking protein-protein and protein-ligand
27.docking protein-protein and protein-ligand
ย 
7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt
ย 
Molecular docking
Molecular dockingMolecular docking
Molecular docking
ย 
Advanced SOM & K Mean Method for Load Curve Clustering
Advanced SOM & K Mean Method for Load Curve Clustering Advanced SOM & K Mean Method for Load Curve Clustering
Advanced SOM & K Mean Method for Load Curve Clustering
ย 
Insight from energy surfaces: structure prediction by lattice energy explora...
Insight from energy surfaces:  structure prediction by lattice energy explora...Insight from energy surfaces:  structure prediction by lattice energy explora...
Insight from energy surfaces: structure prediction by lattice energy explora...
ย 
CDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networksCDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networks
ย 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
ย 
Optimal control of electrodynamic tether orbit transfers
Optimal control of electrodynamic tether orbit transfersOptimal control of electrodynamic tether orbit transfers
Optimal control of electrodynamic tether orbit transfers
ย 
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum DataAutomated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
ย 
Phonons & Phonopy: Pro Tips (2014)
Phonons & Phonopy: Pro Tips (2014)Phonons & Phonopy: Pro Tips (2014)
Phonons & Phonopy: Pro Tips (2014)
ย 
Pattern recognition binoy k means clustering
Pattern recognition binoy  k means clusteringPattern recognition binoy  k means clustering
Pattern recognition binoy k means clustering
ย 
Bu31485490
Bu31485490Bu31485490
Bu31485490
ย 

Recently uploaded

THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
ย 
ๅŽŸ็‰ˆๅˆถไฝœ(carletonๆฏ•ไธš่ฏไนฆ)ๅกๅฐ”้กฟๅคงๅญฆๆฏ•ไธš่ฏ็ก•ๅฃซๆ–‡ๅ‡ญๅŽŸ็‰ˆไธ€ๆจกไธ€ๆ ท
ๅŽŸ็‰ˆๅˆถไฝœ(carletonๆฏ•ไธš่ฏไนฆ)ๅกๅฐ”้กฟๅคงๅญฆๆฏ•ไธš่ฏ็ก•ๅฃซๆ–‡ๅ‡ญๅŽŸ็‰ˆไธ€ๆจกไธ€ๆ ทๅŽŸ็‰ˆๅˆถไฝœ(carletonๆฏ•ไธš่ฏไนฆ)ๅกๅฐ”้กฟๅคงๅญฆๆฏ•ไธš่ฏ็ก•ๅฃซๆ–‡ๅ‡ญๅŽŸ็‰ˆไธ€ๆจกไธ€ๆ ท
ๅŽŸ็‰ˆๅˆถไฝœ(carletonๆฏ•ไธš่ฏไนฆ)ๅกๅฐ”้กฟๅคงๅญฆๆฏ•ไธš่ฏ็ก•ๅฃซๆ–‡ๅ‡ญๅŽŸ็‰ˆไธ€ๆจกไธ€ๆ ท
yqqaatn0
ย 
The debris of the โ€˜last major mergerโ€™ is dynamically young
The debris of the โ€˜last major mergerโ€™ is dynamically youngThe debris of the โ€˜last major mergerโ€™ is dynamically young
The debris of the โ€˜last major mergerโ€™ is dynamically young
Sรฉrgio Sacani
ย 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
ย 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
Anagha Prasad
ย 
mรด tแบฃ cรกc thรญ nghiแป‡m vแป ฤ‘รกnh giรก tรกc ฤ‘แป™ng dรฒng khรญ hรณa sau ฤ‘แป‘t
mรด tแบฃ cรกc thรญ nghiแป‡m vแป ฤ‘รกnh giรก tรกc ฤ‘แป™ng dรฒng khรญ hรณa sau ฤ‘แป‘tmรด tแบฃ cรกc thรญ nghiแป‡m vแป ฤ‘รกnh giรก tรกc ฤ‘แป™ng dรฒng khรญ hรณa sau ฤ‘แป‘t
mรด tแบฃ cรกc thรญ nghiแป‡m vแป ฤ‘รกnh giรก tรกc ฤ‘แป™ng dรฒng khรญ hรณa sau ฤ‘แป‘t
HongcNguyn6
ย 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
ย 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
MaheshaNanjegowda
ย 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
David Osipyan
ย 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
Vandana Devesh Sharma
ย 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
ย 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
ย 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
European Sustainable Phosphorus Platform
ย 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
University of Maribor
ย 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Texas Alliance of Groundwater Districts
ย 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sรฉrgio Sacani
ย 
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
LengamoLAppostilic
ย 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
Hitesh Sikarwar
ย 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
ย 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills MN
ย 

Recently uploaded (20)

THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
ย 
ๅŽŸ็‰ˆๅˆถไฝœ(carletonๆฏ•ไธš่ฏไนฆ)ๅกๅฐ”้กฟๅคงๅญฆๆฏ•ไธš่ฏ็ก•ๅฃซๆ–‡ๅ‡ญๅŽŸ็‰ˆไธ€ๆจกไธ€ๆ ท
ๅŽŸ็‰ˆๅˆถไฝœ(carletonๆฏ•ไธš่ฏไนฆ)ๅกๅฐ”้กฟๅคงๅญฆๆฏ•ไธš่ฏ็ก•ๅฃซๆ–‡ๅ‡ญๅŽŸ็‰ˆไธ€ๆจกไธ€ๆ ทๅŽŸ็‰ˆๅˆถไฝœ(carletonๆฏ•ไธš่ฏไนฆ)ๅกๅฐ”้กฟๅคงๅญฆๆฏ•ไธš่ฏ็ก•ๅฃซๆ–‡ๅ‡ญๅŽŸ็‰ˆไธ€ๆจกไธ€ๆ ท
ๅŽŸ็‰ˆๅˆถไฝœ(carletonๆฏ•ไธš่ฏไนฆ)ๅกๅฐ”้กฟๅคงๅญฆๆฏ•ไธš่ฏ็ก•ๅฃซๆ–‡ๅ‡ญๅŽŸ็‰ˆไธ€ๆจกไธ€ๆ ท
ย 
The debris of the โ€˜last major mergerโ€™ is dynamically young
The debris of the โ€˜last major mergerโ€™ is dynamically youngThe debris of the โ€˜last major mergerโ€™ is dynamically young
The debris of the โ€˜last major mergerโ€™ is dynamically young
ย 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
ย 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
ย 
mรด tแบฃ cรกc thรญ nghiแป‡m vแป ฤ‘รกnh giรก tรกc ฤ‘แป™ng dรฒng khรญ hรณa sau ฤ‘แป‘t
mรด tแบฃ cรกc thรญ nghiแป‡m vแป ฤ‘รกnh giรก tรกc ฤ‘แป™ng dรฒng khรญ hรณa sau ฤ‘แป‘tmรด tแบฃ cรกc thรญ nghiแป‡m vแป ฤ‘รกnh giรก tรกc ฤ‘แป™ng dรฒng khรญ hรณa sau ฤ‘แป‘t
mรด tแบฃ cรกc thรญ nghiแป‡m vแป ฤ‘รกnh giรก tรกc ฤ‘แป™ng dรฒng khรญ hรณa sau ฤ‘แป‘t
ย 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
ย 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
ย 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
ย 
Compexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titrationCompexometric titration/Chelatorphy titration/chelating titration
Compexometric titration/Chelatorphy titration/chelating titration
ย 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
ย 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
ย 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
ย 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
ย 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
ย 
The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
ย 
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
ย 
Cytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptxCytokines and their role in immune regulation.pptx
Cytokines and their role in immune regulation.pptx
ย 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
ย 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
ย 

CP2K: How to use the constrained DFT module

  • 1. Constrained DFT (CDFT) in CP2K CP2K UK User Meeting 2018, January 12 Nico Holmberg
  • 2. Contents โ€ข Introduction: what is CDFT and why use it? โ€ข Theoretical basis of CDFT in brief โ€ข CDFT implementation in CP2K o Algorithmic framework o Overview of features using examples โ€ข Summary 12.1.2018 2
  • 3. Introduction โ€ข CDFT allows creation of charge and spin localized states 12.1.2018 3
  • 4. Introduction โ€ข CDFT allows creation of charge and spin localized states โ€ข Why are such states needed? 12.1.2018 3
  • 5. Introduction โ€ข CDFT allows creation of charge and spin localized states โ€ข Why are such states needed? o Charge transfer phenomena 12.1.2018 3
  • 6. Introduction โ€ข CDFT allows creation of charge and spin localized states โ€ข Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) 12.1.2018 3
  • 7. Introduction โ€ข CDFT allows creation of charge and spin localized states โ€ข Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) o Treating self-interaction error due to spurious electron delocalization 12.1.2018 3
  • 8. Introduction โ€ข CDFT allows creation of charge and spin localized states โ€ข Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) o Treating self-interaction error due to spurious electron delocalization o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian) 12.1.2018 3
  • 9. Introduction โ€ข CDFT allows creation of charge and spin localized states โ€ข Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) o Treating self-interaction error due to spurious electron delocalization o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian) o And moreโ€ฆ [1] 1. Kaduk, B.; Kowalczyk, T.; van Voorhis, T., Chem. Rev., 2012, 112, 321โˆ’370. 12.1.2018 3
  • 10. Introduction โ€ข CDFT allows creation of charge and spin localized states โ€ข Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) o Treating self-interaction error due to spurious electron delocalization o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian) o And moreโ€ฆ [1] โ€ข CDFT in CP2K [2] requires version 5.1 or newer 1. Kaduk, B.; Kowalczyk, T.; van Voorhis, T., Chem. Rev., 2012, 112, 321โˆ’370. 2. Holmberg, N.; Laasonen, K., J. Chem. Theory Comput., 2017, 13, 587โˆ’601. 12.1.2018 3
  • 11. Generation of constrained states โ€ข Enforce density localization in atom-centered regions with constraint potential(s) [3,4] ๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max ๐€๐€ min ๐œŒ๐œŒ ๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ ๐‘๐‘ ๐œ†๐œ†๐‘๐‘ ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘ 10.1.2018 4 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
  • 12. Generation of constrained states โ€ข Enforce density localization in atom-centered regions with constraint potential(s) [3,4] ๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max ๐€๐€ min ๐œŒ๐œŒ ๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ ๐‘๐‘ ๐œ†๐œ†๐‘๐‘ ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘ 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
  • 13. Generation of constrained states โ€ข Enforce density localization in atom-centered regions with constraint potential(s) [3,4] ๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max ๐€๐€ min ๐œŒ๐œŒ ๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ ๐‘๐‘ ๐œ†๐œ†๐‘๐‘ ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘ โ€ข Weight function defines the type of constraint 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
  • 14. Generation of constrained states โ€ข Enforce density localization in atom-centered regions with constraint potential(s) [3,4] ๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max ๐€๐€ min ๐œŒ๐œŒ ๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ ๐‘๐‘ ๐œ†๐œ†๐‘๐‘ ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘ โ€ข Weight function defines the type of constraint o Total density constraint (๐œŒ๐œŒโ†‘ + ๐œŒ๐œŒโ†“ ): ๐‘ค๐‘คโ†‘ = ๐‘ค๐‘คโ†“ = ๐‘ค๐‘ค 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
  • 15. Generation of constrained states โ€ข Enforce density localization in atom-centered regions with constraint potential(s) [3,4] ๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max ๐€๐€ min ๐œŒ๐œŒ ๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ ๐‘๐‘ ๐œ†๐œ†๐‘๐‘ ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘ โ€ข Weight function defines the type of constraint o Total density constraint (๐œŒ๐œŒโ†‘ + ๐œŒ๐œŒโ†“ ): ๐‘ค๐‘คโ†‘ = ๐‘ค๐‘คโ†“ = ๐‘ค๐‘ค o Magnetization density constraint (๐œŒ๐œŒโ†‘ โˆ’ ๐œŒ๐œŒโ†“ ): ๐‘ค๐‘คโ†‘ = โˆ’๐‘ค๐‘คโ†“ = ๐‘ค๐‘ค 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
  • 16. Generation of constrained states โ€ข Enforce density localization in atom-centered regions with constraint potential(s) [3,4] ๐ธ๐ธCDFT ๐€๐€, ๐œŒ๐œŒ = max ๐€๐€ min ๐œŒ๐œŒ ๐ธ๐ธKS ๐œŒ๐œŒ + ๏ฟฝ ๐‘๐‘ ๐œ†๐œ†๐‘๐‘ ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“ โˆ’ ๐‘๐‘๐‘๐‘ โ€ข Weight function defines the type of constraint o Total density constraint (๐œŒ๐œŒโ†‘ + ๐œŒ๐œŒโ†“ ): ๐‘ค๐‘คโ†‘ = ๐‘ค๐‘คโ†“ = ๐‘ค๐‘ค o Magnetization density constraint (๐œŒ๐œŒโ†‘ โˆ’ ๐œŒ๐œŒโ†“ ): ๐‘ค๐‘คโ†‘ = โˆ’๐‘ค๐‘คโ†“ = ๐‘ค๐‘ค o Spin specific constraint (๐œŒ๐œŒโ†‘): ๐‘ค๐‘คโ†‘ = ๐‘ค๐‘ค, ๐‘ค๐‘คโ†“ = 0 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765โˆ’774.
  • 17. CDFT weight function โ€ข Constructed as sum of normalized atomic weight functions ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ = ๏ฟฝ๏ฟฝ ๐‘–๐‘–โˆˆ๐’ž๐’ž ๐‘๐‘๐‘–๐‘– ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) ๏ฟฝ ๐‘–๐‘– ๐‘๐‘ ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) 10.1.2018 5
  • 18. CDFT weight function โ€ข Constructed as sum of normalized atomic weight functions ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ = ๏ฟฝ๏ฟฝ ๐‘–๐‘–โˆˆ๐’ž๐’ž ๐‘๐‘๐‘–๐‘– ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) ๏ฟฝ ๐‘–๐‘– ๐‘๐‘ ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) โ€ข CP2K uses Becke partitioning o Smoothed Voronoi-like scheme 10.1.2018 5
  • 19. CDFT weight function โ€ข Constructed as sum of normalized atomic weight functions ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ = ๏ฟฝ๏ฟฝ ๐‘–๐‘–โˆˆ๐’ž๐’ž ๐‘๐‘๐‘–๐‘– ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) ๏ฟฝ ๐‘–๐‘– ๐‘๐‘ ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) โ€ข CP2K uses Becke partitioning o Smoothed Voronoi-like scheme o Atomic sizes can be taken into account (recommended) 10.1.2018 5
  • 20. CDFT weight function โ€ข Constructed as sum of normalized atomic weight functions ๐‘ค๐‘ค๐‘๐‘ ๐‘–๐‘– ๐’“๐’“ = ๏ฟฝ๏ฟฝ ๐‘–๐‘–โˆˆ๐’ž๐’ž ๐‘๐‘๐‘–๐‘– ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) ๏ฟฝ ๐‘–๐‘– ๐‘๐‘ ๐‘ƒ๐‘ƒ๐‘–๐‘–(๐’“๐’“) โ€ข CP2K uses Becke partitioning o Smoothed Voronoi-like scheme o Atomic sizes can be taken into account (recommended) โˆ’ E.g. oxygen has positive charge in water without adjustment 10.1.2018 5
  • 21. Optimization of the CDFT energy (1/2) โ€ข Constraints are satisfied when ๐’„๐’„ ๐€๐€ = ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค1 ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘๐‘1 โ‹ฎ = ๐ŸŽ๐ŸŽ 10.1.2018 6
  • 22. Optimization of the CDFT energy (1/2) โ€ข Constraints are satisfied when ๐’„๐’„ ๐€๐€ = ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค1 ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘๐‘1 โ‹ฎ = ๐ŸŽ๐ŸŽ โ€ข In practice, ๐€๐€ iteratively optimized until ๐ฆ๐ฆ๐š๐š๐š๐š ๐’„๐’„ ๐€๐€ โ‰ค ๐๐ 10.1.2018 6
  • 23. Optimization of the CDFT energy (1/2) โ€ข Constraints are satisfied when ๐’„๐’„ ๐€๐€ = ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค1 ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘๐‘1 โ‹ฎ = ๐ŸŽ๐ŸŽ โ€ข In practice, ๐€๐€ iteratively optimized until ๐ฆ๐ฆ๐š๐š๐š๐š ๐’„๐’„ ๐€๐€ โ‰ค ๐๐ o Uses root-finding algorithms, e.g., Newtonโ€™s method ๐€๐€๐‘›๐‘›+1 = ๐€๐€๐‘›๐‘› โˆ’ ๐›ผ๐›ผ๐‘ฑ๐‘ฑ๐‘›๐‘› โˆ’1 ๐’„๐’„ ๐€๐€๐‘›๐‘› 10.1.2018 6
  • 24. Optimization of the CDFT energy (1/2) โ€ข Constraints are satisfied when ๐’„๐’„ ๐€๐€ = ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ ๐‘ค๐‘ค1 ๐‘–๐‘– ๐’“๐’“ ๐œŒ๐œŒ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘๐‘1 โ‹ฎ = ๐ŸŽ๐ŸŽ โ€ข In practice, ๐€๐€ iteratively optimized until ๐ฆ๐ฆ๐š๐š๐š๐š ๐’„๐’„ ๐€๐€ โ‰ค ๐๐ o Uses root-finding algorithms, e.g., Newtonโ€™s method ๐€๐€๐‘›๐‘›+1 = ๐€๐€๐‘›๐‘› โˆ’ ๐›ผ๐›ผ๐‘ฑ๐‘ฑ๐‘›๐‘› โˆ’1 ๐’„๐’„ ๐€๐€๐‘›๐‘› 10.1.2018 6 Jacobian matrix, approximated by finite differences Step size โˆˆ [โˆ’1, 0) ๐‘ฑ๐‘ฑ๐‘–๐‘–๐‘–๐‘– = ๐œ•๐œ•๐’„๐’„๐‘–๐‘– ๐œ•๐œ•๐€๐€๐‘—๐‘— โ‰ˆ ๐’„๐’„๐‘–๐‘– ๐€๐€ + ๐œน๐œน๐‘—๐‘— โˆ’ ๐’„๐’„๐‘–๐‘–(๐€๐€) ๐œน๐œน๐‘—๐‘—
  • 25. Optimization of the CDFT energy (2/2) 10.1.2018 7 Input Constraints converged or max steps reached? Yes New guess for ๐€๐€ Output CDFT loop Store data for mixed CDFT Build Jacobian (optional) Optimize step size? Standard CP2K SCF Reduce step size No/Done Yes Yes No
  • 26. Defining constraints (1/2) 10.1.2018 7 &QS ... &CDFT TYPE_OF_CONSTRAINT BECKE &OUTER_SCF ON TYPE BECKE_CONSTRAINT EXTRAPOLATION_ORDER 2 MAX_SCF 10 ! Convergence threshold EPS_SCF 1.0E-3 ! Optimizer selection: now Newton's method with backtracking line search OPTIMIZER NEWTON_LS ! Optimizer step size STEP_SIZE -1.0 ! Line search settings MAX_LS 5 CONTINUE_LS FACTOR_LS 0.5 ! Finite difference settings for calculation of Jacobian matrix JACOBIAN_STEP 1.0E-2 JACOBIAN_FREQ 1 1 JACOBIAN_TYPE FD1 JACOBIAN_RESTART FALSE &END OUTER_SCF &END CDFT Full example files at https://www.cp2k.org/howto:cdft
  • 27. Defining constraints (2/2) 12.1.2018 8 &QS ! Constraint definitions ... ! Each repetition defines a constraint &CDFT &ATOM_GROUP ... ATOMS 1 &END CDFT COEFF 1 &BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE ! Take atomic radii into account? &END ATOM_GROUP ADJUST_SIZE FALSE ! No constraint but calculate charges ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS ! Compute Becke charges? ATOMS 2 ATOMIC_CHARGES TRUE &END DUMMY_ATOMS ! Constraint strength and target values ! Print info about CDFT calculation ! Give one value per constraint &PROGRAM_RUN_INFO ON STRENGTH ${BECKE_STR} &EACH TARGET ${BECKE_TARGET} QS_SCF 1 ! Cutoff scheme &END EACH CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2 ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC ! Perform Becke partitioning only within the space FILENAME ./${NAME} ! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO ! (reduces cost for solvated systems) &END BECKE_CONSTRAINT CAVITY_CONFINE TRUE &END QS CAVITY_SHAPE VDW EPS_CAVITY 1.0E-7 IN_MEMORY TRUE SHOULD_SKIP TRUE
  • 28. Defining constraints (2/2) 12.1.2018 8 &QS ! Constraint definitions ... ! Each repetition defines a constraint &CDFT &ATOM_GROUP ... ATOMS 1 &END CDFT COEFF 1 &BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE ! Take atomic radii into account? &END ATOM_GROUP ADJUST_SIZE FALSE ! No constraint but calculate charges ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS ! Compute Becke charges? ATOMS 2 ATOMIC_CHARGES TRUE &END DUMMY_ATOMS ! Constraint strength and target values ! Print info about CDFT calculation ! Give one value per constraint &PROGRAM_RUN_INFO ON STRENGTH ${BECKE_STR} &EACH TARGET ${BECKE_TARGET} QS_SCF 1 ! Cutoff scheme &END EACH CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2 ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC ! Perform Becke partitioning only within the space FILENAME ./${NAME} ! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO ! (reduces cost for solvated systems) &END BECKE_CONSTRAINT CAVITY_CONFINE TRUE &END QS CAVITY_SHAPE VDW EPS_CAVITY 1.0E-7 IN_MEMORY TRUE SHOULD_SKIP TRUE Use e.g. covalent radii
  • 29. Defining constraints (2/2) 12.1.2018 8 &QS ! Constraint definitions ... ! Each repetition defines a constraint &CDFT &ATOM_GROUP ... ATOMS 1 &END CDFT COEFF 1 &BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE ! Take atomic radii into account? &END ATOM_GROUP ADJUST_SIZE FALSE ! No constraint but calculate charges ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS ! Compute Becke charges? ATOMS 2 ATOMIC_CHARGES TRUE &END DUMMY_ATOMS ! Constraint strength and target values ! Print info about CDFT calculation ! Give one value per constraint &PROGRAM_RUN_INFO ON STRENGTH ${BECKE_STR} &EACH TARGET ${BECKE_TARGET} QS_SCF 1 ! Cutoff scheme &END EACH CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2 ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC ! Perform Becke partitioning only within the space FILENAME ./${NAME} ! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO ! (reduces cost for solvated systems) &END BECKE_CONSTRAINT CAVITY_CONFINE TRUE &END QS CAVITY_SHAPE VDW EPS_CAVITY 1.0E-7 IN_MEMORY TRUE SHOULD_SKIP TRUE Use e.g. covalent radii
  • 30. Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + (1/2) โ€ข When ๐‘น๐‘น๐™๐™๐™๐™โˆ’๐™๐™๐™๐™ grows, charge should localize onto one Zn atom 10.1.2018 9
  • 31. Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + (1/2) โ€ข When ๐‘น๐‘น๐™๐™๐™๐™โˆ’๐™๐™๐™๐™ grows, charge should localize onto one Zn atom โ€ข Standard GGA/hybrid functionals place +0.5 charge on both atoms 10.1.2018 9
  • 32. Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + (1/2) โ€ข When ๐‘น๐‘น๐™๐™๐™๐™โˆ’๐™๐™๐™๐™ grows, charge should localize onto one Zn atom โ€ข Standard GGA/hybrid functionals place +0.5 charge on both atoms โ€ข Force charge localization on first atom 10.1.2018 9 ! Set initial constraint strength to 0 (restarting from DFT) STRENGTH 0.0 ! Constraint target is the number of valence electrons โ€“ 1 TARGET 11.0 &ATOM_GROUP ATOMS 1 COEFF 1 CONSTRAINT_TYPE CHARGE &END ATOM_GROUP
  • 33. Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + (2/2) โ€ข The default output file contains the CDFT SCF iterations 10.1.2018 10 New guess for ๐€๐€ CDFT loop Build Jacobian (optional) Optimize step size? Standard CP2K SCF Reduce step size No/Done Yes
  • 34. Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + (2/2) โ€ข The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization 10.1.2018 10 New guess for ๐€๐€ CDFT loop Build Jacobian (optional) Optimize step size? Standard CP2K SCF Reduce step size No/Done Yes
  • 35. Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + (2/2) โ€ข The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization o Uses optimized solution from line search as restart if available โ€ข The following files are created with (quasi-)Newton optimizers o *.LineSearch.out: Electronic structure SCF and optimization of step size 10.1.2018 10 New guess for ๐€๐€ CDFT loop Build Jacobian (optional) Optimize step size? Standard CP2K SCF Reduce step size No/Done Yes
  • 36. Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + (2/2) โ€ข The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization o Uses optimized solution from line search as restart if available โ€ข The following files are created with (quasi-)Newton optimizers o *.LineSearch.out: Electronic structure SCF and optimization of step size o *.cdftLog: Summary of CDFT parameters and computed partial charges 10.1.2018 10
  • 37. Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + (2/2) โ€ข The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization o Uses optimized solution from line search as restart if available โ€ข The following files are created with (quasi-)Newton optimizers o *.LineSearch.out: Electronic structure SCF and optimization of step size o *.cdftLog: Summary of CDFT parameters and computed partial charges o *.JacobianInfo.out: Calculation of Jacobian matrix with perturbed ๐€๐€ 10.1.2018 10
  • 38. Example: ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + (2/2) โ€ข The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization o Uses optimized solution from line search as restart if available โ€ข The following files are created with (quasi-)Newton optimizers o *.LineSearch.out: Electronic structure SCF and optimization of step size o *.cdftLog: Summary of CDFT parameters and computed partial charges o *.JacobianInfo.out: Calculation of Jacobian matrix with perturbed ๐€๐€ o *.inverseJacobian: Restart file for inverse Jacobian matrix 10.1.2018 10
  • 39. Standard CP2K SCF with fixed values of constraint strength and step size CDFT SCF iteration information Constraint information Restarted from converged density obtained during line search
  • 40. Fragment constraints (1/2) โ€ข Number of valence electrons per molecule not necessarily well defined 12.1.2018 12
  • 41. Fragment constraints (1/2) โ€ข Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules 12.1.2018 12
  • 42. Fragment constraints (1/2) โ€ข Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules o How to set constraint target value? 12.1.2018 12
  • 43. Fragment constraints (1/2) โ€ข Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules o How to set constraint target value? โ€ข Use a fragment based constraint 12.1.2018 12 ๏ฟฝ๐œŒ๐œŒA(๐’“๐’“) ๏ฟฝ๐œŒ๐œŒB(๐’“๐’“) ๏ฟฝ๐‘๐‘๐‘๐‘ = ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ๐‘ค๐‘ค๐‘–๐‘– ๐’“๐’“ ๏ฟฝ๐œŒ๐œŒA ๐‘–๐‘– ๐’“๐’“ + ๏ฟฝ๐œŒ๐œŒB ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“
  • 44. Fragment constraints (1/2) โ€ข Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules o How to set constraint target value? โ€ข Use a fragment based constraint o Only single-point calculations 12.1.2018 12 ๏ฟฝ๐œŒ๐œŒA(๐’“๐’“) ๏ฟฝ๐œŒ๐œŒB(๐’“๐’“) ๏ฟฝ๐‘๐‘๐‘๐‘ = ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ๐‘ค๐‘ค๐‘–๐‘– ๐’“๐’“ ๏ฟฝ๐œŒ๐œŒA ๐‘–๐‘– ๐’“๐’“ + ๏ฟฝ๐œŒ๐œŒB ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“
  • 45. Fragment constraints (1/2) โ€ข Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules o How to set constraint target value? โ€ข Use a fragment based constraint o Only single-point calculations โ€ข Cube read/write accelerated with MPI I/O since r18131 12.1.2018 12 ๏ฟฝ๐œŒ๐œŒA(๐’“๐’“) ๏ฟฝ๐œŒ๐œŒB(๐’“๐’“) ๏ฟฝ๐‘๐‘๐‘๐‘ = ๏ฟฝ ๐‘–๐‘–=โ†‘,โ†“ ๏ฟฝ๐‘ค๐‘ค๐‘–๐‘– ๐’“๐’“ ๏ฟฝ๐œŒ๐œŒA ๐‘–๐‘– ๐’“๐’“ + ๏ฟฝ๐œŒ๐œŒB ๐‘–๐‘– ๐’“๐’“ ๐‘‘๐‘‘๐’“๐’“
  • 46. Fragment constraints (2/2) โ€ข Charge transfer energies of strongly interacting complexes โˆ’ฮ”๐ธ๐ธCT = ๐ธ๐ธCDFT โˆ’ ๐ธ๐ธDFT 10.1.2018 13
  • 47. Fragment constraints (2/2) โ€ข Charge transfer energies of strongly interacting complexes โˆ’ฮ”๐ธ๐ธCT = ๐ธ๐ธCDFT โˆ’ ๐ธ๐ธDFT 10.1.2018 13 Energy of system with charge transfer prevented
  • 48. Fragment constraints (2/2) โ€ข Charge transfer energies of strongly interacting complexes โˆ’ฮ”๐ธ๐ธCT = ๐ธ๐ธCDFT โˆ’ ๐ธ๐ธDFT 10.1.2018 13 Energy of system with charge transfer prevented Fragment Becke with atomic size adjustments Becke Becke with atomic size adjustments BW: BW+A: FBB+A:
  • 49. Fragment constraints (2/2) โ€ข Charge transfer energies of strongly interacting complexes โˆ’ฮ”๐ธ๐ธCT = ๐ธ๐ธCDFT โˆ’ ๐ธ๐ธDFT โ€ข Magnitude of charge transferred, ฮ”๐‘ž๐‘ž , overestimated by non- fragment constraints 10.1.2018 13 Energy of system with charge transfer prevented Fragment Becke with atomic size adjustments Becke Becke with atomic size adjustments BW: BW+A: FBB+A:
  • 50. Combining multiple CDFT states โ€ข Additional properties can be computed from the interactions between CDFT states 10.1.2018 14
  • 51. Combining multiple CDFT states โ€ข Additional properties can be computed from the interactions between CDFT states o Charge transfer kinetics (Marcus theory) ๐‘˜๐‘˜ab = 2๐œ‹๐œ‹ โ„ ๐‘ฏ๐‘ฏab 2 ๐‘‡๐‘‡ 4๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‰๐œ‰ exp โˆ’ ๐œ‰๐œ‰ + ฮ”๐ด๐ด 2 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘‡๐‘‡๐œ‰๐œ‰ 10.1.2018 14
  • 52. Combining multiple CDFT states โ€ข Additional properties can be computed from the interactions between CDFT states o Charge transfer kinetics (Marcus theory) ๐‘˜๐‘˜ab = 2๐œ‹๐œ‹ โ„ ๐‘ฏ๐‘ฏab 2 ๐‘‡๐‘‡ 4๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‰๐œ‰ exp โˆ’ ๐œ‰๐œ‰ + ฮ”๐ด๐ด 2 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘‡๐‘‡๐œ‰๐œ‰ 10.1.2018 14 Electronic coupling Solvent reorganization energy Reaction free energy
  • 53. Combining multiple CDFT states โ€ข Additional properties can be computed from the interactions between CDFT states o Charge transfer kinetics (Marcus theory) ๐‘˜๐‘˜ab = 2๐œ‹๐œ‹ โ„ ๐‘ฏ๐‘ฏab 2 ๐‘‡๐‘‡ 4๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‰๐œ‰ exp โˆ’ ๐œ‰๐œ‰ + ฮ”๐ด๐ด 2 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘‡๐‘‡๐œ‰๐œ‰ o Configuration interaction within the basis of CDFT states 10.1.2018 14 Electronic coupling Solvent reorganization energy Reaction free energy
  • 54. Combining multiple CDFT states โ€ข Additional properties can be computed from the interactions between CDFT states o Charge transfer kinetics (Marcus theory) ๐‘˜๐‘˜ab = 2๐œ‹๐œ‹ โ„ ๐‘ฏ๐‘ฏab 2 ๐‘‡๐‘‡ 4๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‰๐œ‰ exp โˆ’ ๐œ‰๐œ‰ + ฮ”๐ด๐ด 2 4๐œ‹๐œ‹๐‘˜๐‘˜๐‘‡๐‘‡๐œ‰๐œ‰ o Configuration interaction within the basis of CDFT states โ€ข Approximate electronic coupling with CDFT Kohn-Sham determinants after orthogonalization [5] ๐‘ฏ๐‘ฏij โ‰ˆ ๐šฝ๐šฝCDFT i ๏ฟฝ๐ป๐ปKS ๐šฝ๐šฝCDFT j = ๐ธ๐ธCDFT i + ๐ธ๐ธCDFT j 2 ๐‘บ๐‘บ๐‘–๐‘–๐‘–๐‘– โˆ’ ๏ฟฝ ๐‘๐‘ ๐šฝ๐šฝCDFT i ๐œ†๐œ†๐‘๐‘ i ๐‘ค๐‘ค๐‘๐‘ i (๐’“๐’“) + ๐œ†๐œ†๐‘๐‘ j ๐‘ค๐‘ค๐‘๐‘ j (๐’“๐’“) 2 ๐šฝ๐šฝCDFT j 10.1.2018 14 Electronic coupling Solvent reorganization energy Reaction free energy 5. Wu, Q.; van Voorhis, T., J. Chem. Phys., 2006, 125, 164105.
  • 55. The mixed CDFT module&MULTIPLE_FORCE_EVALS # Zn+ Zn FORCE_EVAL_ORDER 2 3 &FORCE_EVAL MULTIPLE_SUBSYS FALSE @SET WFN_FILE ${WFN_FILE_1} &END @SET RESTART ${RESTART_1} &FORCE_EVAL @SET NAME ${PROJECT_NAME}-state1 METHOD MIXED @SET BECKE_TARGET ${BECKE_TARGET_1} &MIXED @SET BECKE_STR ${BECKE_STR_1} MIXING_TYPE MIXED_CDFT METHOD QS NGROUPS 1 @include ${DFT_FILE} &MIXED_CDFT &END FORCE_EVAL ! Calculate mixed CDFT properties every COUPLING step # Zn Zn+ COUPLING 1 &FORCE_EVAL ! Settings determining how forces are mixed @SET WFN_FILE ${WFN_FILE_2} FORCE_STATES 1 2 @SET RESTART ${RESTART_2} LAMBDA 1.0 @SET NAME ${PROJECT_NAME}-state2 ! Orthogonalize CDFT states with Lowdin's method @SET BECKE_TARGET ${BECKE_TARGET_2} LOWDIN TRUE @SET BECKE_STR ${BECKE_STR_2} ! Configuration interaction? METHOD QS CI FALSE @include ${DFT_FILE} &PRINT &END FORCE_EVAL &PROGRAM_RUN_INFO ON &END &END PRINT &END MIXED_CDFT &END MIXED @include subsys.inc &END FORCE_EVAL 10.1.2018 15 Additional settings available and explained in the manual
  • 56. Electronic coupling in ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + 10.1.2018 16 Zn+ Zn ๏ฟฝ๐ป๐ป ZnZn+
  • 57. Electronic coupling in ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + 10.1.2018 16 Zn+ Zn ๏ฟฝ๐ป๐ป ZnZn+
  • 58. Electronic coupling in ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + 10.1.2018 16 Zn+ Zn ๏ฟฝ๐ป๐ป ZnZn+ Different orthogonalization algorithms
  • 59. Electronic coupling in ๐™๐™๐ง๐ง๐Ÿ๐Ÿ + 10.1.2018 17 Zn+ Zn ๏ฟฝ๐ป๐ป ZnZn+ Different orthogonalization algorithms Agrees with 5.49 mHartree estimate from more expensive wavefunction based method CASSCF/MRCI+Q
  • 60. CDFT in solvated systems โ€ข Computational efficiency of GPW/OT allows study of solvated charge transfer processes at full DFT level 12.1.2018 18
  • 61. CDFT in solvated systems โ€ข Computational efficiency of GPW/OT allows study of solvated charge transfer processes at full DFT level โ€ข Evaluating intramolecular charge transfer kinetics in QTTFQโ€“ โ€ข 258 water, 12 ps (0.5 fs timestep) โ€ข 48 s/timestep @ 384 MPI cores (~120k core hours) 12.1.2018 18
  • 62. List of CDFT capabilities in CP2K โ€ข GPW and GAPW (no fragment constraint) 12.1.2018 19
  • 63. List of CDFT capabilities in CP2K โ€ข GPW and GAPW (no fragment constraint) โ€ข Full DFT or QM/MM 12.1.2018 19
  • 64. List of CDFT capabilities in CP2K โ€ข GPW and GAPW (no fragment constraint) โ€ข Full DFT or QM/MM โ€ข Primarily for OT, diagonalization is supported but difficult to converge 12.1.2018 19
  • 65. List of CDFT capabilities in CP2K โ€ข GPW and GAPW (no fragment constraint) โ€ข Full DFT or QM/MM โ€ข Primarily for OT, diagonalization is supported but difficult to converge โ€ข Energies and forces for an unlimited number of constraints (any type) 12.1.2018 19
  • 66. List of CDFT capabilities in CP2K โ€ข GPW and GAPW (no fragment constraint) โ€ข Full DFT or QM/MM โ€ข Primarily for OT, diagonalization is supported but difficult to converge โ€ข Energies and forces for an unlimited number of constraints (any type) โ€ข Mixed CDFT module supports 12.1.2018 19
  • 67. List of CDFT capabilities in CP2K โ€ข GPW and GAPW (no fragment constraint) โ€ข Full DFT or QM/MM โ€ข Primarily for OT, diagonalization is supported but difficult to converge โ€ข Energies and forces for an unlimited number of constraints (any type) โ€ข Mixed CDFT module supports o Electronic couplings with various orthogonalization methods 12.1.2018 19
  • 68. List of CDFT capabilities in CP2K โ€ข GPW and GAPW (no fragment constraint) โ€ข Full DFT or QM/MM โ€ข Primarily for OT, diagonalization is supported but difficult to converge โ€ข Energies and forces for an unlimited number of constraints (any type) โ€ข Mixed CDFT module supports o Electronic couplings with various orthogonalization methods o Configuration interaction 12.1.2018 19
  • 69. List of CDFT capabilities in CP2K โ€ข GPW and GAPW (no fragment constraint) โ€ข Full DFT or QM/MM โ€ข Primarily for OT, diagonalization is supported but difficult to converge โ€ข Energies and forces for an unlimited number of constraints (any type) โ€ข Mixed CDFT module supports o Electronic couplings with various orthogonalization methods o Configuration interaction o Removal of linearly-dependent MOs via SVD decomposition 12.1.2018 19
  • 70. List of CDFT capabilities in CP2K โ€ข GPW and GAPW (no fragment constraint) โ€ข Full DFT or QM/MM โ€ข Primarily for OT, diagonalization is supported but difficult to converge โ€ข Energies and forces for an unlimited number of constraints (any type) โ€ข Mixed CDFT module supports o Electronic couplings with various orthogonalization methods o Configuration interaction o Removal of linearly-dependent MOs via SVD decomposition o Electronic coupling reliability metrics 12.1.2018 19
  • 71. Summary โ€ข CDFT is a tool to study charge transfer phenomena 12.1.2018 20
  • 72. Summary โ€ข CDFT is a tool to study charge transfer phenomena โ€ข Available in latest release version 12.1.2018 20
  • 73. Summary โ€ข CDFT is a tool to study charge transfer phenomena โ€ข Available in latest release version โ€ข Tutorial at https://www.cp2k.org/howto:cdft that complements regtests 12.1.2018 20
  • 74. Summary โ€ข CDFT is a tool to study charge transfer phenomena โ€ข Available in latest release version โ€ข Tutorial at https://www.cp2k.org/howto:cdft that complements regtests o Summaries of CDFT theory and the CP2K implementation o Walk throughs of example calculations 12.1.2018 20
  • 75. Summary โ€ข CDFT is a tool to study charge transfer phenomena โ€ข Available in latest release version โ€ข Tutorial at https://www.cp2k.org/howto:cdft that complements regtests o Summaries of CDFT theory and the CP2K implementation o Walk throughs of example calculations โ€ข Help provided on Google groups if you encounter issues with CDFT features 12.1.2018 20