This document provides an overview of exploratory data analysis (EDA) techniques and commonly used tools. It discusses classical and Bayesian statistical analysis approaches as well as EDA. Popular Python libraries for EDA include NumPy, Pandas, Matplotlib and Seaborn. NumPy allows working with multidimensional arrays and matrices while Pandas facilitates working with structured data. The document also provides examples of creating arrays and dataframes, loading data from files, and analyzing datasets using these tools.