SlideShare a Scribd company logo
1 of 9
Download to read offline
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 4 Issue 3, April 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 ā€“ 6470
@ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 283
Classification & Detection of Vehicles using Deep Learning
Madde Pavan Kumar, Dr. K. Manivel, N. Jayanthi
Department of Electronics and Communication, Mahendra Engineering College, Namakkal, Tamil Nadu, India
ABSTRACT
The vehicle classification and detecting its license plate are importanttasksin
intelligent security and transportation systems. The traditional methods of
vehicle classification and detection arehighlycomplexwhichprovidescoarse-
grained results due to suffering from limited viewpoints. Because of thelatest
achievements of Deep Learning, it was successfully applied to image
classification and detection of objects. This paper presents a methodbasedon
a convolutional neural network, which consists of two steps: vehicle
classification and vehicle license plate recognition. Several typical neural
network modules have been applied in training and testing the vehicle
Classification and detection of licenseplatemodel,suchasCNN (convolutional
neural networks), TensorFlow, Tesseract-OCR. The proposed method can
identify the vehicle type, number plate and other information accurately.This
model provides security and log details regarding vehicles by using AI
Surveillance. It guides the surveillanceoperatorsandassistshumanresources.
With the help of the original (training) dataset and enriched (testing) dataset,
the algorithm can obtain results with an average accuracy of about 97.32% in
the classification and detection of vehicles. By increasing the amount of the
data, the mean error and misclassification rate gradually decreases. So, this
algorithm which is based on Deep Learning has good superiority and
adaptability. When compared to the leading methods inthechallengingImage
datasets, our deep learning approach obtains highly competitive results.
Finally, this paper proposes modern methods for the improvement of the
algorithm and prospects the development direction of deep learning in the
field of machine learning and artificial intelligence.
KEYWORDS: Convolution neural network, Vehicle classification, Vehicle License
plate Recognition
How to cite this paper: Madde Pavan
Kumar | Dr. K. Manivel | N. Jayanthi
"Classification & Detection of Vehicles
using Deep Learning" Published in
International Journal
of Trend in Scientific
Research and
Development
(ijtsrd), ISSN: 2456-
6470, Volume-4 |
Issue-3, April 2020,
pp.283-291, URL:
www.ijtsrd.com/papers/ijtsrd30353.pdf
Copyright Ā© 2020 by author(s) and
International Journal ofTrendinScientific
Research and Development Journal. This
is an Open Access article distributed
under the terms of
the Creative
CommonsAttribution
License (CC BY 4.0)
(http://creativecommons.org/licenses/by
/4.0)
I. INTRODUCTION
Vehicle classification and detection have promising
importance in the future. Because, it can be utilized in many
aspects such as to analyze the urban traļ¬ƒc statistics,
Advanced Driver Assistance System, against vehicle theft,
large parking lot management, against vehicle escape,
improvement of the road information acquisition and safety
management of highway, electronic toll collection (ETC),
traļ¬ƒc investigation and so on.
One of the most important applications for object
recognition in the neural network is the image classification
tasks. However, the vehicle classification and detecting its
license plate still face a few great challenges because the
number of vehicle classes are very large and that some
attributions of the vehicle are too close to identify. So, the
process of training the neural network requires a great
number of parameters, which often accompanies by over-
fitting problems. The recognition results can achieve a
higher degree of accuracy in the training set, but a lower
degree of accuracy in the test set.
Fig 1: Classification of Vehicle
IJTSRD30353
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 284
Although the training data set is modest in size, the neural
network itself does not embody distinct advantages in
evaluation systems of higher recognition accuracy and
shorter training time than other models. The predominant
motives for it are limited computing sources and lengthy
processing time for even a small network. However, one of
the keys to these issues is the feature extraction and
classification of detection images for vehicle rearview.
Because of Facing many practical problems, neural networks
have been gradually integrated with some better methods
emerging in the 21st century, such as Convolutional Neural
Networks, ResNet Architecture, Tensor Flow. In this kind of
model, aimed at different tasks,differentsystemsareusually
designed and respectively applied different manual design
features.
Fig 2: License Plate Recognition
For example, the object recognition uses Feature extraction
from CNN. License platerecognitionusesTesseract-OCR,and
the pedestrian detection uses Histogram of Oriented
Gradient (HOG) feature. Therefore, this paper aims at
classifying and detecting the vehicles from different
viewpoints under any circumstances.
II. EXISTING SYSTEMS
The traditional methods of vehicle classification and
detection are mainly based on the following methods: 1)
SIFT (Scale-invariant feature transform) feature matching
and extraction; 2) the moving vehicle detection method of
Gaussian mixture model; 3) the license plate classification
method; 4) the monitoring video classification method of
HOG (Histogram of Oriented Gradient) and SVM (Support
Vector Machine). Based on these traditional methods, the
neural network model gets the lower recognition reference
to detect the objects. So, these methods give the inaccurate
results in which accuracy is limited to 85% only.
The above traditional algorithmshavealreadyobtainedgood
results. Several shortcomings in the traditional methods
have limited its realization: (i) the high similarity between
models naturally inļ¬‚uence the accuracy, (ii) some models
containing only a few images, and (iii) the uniļ¬ed direction
like front, side or back in picture causes the inaccurate
classiļ¬cation. (iv) the methods usually require the images
are captured from certain viewpoints, (v) the vehicle
recognition granularity just stays in the stage of the vehicle
model classification. In this paper we address these
limitations and providing techniques that are practical for
vehicle classiļ¬cation problem. According to existing
methods, this paper further optimized the classification and
detection algorithms. It applies the Deep Neural Networks
(DNNs) to the classification and License plate detection of
the vehicles and obtained a better recognition performance
under different viewpoints or traffic conditions.
III. LITERATURE SURVEY
[1] Chen, Z., Ellis, T., and Velastin, S. A., ā€œVehicle Type
Categorizationā€ A comparison of classiļ¬cation schemes In
Intelligent transportation systems(ITSC),14thinternational
IEEE conference.
This Paper proposed the Vehicle detection and classiļ¬cation
based on histogram oforientationgradients(HOG)approach
which was presented by Zezhi Chen and Tim Ellis. This
Classiļ¬cation model contains two parts: feature extraction
and classiļ¬er selection. In their approach, measurement-
based features (MBP) and the histogram of orientation
gradients (HOG) features are used to classify the vehicles
into four categories: car, van, bus, and motorcycle.
For this classiļ¬cation model, they have used two classiļ¬ers.
They are Random Forest (RF) and Support Vector Machines
(SVM). Due to the multiple classiļ¬cation problems, they
decided to use one-vs-all strategy. With this approach, the
best 3D model can be found that match with the original
vehicle type. The model they have presented is a novel
vehicle type classiļ¬cation, which provides an accurate and
reliable performance. However, the features among thefour
vehicle types are verydiļ¬€erent.Sometimes3Dmodelsoftwo
vehicles such as hatchback and SUV may be similar. In this
case, this system may be hard to detect the vehicle type.
[2] Chang, S.-L., Chen, L.-S., Chung, Y.-C., and Chen, S.-W.,
ā€œAutomatic license plate recognitionā€ IEEE transactions on
Intelligent Transportation Systems.
This paper proposed a license plate image technique
consisting of two main models:a licenseplatelocatingmodel
and a license number identiļ¬cation module. Speciļ¬cally, the
license plates extracted from the ļ¬rst model areexamined in
the identiļ¬cation model to reduce the error rate. They used
color edge detection to compute edge maps.
But this is limited to only four types of edges. By using the
unique formulas, the model can transform RGB space into
HSI space that denote red, green, blue colors as hue,
saturation, intensity parameter values of an image pixels,
respectively. The identiļ¬cation module consists oftwomain
stages, preprocessing and recognition. After this process,
segmentation and recognition will be invoked sequentially.
However, this identiļ¬cation model takes more time to
recognize the characters and it is a complex process which
needs to be modified. This model can detect the License
plate, if and only if that license plate & characters are in
specified color edges. This type of model can be useful in a
particular region or place.
[3] Farhat, A., Al-Zawqari, A., Al-Qahtani, A., Hommos, O.,
Bensaali, F., Amira, A., and Zhai, X., ā€œTesseract-OCR Based
Feature Extraction and Template Matching Algorithms For
Number Plate Recognitionā€ In Industrial Informatics and
Computer Systems (CIICS), International Conference on
IEEE.
A modiļ¬ed template matching Correlation algorithm was
proposed by Ali Farhat et al. They have developed four
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 285
algorithms for Numeric AutomaticLicensePlateRecognition
(ALPR) systems: Vector crossing, zoning and combined
zoning-vector and template matchingcorrelation.Firstthree
algorithms are based on feature extraction techniques and
the last one is application of correlation technique. By using
vector crossing algorithm, they distinguished the ten
characters (0āˆ’9) except the characters ā€œ2ā€, ā€œ3ā€ andā€œ5ā€.Since
these characters have the same number of the vectors. By
using Zoning method, densities of the image ineachzoneare
derived by the algorithm to determine the characters.
The third approach is the combination of the previous two
methods. In that, density oftheimageiscalculated.However,
these three algorithms cannot determine a noise in the
image. Hence, they developed a system based on template
matching correlation as a fourth approach. This correlation
indicates the linear relationship between each character
with all other characters. However, the limitations of this
approach are that, they can recognize only 10 numbers
instead of the alphabets. If more templates are added to the
system, the success rate may decline since some characters
share the same density and vector.
[4] Casey, R. G. and, E., ā€œA survey of methods and strategies
in character segmentationā€, IEEE transactions on pattern
evaluation and machine intelligence.
Lecolinet et al proposed a new algorithm for license plate
identiļ¬cation. For faster detection of license plate regions,
they developed a novel method called Sliding Concentric
Windows (SCW), which can describe the irregularity in the
image based on image statistics. The SCW segmentation
algorithm involves following steps. (i) Two concentric
windows A and B were created fortheupperleftcornerpixel
of the image. (ii) Mean values are obtained from both
windows. In this approach, the RoI (Region of Interest) will
be detected if the ratio of the statistical measurements (B to
A) in the couple of windows reaches a threshold value.
Image masking, Binarization and connected components
analysis (CCA) functions are employed in sequence. As a
result, license plate region is detected. In license plate
processing stage, they created an approach to segment the
characters. The probabilistic neural network (PNN) is
invoked to recognize the characters. As a result, possible
character is determined in the output layer.
However, the proposed system relies highly on the lighting
condition and the physical appearance of the plates. Insome
cases, the model cannot detect the plate due to the
illumination condition or the quality of the plates.
IV. PROPOSED SYSTEM
This paper proposed an Advanced vehicle classification and
detection method based on deep neural networks. In this
system, vehicle classification task is accomplished by
Convolutional Neural Networks.Itextractsthevehicleregion
from its background area by pictures, in order to test the
generalization ability about the domestic vehicle types of
vehicle dataset. So, the vehicle region is segmented to
remove background noise to improve the recognition
accuracy. In this approach, theconvolutional neural network
is used to complete feature extraction and classification
training of labeled image datasetsofmanyvehicletypessuch
as bus, car, bike, bicycle. In this way, the task of identifying
vehicle types from different angles can be completed.
Fig 3: Input Image to the Model
Besides, this paper alsofocusesonautomaticdetectionofthe
vehicle License plates which can be accomplished by
Tesseract-OCR (optical character recognition). It is used to
recognize the characters and provides the text from the
given image. So, the extracted License Plate is given to the
tesseract-OCR which in return provides the characters of
number plate for license plate recognition.
Fig 4: Output Image from Trained Model
Finally, the Proposed model is evaluated based on selection
accuracy, recognition accuracyandreal-timeperformancein
the vehicle classification and detection process. While
training the model for the detection of vehicle type and its
number plate, the dataset must be split into train data and
test data. The train and test data are statistically known as
positive overlap range and negative overlap range
respectively.
When we dataset the parameter "Negative Overlap Range"
(where the overlap ratio between the candidate and the
image labeled area is used as the interval for negative
training samples) to [0, 0.3], and the parameter "Positive
Overlap Range" (the overlap ratio between the candidate
and the image labeled area as the interval of the positive
training sample) to [0.7, 1.0], the accuracy of proposed
vehicle detection model will be the highest.
V. SYSTEM ARCHITECTURE
Block Diagram of the Proposed System is represented as
shown below in figure 5. This Proposed block diagram is
categorized into threeparts. Theyare(i)SystemFramework,
(ii) Software Requirements, (iii) Methodology
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 286
Fig 5: Block Diagram of Proposed System
A. SYSTEM FRAMEWORK
1. Vehicle Detection and Classification Based on
Convolutional Neural Networks:
1.1. Vehicle Detection:
In this system, images of the training dataset are given as
input and the foreground area of the target vehicle is
detected by the convolutional neural network (CNN). But
there are some issues to build a deep learning model by
using CNN. The first problem while training the deeper
networks is, accuracy should be increased with an increase
in depth of the network as long as over-fitting is taken care
of. However, the problem with increased depth is that the
signal required to change the weights, which arises fromthe
end of the network by comparing ground-truth and
prediction becomes very small at the earlier layers, as a
result of increased depth.
It essentially means that earlier layers are almost negligible
to learn. This is called a vanishing gradient. The other
problem while trainingthedeepernetworksis,executingthe
optimization on huge parameter spaceandtherefore naively
adding the layers which results in higher trainingerror.This
is called a degradation problem.Inordertoovercomethese
issues, Convolutional Neural Network uses ResNet
Architecture to train the deeper networks.
ResNet architecture makes use of shortcut connections to
solve the vanishing gradient and degradation problems. The
basic building block of ResNet is a Residual block which is
repeated throughout the network. The ResNet structure as
shown in Figure 6.
Fig 6: A Residual Block of Deep Residual Network
Instead of learning the mapping from x ā†’ F(x), the network
learns the mapping from xā†’ F(x)+G(x).Whenthedimension
of the input x and output F(x) is same, the functionG(x)=x is
an identity function and the shortcut connection is called
Identity connection. The identical mapping is learned by
zeroing out the weights in the intermediate layer during
training, since itā€™s easier to zero out the weights than push
them to one. For the case when the dimensions of F(x) differ
from x, Projection connection is implemented rather than
Identity connection. The function G(x) changes the
dimensions of input x to that of output F(x).
Fig 7: Projection connection of Residual Network
ResNet Architecture uses Rectified Linear Unit (ReLu) as an
activation function of neural networks. This rectified Linear
activation function is a piecewise linear function that gives
the output as its input itself, if the input is positive.
Otherwise, it gives output as zero if the input is negative.
ReLu activation function reduces the large number of
computations. It has become the default activation function
for many types of neural networksbecausea model that uses
ReLu is easier to train and often achieves better
performance. The ReLu activationfunctionisgivenasshown
below.
X if x > 0
F (x) = for all x āˆˆāˆˆāˆˆāˆˆR
0 if x 0
By using ReLU as an excitation function instead of the
traditional function, Logistics makes it easier to forward
propagation and calculate the reverse gradient by using
partial derivative. It also helps avoid complex algorithms
such as exponent and division.
The hidden layer neurons with output less than 0 are
discarded to increase the sparsity and reduces the
overfitting effect. The ResNet network structure is adjusted
while testing the data and the extracted vehicle area is
outputted as shown in Figure 8.
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 287
Fig 8: Vehicle Detection
1.2. Vehicle Classification:
The foreground vehicle area obtained by vehicle detection
algorithm is introduced into another convolutional neural
network for vehicle recognition. Convolutional neural
network uses a certain number of convolutional kernels to
slide the input image with a certain step size to extract
features in the convolution layer. Each convolution kernel
focuses on different features, so the convolution obtains
different feature maps.
Fig 9: CNN Architecture
These obtained feature maps are passed into the lower
convolution layer, and then the lower convolutionlayeruses
a certain number of convolution kernels to extract the
features of upper feature map, this operation will be
repeated. The weighting parameter will be got after the
features are processed for several times. Thentheweighting
parameter will be connected to the full connection layer, the
full connection layer plays a role of classifier in the entire
convolution neural network, namely a model to classify the
extracted features.
By using the method of Deep Learning, the features ignored
by the traditional methods can be extracted, the recognition
accuracy can be improved obviously, and different
convolution kernels are used to obtain convolution feature
diagrams, as shown in Fig 10. This ResNet architecture is
similar to the VGGNet which consists mostly of 3X3 filters or
kernels.
Fig 10: Feature Map of Convolution Layer
From the VGGNet, shortcut connection is inserted to form a
residual network. In order to overcome the issues such as
vanishing gradient and degradation problems of the deep
learning model which occurs during training the model.
2. TENSORFLOW:
TensorFlow is an open source library which uses data flow
graphs to build the models. This allows developers to create
large-scale neural networkswithmanylayers. TensorFlowis
a neural network module which is mainly employed for
Classification, Perception, Understanding, Discovering,
Prediction and Creation. Tensors are the multidimensional
arrays, an extension of 2-dimensional tables to data with a
higher dimension. There are many features regarding
TensorFlow which makes it appropriate for Deep Learning.
Fig 11: TensorFlow Architecture
TensorFlow architecture works in three parts. They are (i)
Preprocessing the data, (ii) Build themodel,(iii)Totrainand
test the model. Initially, the raw data is scaled by
normalizing the input and output features of a model. This
preprocessed data splits into train and test dataset. This
Building model is trained using train dataset. By comparing
the prediction accuracyoftestdatasetwiththeground-truth,
loss function of the model can be analyzed and tuned with
hyperparameters. TensorFlow is used for fast numerical
computations of neural networks. It is a foundation library
that can be used to provide DeepLearningmodelsdirectly or
perhaps by using wrapper libraries that simplifytheprocess
built on top of TensorFlow.
3. OpenCV:
OpenCV is also known as Open Source Computer vision. It
is a cross-platform library of programming functions
which mainly aims to develop the real-time computer
vision applications. OpenCV was developed by Intel
organization. This mainly focuses on image processing,
video capture and analysis which include features such as
face detection and object detection. It supports some
models from deep learning frameworks such as tensor-flow,
Tesseract-OCR, PyTorchmodulestobuildaneffectivemodel.
By integrating the OpenCV with the Tesseract-OCR, it can
extract the characters even from colored imageswithhigher
accuracy.
B. SOFTWARE REQUIREMENTS
1. TESSERACT-OCR:
The Character Recognition popularly referred as Optical
Character Recognition (OCR). Tesseract-OCR is the
software process of converting typed, handwritten, or
printed text to machine-encoded text that we can access
and manipulate via a string variable. The OCR has been
one of the challenging and popular ļ¬elds of research in
pattern recognition. This can be used as one of the
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 288
classiļ¬er in the image processing step since the most
crucial step in OCR is identifying characters as one of 36
symbols (A-Z and 0-9). Therefore, for classiļ¬cation, we
need to extract visual features from individual character
image. Then, character can be classiļ¬ed with these
features using machine learning. The most eļ¬€ective way
for now is OCR-tesseract, which is originally developed by
Hewlett Packard in the 1980s. It is one of the most
accurate open source OCR engines currently available.
Fig 12: Flowchart of Tesseract-OCR Process
As other traditional procedures, this processing follow a
step by step approach. As the most important part,
recognition consists of two stages, which are adaptive
classiļ¬cation and repeating recognition, respectively. In
the ļ¬rst stage, each character is recognized sequentially.
Additionally, the symbol that is classiļ¬ed is stored by the
adaptive classiļ¬er as the training data. Then, the adaptive
classiļ¬er will learn the information that classiļ¬ed
characters provide, from which the characters that are
not recognized in ļ¬rst step will be classiļ¬ed again. This
two-stage process make this method accurate and
eļ¬ƒcient.
2. LabelIMG:
Labelimg is a graphical image annotation tool. It is designed
in Python and uses Qt for its graphical interface.Annotations
are saved as XML files in PASCAL VOC format which is
employed by ImageNet. Image Annotation could be
the process of building datasets for computervisionmodels.
This helps machines to learn, how to automatically assign
metadata into a digital image using captioning or keywords.
This Labelimg tool is used to train our customized model.
This technique is used for image retrieval systems to
organize and easilylocateparticular images froma database.
Image labeling gives the insight into the content of images.
When you use the API, you get a list of the entities that were
recognized: people, things, places, activities, and so on.
Each label found comes with a score that indicates the
confidence or probability or accuracy of the ML model
according to its relevance.
3. ANACONDA NAVIGATOR:
Anaconda Navigator is used to launch applications and to
manage conda packages, virtual environments, and
programs without the use of command line commands. In
order to get the Navigator, download the Navigator Cheat
Sheet and install Anaconda. It is a free open-source software
which is associated with Python and R programming
languages for scientific computing such as for data science,
machine learning applications, large scale data processing,
predictive analytics and so on. It aims to simplify package
management and deployment.
Jupyter Notebook is a one of the IDE which have to be
launched from the Anaconda Navigator to develop, execute,
debug the algorithms which performs Artificial intelligence
tasks. It provides you with an easy-to-use, interactive data
science environment across many programming languages
that doesn't only work as an IDE, but also as a presentation
or education tool. It's perfect for those who are just starting
out with data science. Because, it helps to debug the errors
by specifying the type of error that was obtained.
C. METHODOLOGY
1. DATA COLLECTION & DATA PREPARATION:
In this Project, dataset is prepared by the collection of
vehicle images from Open source, CCTV cameras and
internet. To ensure the representativeness and the integrity
of data, images are taken from different viewpoints under
different traffic conditions. Most of theimagesinthisdataset
are rear views of the vehicle. Besides, the image dataset also
covers most types of vehicles and noise images.
This involves collection of data by recording using a camera
with auto iris function which keeps the average illumination
of the view constant. It also uses i-LIDS dataset, then the
input data is processed into a set of features before
becoming suitable inputs for perframevehicledetectionand
classification using 3D models.
2. EDGE DETECTION:
An edge based multi-stage detection is the main primary
function to detect the vehicle and its license plate edges at
their localization. In this paper, license plate edges are
detected from its original image by edge detection.
Localization of plate is undoubtedly a challenging task
since there are significant variations in plate size, color,
lighting condition and spatial orientationsof license plate
in images. So, three steps are employed at the
preprocessing stage. They are (i) Gray Scale Conversion,
(ii) Median Filtering, (iii) Contrast Enhancement.
2.1. Gray Scale Conversion:
By using following formula, the 24-bit color image can be
converted into 8-bit gray image.
Gray = 0.59ƗR + 0.30ƗG + 0.11ƗB
2.2. Median Filtering:
As one of non-linear ļ¬lter, it can calculate the median of
the gray values of a pixelā€™s neighbors. In this stage, they
use 3Ɨ3 masks to get eight surrounding neighborsā€™ gray
value and replace the pixel value with the median value.
As a result, the function could remove salt-and-peeper
noise from the image.
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 289
2.3. Contrast Enhancement:
Histogram equalization technique is invoked to enhance
contrast of the images. In the procedure of the conversion,
the total number of pixels in the image is N and the
number of pixels with the gray level k is nk. Then the
stretched gray level Sk is calculated by the following
formula.
Sk =
3. FUNCTIONAL PROCESS:
This paper proposed an Advanced vehicle classification and
detection method based on the deep learning approach. In
this system, the surveillance cameras are used for observing
the vehicles at any specific region orarea.Thesesurveillance
cameras are often connected to the Personal Computer (PC)
or any recording device to provide those vehicle images or
videos which are passing through that specific gateway or
area. This vehicle data is taken as input to the Personal
Computer (PC). By using the i-Lids, real time camera and
open source data a dataset is created. With the help of this
dataset, the Deep Learning model istrainedup-toa specified
epoch. With the Increase of number of epochs, the loss
function of the model is reduced.Finally,thetrainedmodel is
tested with the new vehicle data to check whetherthemodel
is working effectively in vehicle classification and detection
of their number plates.
Fig 13: Functional Process of Proposed Scheme
In this system, Vehicle classification method is based on a
convolutional neural networks and automatic license plate
detection of vehicles method is based on Tesseract-ocr. This
Deep neural network model will detect the vehicle from the
given image or video by using frame extraction. It also
provides the classified type of vehicle whether it is bus or
bike or bicycle or any other type.
The model will detect the vehicle number plate if and only if
there is number plate for that detected vehicle. Thedetected
vehicle number plate is extracted as an imagefromthegiven
data and simultaneously giventotheTesseract-OCR whichis
integrated with the OpenCV to recognize the characters
present in that number plate. The model will beinstructed to
detect and classify the vehicles, only when their detection
probability is more than 0.90. This Probabilityapproachwill
be useful to get the accurate vehicle info or effective results
of the model. A log is created in the PC, to note the details of
the vehicles.
This Info includes type of vehicle, its number plateandother
info like time in & time out are tabulated accurately in the
log. Every vehicle info is appended to its log. Finally, this
model provides the accurate info of log regarding the
vehicles that are passed through this Artificial Intelligence
Surveillance.
VI. FLOW CHART
Fig 14: Flow Chart of Proposed System
The given flow chart of proposed system explains the
procedure and sequence of Framework as shown above in
figure 14.
VII. EVALUATION & DISCUSSION
For evaluating the proposed or implemented model, we
must compare the performanceoftheproposedsystemtoall
other existing systems. After collecting the relevant training
and testing experiment information, we analyzed and
compared the accuracy rate of the different network
structures such as AlexNet, Vggnet16, Vggnet19, Googlenet,
Resnet50 and Resnet101. Currently, proposed system uses
ResNet101 architecture to train and test the deep learning
Algorithm for vehicle classification and detection. The
accuracy for different network architectures shown below.
CR (%) =
In the equation, CN means for the number of correctly
classified images and EN means for the number of
incorrectly classified images indicates the correct rate. To
compare the experimental resultsofvariousnetwork results,
the graphical representations of them are given below.
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 290
Fig 15: (a) loss curves of curves; (b) curves of accuracy
The dataset with 3500 pictures is collected and
preprocessed with auto-iris function which is used to
evaluate the trained models. We drew the loss curve and
accuracy curve of every classification and recognition
network structure, which are helpful to understand the
training process of every model. From the comparisonofthe
curves, it is clear that the Resnet-101 can get the fastest
convergence and higher accuracy as shown in Fig 15.
Architecture Accuracy Year
Alex Net 82.6 2012
Inception-V1 88.4 2013
VGG 90.8 2014
ResNet-50 92.3 2016
ResNet-101 95.2 2018
Table 1: Comparision of Network Structures
We apply the proposed model which is trained by the image
dataset into the real traffic road video or imagescollected by
ourselves. The collection of real traffic vehicle pictures is
also tested. We observed that for the recognition of the real
traffic road image, the training image dataset obtains the
higher accuracy.
The experimental results obtained from the training and
testing dataset is shown in the below table. The figure 15
shows that, Resnet Network structure gives the higher
accuracy for object detection and classification than the
other network structures. By analyzing the testing
performance with different number of layers in ResNet
structure, the best performing one is the cascading of the
ResNet101 network structure which achieves 95.27%.
VIII. RESULTS
In most of the cases, the experimental results of proposed
system have obtained with higher accuracy. The proposed
method has integrated feature extraction, object frame
boundary generation, linear regression & classification and
License plate recognition to provide a customized efficient
model. By using this model, we can retrieve the vehicle info
accurately. Even if there is background noise in the license
plate, it will not affect the performanceoftherecognition.So,
this system can recognize all the characters on the license
plate successfully.Thus,thecomprehensiveperformance has
been greatly improved. When compared to existing models,
the current deep learningvehicleclassificationanddetection
neural network model has the rate of accuracy as very high.
Therefore, the proposed model gives standard results.
IX. CONCLUSION
Based on CNN, this paper proposed the vehicle type
classification and license plate recognition in urban traffic
video surveillance. This Deep Learning model can do both
Classification and Detection of vehicles simultaneously.This
reduces the complexity of the processing which helps to
increase the performance of the system to train and test the
model. With the increaseoftrainingdataset,themodification
of parameters and replacement of the model; the proposed
method becomes effective and validated by the relevant
experiments. The experimental resultsshowthatthevehicle
recognition rate is improved. In a comparative analysis, this
vehicle classification & detection framework can get high
accuracy with success rates which has been proposed to
expose in a better performance than existing frameworks.
X. FUTURE WORK
In the future, we will implement this proposed model as a
real-time hardware application with a deep learning
Framework which further improves the accuracy and
robustness for the traffic vehicleclassificationanddetection.
There are still mountains of work about deep learning to be
studied. For example, it needs the other efficient and theory
based deep learning model algorithms. It explores the new
feature extraction models which are also worthy to do
further research. Besides studying efficient parallel training
algorithms, they need to be investigated. Regarding the
applications of extending deep learning and how to make
rational use of deep learning in enhancing the performance
of traditional algorithms is still the focusofa varietyoffields.
XI. ACKNOWLEDGEMENT
I would like to express my sincere appreciation to my
supervisors Dr. N. Viswanathan, Dr. K. Manivel and N.
Jayanthi for their constant guidance and encouragement
during my whole B.E period at the Mahendra Engineering
College. They gave me this opportunity to do this great
project on ā€œCLASSIFICATION & DETECTION OF VEHICLES
USING DEEP LEARNINGā€ which helps me to learn a lot of
new things. I am thankful to them; without their valuable
help, this project would not have been possible.
XII. REFERENCES
[1] Saha, S., Basu, S., Nasipuri, M., and Basu, D. K.,
ā€œLicense plate localization from vehicle images: An
edge-based multi-stage approachā€, International
Journal of Recent Trends in Engineering, 1(1):284ā€“
288.
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 291
[2] Chang, S.-L., Chen, L.-S., Chung, Y.-C., and Chen,S.-W.,
ā€œAutomatic license plate recognitionā€, IEEE
transactions on intelligent transportation systems,
5(1):42ā€“53.
[3] Al-Shami, S., El-Zaart, A., Zantout, R., Zekri, A., and
Almustafa, K. ā€œA new feature extraction method for
automatic license plate recognitionā€, In Digital
Information and Communication Technology and its
Applications (DICTAP), Fifth International IEEE
Conference.
[4] Farhat, A., Al-Zawqari, A., Al-Qahtani, A., Hommos, O.,
Bensaali, F., Amira, A., and Zhai, X., ā€œOcr based
feature extraction and template matching algorithms
for Qatari number plateā€, In Industrial Informatics
and Computer Systems (CIICS), International IEEE
Conference.
[5] Anagnostopoulos, I. E., Loumos, C. N. E.,
Anagnostopoulos, V., and Kayafas, E., ā€œA license plate
detection algorithm for intelligent transportation
system applicationsā€, IEEE Transactions on
Intelligent transportation systems, 7(3):377ā€“392.
[6] Dalal, N. and Triggs, B., ā€œHistograms of oriented
gradients for human detection In Computer Vision
and Pattern Recognitionā€, CVPR IEEE Computer
Society Conference on, volume 1, IEEE.

More Related Content

What's hot

Vehicle detection through image processing
Vehicle detection through image processingVehicle detection through image processing
Vehicle detection through image processingGhazalpreet Kaur
Ā 
IRJET- Automatic Traffic Sign Detection and Recognition using CNN
IRJET- Automatic Traffic Sign Detection and Recognition using CNNIRJET- Automatic Traffic Sign Detection and Recognition using CNN
IRJET- Automatic Traffic Sign Detection and Recognition using CNNIRJET Journal
Ā 
Vehicle Detection using Camera
Vehicle Detection using CameraVehicle Detection using Camera
Vehicle Detection using CameraShubham Agrahari
Ā 
Image segmentation
Image segmentationImage segmentation
Image segmentationGayan Sampath
Ā 
Human Pose Estimation by Deep Learning
Human Pose Estimation by Deep LearningHuman Pose Estimation by Deep Learning
Human Pose Estimation by Deep LearningWei Yang
Ā 
Object Detection using Deep Neural Networks
Object Detection using Deep Neural NetworksObject Detection using Deep Neural Networks
Object Detection using Deep Neural NetworksUsman Qayyum
Ā 
Underwater Image Enhancement
Underwater Image EnhancementUnderwater Image Enhancement
Underwater Image Enhancementijtsrd
Ā 
PPT on BRAIN TUMOR detection in MRI images based on IMAGE SEGMENTATION
PPT on BRAIN TUMOR detection in MRI images based on  IMAGE SEGMENTATION PPT on BRAIN TUMOR detection in MRI images based on  IMAGE SEGMENTATION
PPT on BRAIN TUMOR detection in MRI images based on IMAGE SEGMENTATION khanam22
Ā 
Automatic number plate recognition using matlab
Automatic number plate recognition using matlabAutomatic number plate recognition using matlab
Automatic number plate recognition using matlabChetanSingh134
Ā 
BRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSING
BRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSINGBRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSING
BRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSINGDharshika Shreeganesh
Ā 
Neural Network Based Brain Tumor Detection using MR Images
Neural Network Based Brain Tumor Detection using MR ImagesNeural Network Based Brain Tumor Detection using MR Images
Neural Network Based Brain Tumor Detection using MR ImagesAisha Kalsoom
Ā 
Machine learning in image processing
Machine learning in image processingMachine learning in image processing
Machine learning in image processingData Science Thailand
Ā 
Number plate recogition
Number plate recogitionNumber plate recogition
Number plate recogitionhetvi naik
Ā 
An Introduction to Image Processing and Artificial Intelligence
An Introduction to Image Processing and Artificial IntelligenceAn Introduction to Image Processing and Artificial Intelligence
An Introduction to Image Processing and Artificial IntelligenceWasif Altaf
Ā 
Image segmentation
Image segmentationImage segmentation
Image segmentationDeepak Kumar
Ā 
Deep learning for object detection
Deep learning for object detectionDeep learning for object detection
Deep learning for object detectionWenjing Chen
Ā 
Object detection.pptx
Object detection.pptxObject detection.pptx
Object detection.pptxshradhaketkale2
Ā 
Brain tumor detection using image segmentation ppt
Brain tumor detection using image segmentation pptBrain tumor detection using image segmentation ppt
Brain tumor detection using image segmentation pptRoshini Vijayakumar
Ā 
Image segmentation with deep learning
Image segmentation with deep learningImage segmentation with deep learning
Image segmentation with deep learningAntonio Rueda-Toicen
Ā 

What's hot (20)

Vehicle detection through image processing
Vehicle detection through image processingVehicle detection through image processing
Vehicle detection through image processing
Ā 
IRJET- Automatic Traffic Sign Detection and Recognition using CNN
IRJET- Automatic Traffic Sign Detection and Recognition using CNNIRJET- Automatic Traffic Sign Detection and Recognition using CNN
IRJET- Automatic Traffic Sign Detection and Recognition using CNN
Ā 
Vehicle Detection using Camera
Vehicle Detection using CameraVehicle Detection using Camera
Vehicle Detection using Camera
Ā 
Image segmentation
Image segmentationImage segmentation
Image segmentation
Ā 
Human Pose Estimation by Deep Learning
Human Pose Estimation by Deep LearningHuman Pose Estimation by Deep Learning
Human Pose Estimation by Deep Learning
Ā 
Yolo
YoloYolo
Yolo
Ā 
Object Detection using Deep Neural Networks
Object Detection using Deep Neural NetworksObject Detection using Deep Neural Networks
Object Detection using Deep Neural Networks
Ā 
Underwater Image Enhancement
Underwater Image EnhancementUnderwater Image Enhancement
Underwater Image Enhancement
Ā 
PPT on BRAIN TUMOR detection in MRI images based on IMAGE SEGMENTATION
PPT on BRAIN TUMOR detection in MRI images based on  IMAGE SEGMENTATION PPT on BRAIN TUMOR detection in MRI images based on  IMAGE SEGMENTATION
PPT on BRAIN TUMOR detection in MRI images based on IMAGE SEGMENTATION
Ā 
Automatic number plate recognition using matlab
Automatic number plate recognition using matlabAutomatic number plate recognition using matlab
Automatic number plate recognition using matlab
Ā 
BRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSING
BRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSINGBRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSING
BRAIN TUMOR MRI IMAGE SEGMENTATION AND DETECTION IN IMAGE PROCESSING
Ā 
Neural Network Based Brain Tumor Detection using MR Images
Neural Network Based Brain Tumor Detection using MR ImagesNeural Network Based Brain Tumor Detection using MR Images
Neural Network Based Brain Tumor Detection using MR Images
Ā 
Machine learning in image processing
Machine learning in image processingMachine learning in image processing
Machine learning in image processing
Ā 
Number plate recogition
Number plate recogitionNumber plate recogition
Number plate recogition
Ā 
An Introduction to Image Processing and Artificial Intelligence
An Introduction to Image Processing and Artificial IntelligenceAn Introduction to Image Processing and Artificial Intelligence
An Introduction to Image Processing and Artificial Intelligence
Ā 
Image segmentation
Image segmentationImage segmentation
Image segmentation
Ā 
Deep learning for object detection
Deep learning for object detectionDeep learning for object detection
Deep learning for object detection
Ā 
Object detection.pptx
Object detection.pptxObject detection.pptx
Object detection.pptx
Ā 
Brain tumor detection using image segmentation ppt
Brain tumor detection using image segmentation pptBrain tumor detection using image segmentation ppt
Brain tumor detection using image segmentation ppt
Ā 
Image segmentation with deep learning
Image segmentation with deep learningImage segmentation with deep learning
Image segmentation with deep learning
Ā 

Similar to Classification and Detection of Vehicles using Deep Learning

Automated License Plate detection and Speed estimation of Vehicle Using Machi...
Automated License Plate detection and Speed estimation of Vehicle Using Machi...Automated License Plate detection and Speed estimation of Vehicle Using Machi...
Automated License Plate detection and Speed estimation of Vehicle Using Machi...ijtsrd
Ā 
Vehicle Speed Estimation using Haar Classifier Algorithm
Vehicle Speed Estimation using Haar Classifier AlgorithmVehicle Speed Estimation using Haar Classifier Algorithm
Vehicle Speed Estimation using Haar Classifier Algorithmijtsrd
Ā 
A Traffic Sign Classifier Model using Sage Maker
A Traffic Sign Classifier Model using Sage MakerA Traffic Sign Classifier Model using Sage Maker
A Traffic Sign Classifier Model using Sage Makerijtsrd
Ā 
IRJET- Traffic Sign Detection, Recognition and Notification System using ...
IRJET-  	  Traffic Sign Detection, Recognition and Notification System using ...IRJET-  	  Traffic Sign Detection, Recognition and Notification System using ...
IRJET- Traffic Sign Detection, Recognition and Notification System using ...IRJET Journal
Ā 
An Analysis of Various Deep Learning Algorithms for Image Processing
An Analysis of Various Deep Learning Algorithms for Image ProcessingAn Analysis of Various Deep Learning Algorithms for Image Processing
An Analysis of Various Deep Learning Algorithms for Image Processingvivatechijri
Ā 
ROAD SIGN DETECTION USING CONVOLUTIONAL NEURAL NETWORK (CNN)
ROAD SIGN DETECTION USING CONVOLUTIONAL NEURAL NETWORK (CNN)ROAD SIGN DETECTION USING CONVOLUTIONAL NEURAL NETWORK (CNN)
ROAD SIGN DETECTION USING CONVOLUTIONAL NEURAL NETWORK (CNN)IRJET Journal
Ā 
VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH
VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACHVEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH
VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACHJANAK TRIVEDI
Ā 
A hierarchical RCNN for vehicle and vehicle license plate detection and recog...
A hierarchical RCNN for vehicle and vehicle license plate detection and recog...A hierarchical RCNN for vehicle and vehicle license plate detection and recog...
A hierarchical RCNN for vehicle and vehicle license plate detection and recog...IJECEIAES
Ā 
Intelligent Transportation System Based On Machine Learning For Vehicle Perce...
Intelligent Transportation System Based On Machine Learning For Vehicle Perce...Intelligent Transportation System Based On Machine Learning For Vehicle Perce...
Intelligent Transportation System Based On Machine Learning For Vehicle Perce...IRJET Journal
Ā 
Vision-Based Motorcycle Crash Detection and Reporting Using Deep Learning
Vision-Based Motorcycle Crash Detection and Reporting Using Deep LearningVision-Based Motorcycle Crash Detection and Reporting Using Deep Learning
Vision-Based Motorcycle Crash Detection and Reporting Using Deep LearningIRJET Journal
Ā 
VEHICLE DETECTION USING YOLO V3 FOR COUNTING THE VEHICLES AND TRAFFIC ANALYSIS
VEHICLE DETECTION USING YOLO V3 FOR COUNTING THE VEHICLES AND TRAFFIC ANALYSISVEHICLE DETECTION USING YOLO V3 FOR COUNTING THE VEHICLES AND TRAFFIC ANALYSIS
VEHICLE DETECTION USING YOLO V3 FOR COUNTING THE VEHICLES AND TRAFFIC ANALYSISIRJET Journal
Ā 
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...IRJET Journal
Ā 
IRJET- A Deep Learning based Approach for Automatic Detection of Bike Rid...
IRJET-  	  A Deep Learning based Approach for Automatic Detection of Bike Rid...IRJET-  	  A Deep Learning based Approach for Automatic Detection of Bike Rid...
IRJET- A Deep Learning based Approach for Automatic Detection of Bike Rid...IRJET Journal
Ā 
A Literature Survey on Image Linguistic Visual Question Answering
A Literature Survey on Image Linguistic Visual Question AnsweringA Literature Survey on Image Linguistic Visual Question Answering
A Literature Survey on Image Linguistic Visual Question AnsweringIRJET Journal
Ā 
Ijcatr04041021
Ijcatr04041021Ijcatr04041021
Ijcatr04041021Editor IJCATR
Ā 
Autonomous Driving Scene Parsing
Autonomous Driving Scene ParsingAutonomous Driving Scene Parsing
Autonomous Driving Scene ParsingIRJET Journal
Ā 
TRAFFIC RULES VIOLATION DETECTION SYSTEM
TRAFFIC RULES VIOLATION DETECTION SYSTEMTRAFFIC RULES VIOLATION DETECTION SYSTEM
TRAFFIC RULES VIOLATION DETECTION SYSTEMIRJET Journal
Ā 
Application of improved you only look once model in road traffic monitoring ...
Application of improved you only look once model in road  traffic monitoring ...Application of improved you only look once model in road  traffic monitoring ...
Application of improved you only look once model in road traffic monitoring ...IJECEIAES
Ā 
Paper id 25201491
Paper id 25201491Paper id 25201491
Paper id 25201491IJRAT
Ā 

Similar to Classification and Detection of Vehicles using Deep Learning (20)

Automated License Plate detection and Speed estimation of Vehicle Using Machi...
Automated License Plate detection and Speed estimation of Vehicle Using Machi...Automated License Plate detection and Speed estimation of Vehicle Using Machi...
Automated License Plate detection and Speed estimation of Vehicle Using Machi...
Ā 
Vehicle Speed Estimation using Haar Classifier Algorithm
Vehicle Speed Estimation using Haar Classifier AlgorithmVehicle Speed Estimation using Haar Classifier Algorithm
Vehicle Speed Estimation using Haar Classifier Algorithm
Ā 
A Traffic Sign Classifier Model using Sage Maker
A Traffic Sign Classifier Model using Sage MakerA Traffic Sign Classifier Model using Sage Maker
A Traffic Sign Classifier Model using Sage Maker
Ā 
IRJET- Traffic Sign Detection, Recognition and Notification System using ...
IRJET-  	  Traffic Sign Detection, Recognition and Notification System using ...IRJET-  	  Traffic Sign Detection, Recognition and Notification System using ...
IRJET- Traffic Sign Detection, Recognition and Notification System using ...
Ā 
An Analysis of Various Deep Learning Algorithms for Image Processing
An Analysis of Various Deep Learning Algorithms for Image ProcessingAn Analysis of Various Deep Learning Algorithms for Image Processing
An Analysis of Various Deep Learning Algorithms for Image Processing
Ā 
ROAD SIGN DETECTION USING CONVOLUTIONAL NEURAL NETWORK (CNN)
ROAD SIGN DETECTION USING CONVOLUTIONAL NEURAL NETWORK (CNN)ROAD SIGN DETECTION USING CONVOLUTIONAL NEURAL NETWORK (CNN)
ROAD SIGN DETECTION USING CONVOLUTIONAL NEURAL NETWORK (CNN)
Ā 
VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH
VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACHVEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH
VEHICLE CLASSIFICATION USING THE CONVOLUTION NEURAL NETWORK APPROACH
Ā 
A hierarchical RCNN for vehicle and vehicle license plate detection and recog...
A hierarchical RCNN for vehicle and vehicle license plate detection and recog...A hierarchical RCNN for vehicle and vehicle license plate detection and recog...
A hierarchical RCNN for vehicle and vehicle license plate detection and recog...
Ā 
Intelligent Transportation System Based On Machine Learning For Vehicle Perce...
Intelligent Transportation System Based On Machine Learning For Vehicle Perce...Intelligent Transportation System Based On Machine Learning For Vehicle Perce...
Intelligent Transportation System Based On Machine Learning For Vehicle Perce...
Ā 
Advance Self Driving Car Using Machine Learning
Advance Self Driving Car Using Machine LearningAdvance Self Driving Car Using Machine Learning
Advance Self Driving Car Using Machine Learning
Ā 
Vision-Based Motorcycle Crash Detection and Reporting Using Deep Learning
Vision-Based Motorcycle Crash Detection and Reporting Using Deep LearningVision-Based Motorcycle Crash Detection and Reporting Using Deep Learning
Vision-Based Motorcycle Crash Detection and Reporting Using Deep Learning
Ā 
VEHICLE DETECTION USING YOLO V3 FOR COUNTING THE VEHICLES AND TRAFFIC ANALYSIS
VEHICLE DETECTION USING YOLO V3 FOR COUNTING THE VEHICLES AND TRAFFIC ANALYSISVEHICLE DETECTION USING YOLO V3 FOR COUNTING THE VEHICLES AND TRAFFIC ANALYSIS
VEHICLE DETECTION USING YOLO V3 FOR COUNTING THE VEHICLES AND TRAFFIC ANALYSIS
Ā 
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
Implementation of Various Machine Learning Algorithms for Traffic Sign Detect...
Ā 
IRJET- A Deep Learning based Approach for Automatic Detection of Bike Rid...
IRJET-  	  A Deep Learning based Approach for Automatic Detection of Bike Rid...IRJET-  	  A Deep Learning based Approach for Automatic Detection of Bike Rid...
IRJET- A Deep Learning based Approach for Automatic Detection of Bike Rid...
Ā 
A Literature Survey on Image Linguistic Visual Question Answering
A Literature Survey on Image Linguistic Visual Question AnsweringA Literature Survey on Image Linguistic Visual Question Answering
A Literature Survey on Image Linguistic Visual Question Answering
Ā 
Ijcatr04041021
Ijcatr04041021Ijcatr04041021
Ijcatr04041021
Ā 
Autonomous Driving Scene Parsing
Autonomous Driving Scene ParsingAutonomous Driving Scene Parsing
Autonomous Driving Scene Parsing
Ā 
TRAFFIC RULES VIOLATION DETECTION SYSTEM
TRAFFIC RULES VIOLATION DETECTION SYSTEMTRAFFIC RULES VIOLATION DETECTION SYSTEM
TRAFFIC RULES VIOLATION DETECTION SYSTEM
Ā 
Application of improved you only look once model in road traffic monitoring ...
Application of improved you only look once model in road  traffic monitoring ...Application of improved you only look once model in road  traffic monitoring ...
Application of improved you only look once model in road traffic monitoring ...
Ā 
Paper id 25201491
Paper id 25201491Paper id 25201491
Paper id 25201491
Ā 

More from ijtsrd

ā€˜Six Sigma Techniqueā€™ A Journey Through its Implementation
ā€˜Six Sigma Techniqueā€™ A Journey Through its Implementationā€˜Six Sigma Techniqueā€™ A Journey Through its Implementation
ā€˜Six Sigma Techniqueā€™ A Journey Through its Implementationijtsrd
Ā 
Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...ijtsrd
Ā 
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and ProspectsDynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and Prospectsijtsrd
Ā 
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...ijtsrd
Ā 
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...ijtsrd
Ā 
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...ijtsrd
Ā 
Problems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A StudyProblems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A Studyijtsrd
Ā 
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...ijtsrd
Ā 
The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...ijtsrd
Ā 
A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...ijtsrd
Ā 
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...ijtsrd
Ā 
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...ijtsrd
Ā 
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. SadikuSustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadikuijtsrd
Ā 
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...ijtsrd
Ā 
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...ijtsrd
Ā 
Activating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment MapActivating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment Mapijtsrd
Ā 
Educational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger SocietyEducational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger Societyijtsrd
Ā 
Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...ijtsrd
Ā 
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...ijtsrd
Ā 
Streamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine LearningStreamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine Learningijtsrd
Ā 

More from ijtsrd (20)

ā€˜Six Sigma Techniqueā€™ A Journey Through its Implementation
ā€˜Six Sigma Techniqueā€™ A Journey Through its Implementationā€˜Six Sigma Techniqueā€™ A Journey Through its Implementation
ā€˜Six Sigma Techniqueā€™ A Journey Through its Implementation
Ā 
Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...
Ā 
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and ProspectsDynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
Ā 
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Ā 
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
Ā 
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Ā 
Problems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A StudyProblems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A Study
Ā 
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Ā 
The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...
Ā 
A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...
Ā 
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
Ā 
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Ā 
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. SadikuSustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Ā 
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Ā 
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Ā 
Activating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment MapActivating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment Map
Ā 
Educational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger SocietyEducational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger Society
Ā 
Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...
Ā 
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
Ā 
Streamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine LearningStreamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine Learning
Ā 

Recently uploaded

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
Ā 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
Ā 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
Ā 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
Ā 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
Ā 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
Ā 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
Ā 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
Ā 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
Ā 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
Ā 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
Ā 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
Ā 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
Ā 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
Ā 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
Ā 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Ā 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
Ā 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
Ā 

Recently uploaded (20)

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
Ā 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
Ā 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
Ā 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
Ā 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
Ā 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
Ā 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
Ā 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
Ā 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Ā 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
Ā 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
Ā 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
Ā 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Ā 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
Ā 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
Ā 
Model Call Girl in Tilak Nagar Delhi reach out to us at šŸ”9953056974šŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at šŸ”9953056974šŸ”Model Call Girl in Tilak Nagar Delhi reach out to us at šŸ”9953056974šŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at šŸ”9953056974šŸ”
Ā 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
Ā 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Ā 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
Ā 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Ā 

Classification and Detection of Vehicles using Deep Learning

  • 1. International Journal of Trend in Scientific Research and Development (IJTSRD) Volume 4 Issue 3, April 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 ā€“ 6470 @ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 283 Classification & Detection of Vehicles using Deep Learning Madde Pavan Kumar, Dr. K. Manivel, N. Jayanthi Department of Electronics and Communication, Mahendra Engineering College, Namakkal, Tamil Nadu, India ABSTRACT The vehicle classification and detecting its license plate are importanttasksin intelligent security and transportation systems. The traditional methods of vehicle classification and detection arehighlycomplexwhichprovidescoarse- grained results due to suffering from limited viewpoints. Because of thelatest achievements of Deep Learning, it was successfully applied to image classification and detection of objects. This paper presents a methodbasedon a convolutional neural network, which consists of two steps: vehicle classification and vehicle license plate recognition. Several typical neural network modules have been applied in training and testing the vehicle Classification and detection of licenseplatemodel,suchasCNN (convolutional neural networks), TensorFlow, Tesseract-OCR. The proposed method can identify the vehicle type, number plate and other information accurately.This model provides security and log details regarding vehicles by using AI Surveillance. It guides the surveillanceoperatorsandassistshumanresources. With the help of the original (training) dataset and enriched (testing) dataset, the algorithm can obtain results with an average accuracy of about 97.32% in the classification and detection of vehicles. By increasing the amount of the data, the mean error and misclassification rate gradually decreases. So, this algorithm which is based on Deep Learning has good superiority and adaptability. When compared to the leading methods inthechallengingImage datasets, our deep learning approach obtains highly competitive results. Finally, this paper proposes modern methods for the improvement of the algorithm and prospects the development direction of deep learning in the field of machine learning and artificial intelligence. KEYWORDS: Convolution neural network, Vehicle classification, Vehicle License plate Recognition How to cite this paper: Madde Pavan Kumar | Dr. K. Manivel | N. Jayanthi "Classification & Detection of Vehicles using Deep Learning" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456- 6470, Volume-4 | Issue-3, April 2020, pp.283-291, URL: www.ijtsrd.com/papers/ijtsrd30353.pdf Copyright Ā© 2020 by author(s) and International Journal ofTrendinScientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative CommonsAttribution License (CC BY 4.0) (http://creativecommons.org/licenses/by /4.0) I. INTRODUCTION Vehicle classification and detection have promising importance in the future. Because, it can be utilized in many aspects such as to analyze the urban traļ¬ƒc statistics, Advanced Driver Assistance System, against vehicle theft, large parking lot management, against vehicle escape, improvement of the road information acquisition and safety management of highway, electronic toll collection (ETC), traļ¬ƒc investigation and so on. One of the most important applications for object recognition in the neural network is the image classification tasks. However, the vehicle classification and detecting its license plate still face a few great challenges because the number of vehicle classes are very large and that some attributions of the vehicle are too close to identify. So, the process of training the neural network requires a great number of parameters, which often accompanies by over- fitting problems. The recognition results can achieve a higher degree of accuracy in the training set, but a lower degree of accuracy in the test set. Fig 1: Classification of Vehicle IJTSRD30353
  • 2. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 284 Although the training data set is modest in size, the neural network itself does not embody distinct advantages in evaluation systems of higher recognition accuracy and shorter training time than other models. The predominant motives for it are limited computing sources and lengthy processing time for even a small network. However, one of the keys to these issues is the feature extraction and classification of detection images for vehicle rearview. Because of Facing many practical problems, neural networks have been gradually integrated with some better methods emerging in the 21st century, such as Convolutional Neural Networks, ResNet Architecture, Tensor Flow. In this kind of model, aimed at different tasks,differentsystemsareusually designed and respectively applied different manual design features. Fig 2: License Plate Recognition For example, the object recognition uses Feature extraction from CNN. License platerecognitionusesTesseract-OCR,and the pedestrian detection uses Histogram of Oriented Gradient (HOG) feature. Therefore, this paper aims at classifying and detecting the vehicles from different viewpoints under any circumstances. II. EXISTING SYSTEMS The traditional methods of vehicle classification and detection are mainly based on the following methods: 1) SIFT (Scale-invariant feature transform) feature matching and extraction; 2) the moving vehicle detection method of Gaussian mixture model; 3) the license plate classification method; 4) the monitoring video classification method of HOG (Histogram of Oriented Gradient) and SVM (Support Vector Machine). Based on these traditional methods, the neural network model gets the lower recognition reference to detect the objects. So, these methods give the inaccurate results in which accuracy is limited to 85% only. The above traditional algorithmshavealreadyobtainedgood results. Several shortcomings in the traditional methods have limited its realization: (i) the high similarity between models naturally inļ¬‚uence the accuracy, (ii) some models containing only a few images, and (iii) the uniļ¬ed direction like front, side or back in picture causes the inaccurate classiļ¬cation. (iv) the methods usually require the images are captured from certain viewpoints, (v) the vehicle recognition granularity just stays in the stage of the vehicle model classification. In this paper we address these limitations and providing techniques that are practical for vehicle classiļ¬cation problem. According to existing methods, this paper further optimized the classification and detection algorithms. It applies the Deep Neural Networks (DNNs) to the classification and License plate detection of the vehicles and obtained a better recognition performance under different viewpoints or traffic conditions. III. LITERATURE SURVEY [1] Chen, Z., Ellis, T., and Velastin, S. A., ā€œVehicle Type Categorizationā€ A comparison of classiļ¬cation schemes In Intelligent transportation systems(ITSC),14thinternational IEEE conference. This Paper proposed the Vehicle detection and classiļ¬cation based on histogram oforientationgradients(HOG)approach which was presented by Zezhi Chen and Tim Ellis. This Classiļ¬cation model contains two parts: feature extraction and classiļ¬er selection. In their approach, measurement- based features (MBP) and the histogram of orientation gradients (HOG) features are used to classify the vehicles into four categories: car, van, bus, and motorcycle. For this classiļ¬cation model, they have used two classiļ¬ers. They are Random Forest (RF) and Support Vector Machines (SVM). Due to the multiple classiļ¬cation problems, they decided to use one-vs-all strategy. With this approach, the best 3D model can be found that match with the original vehicle type. The model they have presented is a novel vehicle type classiļ¬cation, which provides an accurate and reliable performance. However, the features among thefour vehicle types are verydiļ¬€erent.Sometimes3Dmodelsoftwo vehicles such as hatchback and SUV may be similar. In this case, this system may be hard to detect the vehicle type. [2] Chang, S.-L., Chen, L.-S., Chung, Y.-C., and Chen, S.-W., ā€œAutomatic license plate recognitionā€ IEEE transactions on Intelligent Transportation Systems. This paper proposed a license plate image technique consisting of two main models:a licenseplatelocatingmodel and a license number identiļ¬cation module. Speciļ¬cally, the license plates extracted from the ļ¬rst model areexamined in the identiļ¬cation model to reduce the error rate. They used color edge detection to compute edge maps. But this is limited to only four types of edges. By using the unique formulas, the model can transform RGB space into HSI space that denote red, green, blue colors as hue, saturation, intensity parameter values of an image pixels, respectively. The identiļ¬cation module consists oftwomain stages, preprocessing and recognition. After this process, segmentation and recognition will be invoked sequentially. However, this identiļ¬cation model takes more time to recognize the characters and it is a complex process which needs to be modified. This model can detect the License plate, if and only if that license plate & characters are in specified color edges. This type of model can be useful in a particular region or place. [3] Farhat, A., Al-Zawqari, A., Al-Qahtani, A., Hommos, O., Bensaali, F., Amira, A., and Zhai, X., ā€œTesseract-OCR Based Feature Extraction and Template Matching Algorithms For Number Plate Recognitionā€ In Industrial Informatics and Computer Systems (CIICS), International Conference on IEEE. A modiļ¬ed template matching Correlation algorithm was proposed by Ali Farhat et al. They have developed four
  • 3. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 285 algorithms for Numeric AutomaticLicensePlateRecognition (ALPR) systems: Vector crossing, zoning and combined zoning-vector and template matchingcorrelation.Firstthree algorithms are based on feature extraction techniques and the last one is application of correlation technique. By using vector crossing algorithm, they distinguished the ten characters (0āˆ’9) except the characters ā€œ2ā€, ā€œ3ā€ andā€œ5ā€.Since these characters have the same number of the vectors. By using Zoning method, densities of the image ineachzoneare derived by the algorithm to determine the characters. The third approach is the combination of the previous two methods. In that, density oftheimageiscalculated.However, these three algorithms cannot determine a noise in the image. Hence, they developed a system based on template matching correlation as a fourth approach. This correlation indicates the linear relationship between each character with all other characters. However, the limitations of this approach are that, they can recognize only 10 numbers instead of the alphabets. If more templates are added to the system, the success rate may decline since some characters share the same density and vector. [4] Casey, R. G. and, E., ā€œA survey of methods and strategies in character segmentationā€, IEEE transactions on pattern evaluation and machine intelligence. Lecolinet et al proposed a new algorithm for license plate identiļ¬cation. For faster detection of license plate regions, they developed a novel method called Sliding Concentric Windows (SCW), which can describe the irregularity in the image based on image statistics. The SCW segmentation algorithm involves following steps. (i) Two concentric windows A and B were created fortheupperleftcornerpixel of the image. (ii) Mean values are obtained from both windows. In this approach, the RoI (Region of Interest) will be detected if the ratio of the statistical measurements (B to A) in the couple of windows reaches a threshold value. Image masking, Binarization and connected components analysis (CCA) functions are employed in sequence. As a result, license plate region is detected. In license plate processing stage, they created an approach to segment the characters. The probabilistic neural network (PNN) is invoked to recognize the characters. As a result, possible character is determined in the output layer. However, the proposed system relies highly on the lighting condition and the physical appearance of the plates. Insome cases, the model cannot detect the plate due to the illumination condition or the quality of the plates. IV. PROPOSED SYSTEM This paper proposed an Advanced vehicle classification and detection method based on deep neural networks. In this system, vehicle classification task is accomplished by Convolutional Neural Networks.Itextractsthevehicleregion from its background area by pictures, in order to test the generalization ability about the domestic vehicle types of vehicle dataset. So, the vehicle region is segmented to remove background noise to improve the recognition accuracy. In this approach, theconvolutional neural network is used to complete feature extraction and classification training of labeled image datasetsofmanyvehicletypessuch as bus, car, bike, bicycle. In this way, the task of identifying vehicle types from different angles can be completed. Fig 3: Input Image to the Model Besides, this paper alsofocusesonautomaticdetectionofthe vehicle License plates which can be accomplished by Tesseract-OCR (optical character recognition). It is used to recognize the characters and provides the text from the given image. So, the extracted License Plate is given to the tesseract-OCR which in return provides the characters of number plate for license plate recognition. Fig 4: Output Image from Trained Model Finally, the Proposed model is evaluated based on selection accuracy, recognition accuracyandreal-timeperformancein the vehicle classification and detection process. While training the model for the detection of vehicle type and its number plate, the dataset must be split into train data and test data. The train and test data are statistically known as positive overlap range and negative overlap range respectively. When we dataset the parameter "Negative Overlap Range" (where the overlap ratio between the candidate and the image labeled area is used as the interval for negative training samples) to [0, 0.3], and the parameter "Positive Overlap Range" (the overlap ratio between the candidate and the image labeled area as the interval of the positive training sample) to [0.7, 1.0], the accuracy of proposed vehicle detection model will be the highest. V. SYSTEM ARCHITECTURE Block Diagram of the Proposed System is represented as shown below in figure 5. This Proposed block diagram is categorized into threeparts. Theyare(i)SystemFramework, (ii) Software Requirements, (iii) Methodology
  • 4. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 286 Fig 5: Block Diagram of Proposed System A. SYSTEM FRAMEWORK 1. Vehicle Detection and Classification Based on Convolutional Neural Networks: 1.1. Vehicle Detection: In this system, images of the training dataset are given as input and the foreground area of the target vehicle is detected by the convolutional neural network (CNN). But there are some issues to build a deep learning model by using CNN. The first problem while training the deeper networks is, accuracy should be increased with an increase in depth of the network as long as over-fitting is taken care of. However, the problem with increased depth is that the signal required to change the weights, which arises fromthe end of the network by comparing ground-truth and prediction becomes very small at the earlier layers, as a result of increased depth. It essentially means that earlier layers are almost negligible to learn. This is called a vanishing gradient. The other problem while trainingthedeepernetworksis,executingthe optimization on huge parameter spaceandtherefore naively adding the layers which results in higher trainingerror.This is called a degradation problem.Inordertoovercomethese issues, Convolutional Neural Network uses ResNet Architecture to train the deeper networks. ResNet architecture makes use of shortcut connections to solve the vanishing gradient and degradation problems. The basic building block of ResNet is a Residual block which is repeated throughout the network. The ResNet structure as shown in Figure 6. Fig 6: A Residual Block of Deep Residual Network Instead of learning the mapping from x ā†’ F(x), the network learns the mapping from xā†’ F(x)+G(x).Whenthedimension of the input x and output F(x) is same, the functionG(x)=x is an identity function and the shortcut connection is called Identity connection. The identical mapping is learned by zeroing out the weights in the intermediate layer during training, since itā€™s easier to zero out the weights than push them to one. For the case when the dimensions of F(x) differ from x, Projection connection is implemented rather than Identity connection. The function G(x) changes the dimensions of input x to that of output F(x). Fig 7: Projection connection of Residual Network ResNet Architecture uses Rectified Linear Unit (ReLu) as an activation function of neural networks. This rectified Linear activation function is a piecewise linear function that gives the output as its input itself, if the input is positive. Otherwise, it gives output as zero if the input is negative. ReLu activation function reduces the large number of computations. It has become the default activation function for many types of neural networksbecausea model that uses ReLu is easier to train and often achieves better performance. The ReLu activationfunctionisgivenasshown below. X if x > 0 F (x) = for all x āˆˆāˆˆāˆˆāˆˆR 0 if x 0 By using ReLU as an excitation function instead of the traditional function, Logistics makes it easier to forward propagation and calculate the reverse gradient by using partial derivative. It also helps avoid complex algorithms such as exponent and division. The hidden layer neurons with output less than 0 are discarded to increase the sparsity and reduces the overfitting effect. The ResNet network structure is adjusted while testing the data and the extracted vehicle area is outputted as shown in Figure 8.
  • 5. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 287 Fig 8: Vehicle Detection 1.2. Vehicle Classification: The foreground vehicle area obtained by vehicle detection algorithm is introduced into another convolutional neural network for vehicle recognition. Convolutional neural network uses a certain number of convolutional kernels to slide the input image with a certain step size to extract features in the convolution layer. Each convolution kernel focuses on different features, so the convolution obtains different feature maps. Fig 9: CNN Architecture These obtained feature maps are passed into the lower convolution layer, and then the lower convolutionlayeruses a certain number of convolution kernels to extract the features of upper feature map, this operation will be repeated. The weighting parameter will be got after the features are processed for several times. Thentheweighting parameter will be connected to the full connection layer, the full connection layer plays a role of classifier in the entire convolution neural network, namely a model to classify the extracted features. By using the method of Deep Learning, the features ignored by the traditional methods can be extracted, the recognition accuracy can be improved obviously, and different convolution kernels are used to obtain convolution feature diagrams, as shown in Fig 10. This ResNet architecture is similar to the VGGNet which consists mostly of 3X3 filters or kernels. Fig 10: Feature Map of Convolution Layer From the VGGNet, shortcut connection is inserted to form a residual network. In order to overcome the issues such as vanishing gradient and degradation problems of the deep learning model which occurs during training the model. 2. TENSORFLOW: TensorFlow is an open source library which uses data flow graphs to build the models. This allows developers to create large-scale neural networkswithmanylayers. TensorFlowis a neural network module which is mainly employed for Classification, Perception, Understanding, Discovering, Prediction and Creation. Tensors are the multidimensional arrays, an extension of 2-dimensional tables to data with a higher dimension. There are many features regarding TensorFlow which makes it appropriate for Deep Learning. Fig 11: TensorFlow Architecture TensorFlow architecture works in three parts. They are (i) Preprocessing the data, (ii) Build themodel,(iii)Totrainand test the model. Initially, the raw data is scaled by normalizing the input and output features of a model. This preprocessed data splits into train and test dataset. This Building model is trained using train dataset. By comparing the prediction accuracyoftestdatasetwiththeground-truth, loss function of the model can be analyzed and tuned with hyperparameters. TensorFlow is used for fast numerical computations of neural networks. It is a foundation library that can be used to provide DeepLearningmodelsdirectly or perhaps by using wrapper libraries that simplifytheprocess built on top of TensorFlow. 3. OpenCV: OpenCV is also known as Open Source Computer vision. It is a cross-platform library of programming functions which mainly aims to develop the real-time computer vision applications. OpenCV was developed by Intel organization. This mainly focuses on image processing, video capture and analysis which include features such as face detection and object detection. It supports some models from deep learning frameworks such as tensor-flow, Tesseract-OCR, PyTorchmodulestobuildaneffectivemodel. By integrating the OpenCV with the Tesseract-OCR, it can extract the characters even from colored imageswithhigher accuracy. B. SOFTWARE REQUIREMENTS 1. TESSERACT-OCR: The Character Recognition popularly referred as Optical Character Recognition (OCR). Tesseract-OCR is the software process of converting typed, handwritten, or printed text to machine-encoded text that we can access and manipulate via a string variable. The OCR has been one of the challenging and popular ļ¬elds of research in pattern recognition. This can be used as one of the
  • 6. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 288 classiļ¬er in the image processing step since the most crucial step in OCR is identifying characters as one of 36 symbols (A-Z and 0-9). Therefore, for classiļ¬cation, we need to extract visual features from individual character image. Then, character can be classiļ¬ed with these features using machine learning. The most eļ¬€ective way for now is OCR-tesseract, which is originally developed by Hewlett Packard in the 1980s. It is one of the most accurate open source OCR engines currently available. Fig 12: Flowchart of Tesseract-OCR Process As other traditional procedures, this processing follow a step by step approach. As the most important part, recognition consists of two stages, which are adaptive classiļ¬cation and repeating recognition, respectively. In the ļ¬rst stage, each character is recognized sequentially. Additionally, the symbol that is classiļ¬ed is stored by the adaptive classiļ¬er as the training data. Then, the adaptive classiļ¬er will learn the information that classiļ¬ed characters provide, from which the characters that are not recognized in ļ¬rst step will be classiļ¬ed again. This two-stage process make this method accurate and eļ¬ƒcient. 2. LabelIMG: Labelimg is a graphical image annotation tool. It is designed in Python and uses Qt for its graphical interface.Annotations are saved as XML files in PASCAL VOC format which is employed by ImageNet. Image Annotation could be the process of building datasets for computervisionmodels. This helps machines to learn, how to automatically assign metadata into a digital image using captioning or keywords. This Labelimg tool is used to train our customized model. This technique is used for image retrieval systems to organize and easilylocateparticular images froma database. Image labeling gives the insight into the content of images. When you use the API, you get a list of the entities that were recognized: people, things, places, activities, and so on. Each label found comes with a score that indicates the confidence or probability or accuracy of the ML model according to its relevance. 3. ANACONDA NAVIGATOR: Anaconda Navigator is used to launch applications and to manage conda packages, virtual environments, and programs without the use of command line commands. In order to get the Navigator, download the Navigator Cheat Sheet and install Anaconda. It is a free open-source software which is associated with Python and R programming languages for scientific computing such as for data science, machine learning applications, large scale data processing, predictive analytics and so on. It aims to simplify package management and deployment. Jupyter Notebook is a one of the IDE which have to be launched from the Anaconda Navigator to develop, execute, debug the algorithms which performs Artificial intelligence tasks. It provides you with an easy-to-use, interactive data science environment across many programming languages that doesn't only work as an IDE, but also as a presentation or education tool. It's perfect for those who are just starting out with data science. Because, it helps to debug the errors by specifying the type of error that was obtained. C. METHODOLOGY 1. DATA COLLECTION & DATA PREPARATION: In this Project, dataset is prepared by the collection of vehicle images from Open source, CCTV cameras and internet. To ensure the representativeness and the integrity of data, images are taken from different viewpoints under different traffic conditions. Most of theimagesinthisdataset are rear views of the vehicle. Besides, the image dataset also covers most types of vehicles and noise images. This involves collection of data by recording using a camera with auto iris function which keeps the average illumination of the view constant. It also uses i-LIDS dataset, then the input data is processed into a set of features before becoming suitable inputs for perframevehicledetectionand classification using 3D models. 2. EDGE DETECTION: An edge based multi-stage detection is the main primary function to detect the vehicle and its license plate edges at their localization. In this paper, license plate edges are detected from its original image by edge detection. Localization of plate is undoubtedly a challenging task since there are significant variations in plate size, color, lighting condition and spatial orientationsof license plate in images. So, three steps are employed at the preprocessing stage. They are (i) Gray Scale Conversion, (ii) Median Filtering, (iii) Contrast Enhancement. 2.1. Gray Scale Conversion: By using following formula, the 24-bit color image can be converted into 8-bit gray image. Gray = 0.59ƗR + 0.30ƗG + 0.11ƗB 2.2. Median Filtering: As one of non-linear ļ¬lter, it can calculate the median of the gray values of a pixelā€™s neighbors. In this stage, they use 3Ɨ3 masks to get eight surrounding neighborsā€™ gray value and replace the pixel value with the median value. As a result, the function could remove salt-and-peeper noise from the image.
  • 7. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 289 2.3. Contrast Enhancement: Histogram equalization technique is invoked to enhance contrast of the images. In the procedure of the conversion, the total number of pixels in the image is N and the number of pixels with the gray level k is nk. Then the stretched gray level Sk is calculated by the following formula. Sk = 3. FUNCTIONAL PROCESS: This paper proposed an Advanced vehicle classification and detection method based on the deep learning approach. In this system, the surveillance cameras are used for observing the vehicles at any specific region orarea.Thesesurveillance cameras are often connected to the Personal Computer (PC) or any recording device to provide those vehicle images or videos which are passing through that specific gateway or area. This vehicle data is taken as input to the Personal Computer (PC). By using the i-Lids, real time camera and open source data a dataset is created. With the help of this dataset, the Deep Learning model istrainedup-toa specified epoch. With the Increase of number of epochs, the loss function of the model is reduced.Finally,thetrainedmodel is tested with the new vehicle data to check whetherthemodel is working effectively in vehicle classification and detection of their number plates. Fig 13: Functional Process of Proposed Scheme In this system, Vehicle classification method is based on a convolutional neural networks and automatic license plate detection of vehicles method is based on Tesseract-ocr. This Deep neural network model will detect the vehicle from the given image or video by using frame extraction. It also provides the classified type of vehicle whether it is bus or bike or bicycle or any other type. The model will detect the vehicle number plate if and only if there is number plate for that detected vehicle. Thedetected vehicle number plate is extracted as an imagefromthegiven data and simultaneously giventotheTesseract-OCR whichis integrated with the OpenCV to recognize the characters present in that number plate. The model will beinstructed to detect and classify the vehicles, only when their detection probability is more than 0.90. This Probabilityapproachwill be useful to get the accurate vehicle info or effective results of the model. A log is created in the PC, to note the details of the vehicles. This Info includes type of vehicle, its number plateandother info like time in & time out are tabulated accurately in the log. Every vehicle info is appended to its log. Finally, this model provides the accurate info of log regarding the vehicles that are passed through this Artificial Intelligence Surveillance. VI. FLOW CHART Fig 14: Flow Chart of Proposed System The given flow chart of proposed system explains the procedure and sequence of Framework as shown above in figure 14. VII. EVALUATION & DISCUSSION For evaluating the proposed or implemented model, we must compare the performanceoftheproposedsystemtoall other existing systems. After collecting the relevant training and testing experiment information, we analyzed and compared the accuracy rate of the different network structures such as AlexNet, Vggnet16, Vggnet19, Googlenet, Resnet50 and Resnet101. Currently, proposed system uses ResNet101 architecture to train and test the deep learning Algorithm for vehicle classification and detection. The accuracy for different network architectures shown below. CR (%) = In the equation, CN means for the number of correctly classified images and EN means for the number of incorrectly classified images indicates the correct rate. To compare the experimental resultsofvariousnetwork results, the graphical representations of them are given below.
  • 8. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 290 Fig 15: (a) loss curves of curves; (b) curves of accuracy The dataset with 3500 pictures is collected and preprocessed with auto-iris function which is used to evaluate the trained models. We drew the loss curve and accuracy curve of every classification and recognition network structure, which are helpful to understand the training process of every model. From the comparisonofthe curves, it is clear that the Resnet-101 can get the fastest convergence and higher accuracy as shown in Fig 15. Architecture Accuracy Year Alex Net 82.6 2012 Inception-V1 88.4 2013 VGG 90.8 2014 ResNet-50 92.3 2016 ResNet-101 95.2 2018 Table 1: Comparision of Network Structures We apply the proposed model which is trained by the image dataset into the real traffic road video or imagescollected by ourselves. The collection of real traffic vehicle pictures is also tested. We observed that for the recognition of the real traffic road image, the training image dataset obtains the higher accuracy. The experimental results obtained from the training and testing dataset is shown in the below table. The figure 15 shows that, Resnet Network structure gives the higher accuracy for object detection and classification than the other network structures. By analyzing the testing performance with different number of layers in ResNet structure, the best performing one is the cascading of the ResNet101 network structure which achieves 95.27%. VIII. RESULTS In most of the cases, the experimental results of proposed system have obtained with higher accuracy. The proposed method has integrated feature extraction, object frame boundary generation, linear regression & classification and License plate recognition to provide a customized efficient model. By using this model, we can retrieve the vehicle info accurately. Even if there is background noise in the license plate, it will not affect the performanceoftherecognition.So, this system can recognize all the characters on the license plate successfully.Thus,thecomprehensiveperformance has been greatly improved. When compared to existing models, the current deep learningvehicleclassificationanddetection neural network model has the rate of accuracy as very high. Therefore, the proposed model gives standard results. IX. CONCLUSION Based on CNN, this paper proposed the vehicle type classification and license plate recognition in urban traffic video surveillance. This Deep Learning model can do both Classification and Detection of vehicles simultaneously.This reduces the complexity of the processing which helps to increase the performance of the system to train and test the model. With the increaseoftrainingdataset,themodification of parameters and replacement of the model; the proposed method becomes effective and validated by the relevant experiments. The experimental resultsshowthatthevehicle recognition rate is improved. In a comparative analysis, this vehicle classification & detection framework can get high accuracy with success rates which has been proposed to expose in a better performance than existing frameworks. X. FUTURE WORK In the future, we will implement this proposed model as a real-time hardware application with a deep learning Framework which further improves the accuracy and robustness for the traffic vehicleclassificationanddetection. There are still mountains of work about deep learning to be studied. For example, it needs the other efficient and theory based deep learning model algorithms. It explores the new feature extraction models which are also worthy to do further research. Besides studying efficient parallel training algorithms, they need to be investigated. Regarding the applications of extending deep learning and how to make rational use of deep learning in enhancing the performance of traditional algorithms is still the focusofa varietyoffields. XI. ACKNOWLEDGEMENT I would like to express my sincere appreciation to my supervisors Dr. N. Viswanathan, Dr. K. Manivel and N. Jayanthi for their constant guidance and encouragement during my whole B.E period at the Mahendra Engineering College. They gave me this opportunity to do this great project on ā€œCLASSIFICATION & DETECTION OF VEHICLES USING DEEP LEARNINGā€ which helps me to learn a lot of new things. I am thankful to them; without their valuable help, this project would not have been possible. XII. REFERENCES [1] Saha, S., Basu, S., Nasipuri, M., and Basu, D. K., ā€œLicense plate localization from vehicle images: An edge-based multi-stage approachā€, International Journal of Recent Trends in Engineering, 1(1):284ā€“ 288.
  • 9. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID ā€“ IJTSRD30353 | Volume ā€“ 4 | Issue ā€“ 3 | March-April 2020 Page 291 [2] Chang, S.-L., Chen, L.-S., Chung, Y.-C., and Chen,S.-W., ā€œAutomatic license plate recognitionā€, IEEE transactions on intelligent transportation systems, 5(1):42ā€“53. [3] Al-Shami, S., El-Zaart, A., Zantout, R., Zekri, A., and Almustafa, K. ā€œA new feature extraction method for automatic license plate recognitionā€, In Digital Information and Communication Technology and its Applications (DICTAP), Fifth International IEEE Conference. [4] Farhat, A., Al-Zawqari, A., Al-Qahtani, A., Hommos, O., Bensaali, F., Amira, A., and Zhai, X., ā€œOcr based feature extraction and template matching algorithms for Qatari number plateā€, In Industrial Informatics and Computer Systems (CIICS), International IEEE Conference. [5] Anagnostopoulos, I. E., Loumos, C. N. E., Anagnostopoulos, V., and Kayafas, E., ā€œA license plate detection algorithm for intelligent transportation system applicationsā€, IEEE Transactions on Intelligent transportation systems, 7(3):377ā€“392. [6] Dalal, N. and Triggs, B., ā€œHistograms of oriented gradients for human detection In Computer Vision and Pattern Recognitionā€, CVPR IEEE Computer Society Conference on, volume 1, IEEE.