SlideShare a Scribd company logo
Digital Transmission
4-2 ANALOG-TO-DIGITAL CONVERSION
A digital signal is superior to an analog signal because
it is more robust to noise and can easily be recovered,
corrected and amplified. For this reason, the tendency
today is to change an analog signal to digital data. In
this section we describe two techniques, pulse code
modulation and delta modulation.
 Pulse Code Modulation (PCM)
Topics discussed in this section:
PCM
 PCM consists of three steps to digitize an
analog signal:
1. Sampling
2. Quantization
3. Binary encoding
 Before we sample, we have to filter the
signal to limit the maximum frequency of
the signal as it affects the sampling rate.
 Filtering should ensure that we do not
distort the signal, ie remove high frequency
components that affect the signal shape.
Figure 4.21 Components of PCM encoder
Sampling
 Analog signal is sampled every TS secs.
 Ts is referred to as the sampling interval.
 fs = 1/Ts is called the sampling rate or
sampling frequency.
 There are 3 sampling methods:
 Ideal - an impulse at each sampling instant
 Natural - a pulse of short width with varying
amplitude
 Flattop - sample and hold, like natural but with
single amplitude value
 The process is referred to as pulse amplitude
modulation PAM and the outcome is a signal
with analog (non integer) values
Figure 4.22 Three different sampling methods for PCM
According to the Nyquist theorem, the
sampling rate must be
at least 2 times the highest frequency
contained in the signal.
Note
Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals
Quantization
 Sampling results in a series of pulses of
varying amplitude values ranging between
two limits: a min and a max.
 The amplitude values are infinite between the
two limits.
 We need to map the infinite amplitude values
onto a finite set of known values.
 This is achieved by dividing the distance
between min and max into L zones, each of
height 
 = (max - min)/L
Quantization Levels
 The midpoint of each zone is assigned a
value from 0 to L-1 (resulting in L
values)
 Each sample falling in a zone is then
approximated to the value of the
midpoint.
Quantization Zones
 Assume we have a voltage signal with
amplitutes Vmin=-20V and Vmax=+20V.
 We want to use L=8 quantization levels.
 Zone width = (20 - -20)/8 = 5
 The 8 zones are: -20 to -15, -15 to -10,
-10 to -5, -5 to 0, 0 to +5, +5 to +10,
+10 to +15, +15 to +20
 The midpoints are: -17.5, -12.5, -7.5, -
2.5, 2.5, 7.5, 12.5, 17.5
Figure 4.26 Quantization and encoding of a sampled signal
Quantization Error
 When a signal is quantized, we introduce an
error - the coded signal is an approximation
of the actual amplitude value.
 The difference between actual and coded
value (midpoint) is referred to as the
quantization error.
 The more zones, the smaller  which results
in smaller errors.
 BUT, the more zones the more bits required
to encode the samples -> higher bit rate
Quantization Error and SNQR
 Signals with lower amplitude values will suffer
more from quantization error as the error
range: /2, is fixed for all signal levels.
 Non linear quantization is used to alleviate
this problem. Goal is to keep SNQR fixed for
all sample values.
 Two approaches:
 The quantization levels follow a logarithmic curve.
Smaller ’s at lower amplitudes and larger’s at
higher amplitudes.
 Companding: The sample values are compressed
at the sender into logarithmic zones, and then
expanded at the receiver. The zones are fixed in
height.
Bit rate and bandwidth
requirements of PCM
 The bit rate of a PCM signal can be calculated form
the number of bits per sample x the sampling rate
Bit rate = nb x fs
 The bandwidth required to transmit this signal
depends on the type of line encoding used. Refer to
previous section for discussion and formulas.
 A digitized signal will always need more bandwidth
than the original analog signal. Price we pay for
robustness and other features of digital transmission.

More Related Content

Similar to Analog_to_Digital.pdf

PCM and delta modulation.ppt
PCM and delta modulation.pptPCM and delta modulation.ppt
PCM and delta modulation.ppt
1637ARUNIMADAS
 
EC6651 COMMUNICATION ENGINEERING UNIT 2
EC6651 COMMUNICATION ENGINEERING UNIT 2EC6651 COMMUNICATION ENGINEERING UNIT 2
EC6651 COMMUNICATION ENGINEERING UNIT 2
RMK ENGINEERING COLLEGE, CHENNAI
 
Pulse Code Modulation
Pulse Code ModulationPulse Code Modulation
Pulse Code Modulation
Ridwanul Hoque
 
Digitization
DigitizationDigitization
Digitization
Aminul Tanvin
 
DIGITAL TRANSMISSION
DIGITAL TRANSMISSIONDIGITAL TRANSMISSION
DIGITAL TRANSMISSION
Avijeet Negel
 
Ch4 2 v1
Ch4 2 v1Ch4 2 v1
Ch4 2 v1
bhagavanprasad
 
4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt
test22333
 
ch4_2_v1.ppt
ch4_2_v1.pptch4_2_v1.ppt
ch4_2_v1.ppt
ASMZahidKausar
 
Lecture7 encodingmodulation
Lecture7 encodingmodulationLecture7 encodingmodulation
Lecture7 encodingmodulationH K
 
Digital modulation
Digital modulationDigital modulation
Digital modulation
Muhd Iqwan Mustaffa
 
Introduction to communication system lecture4
Introduction to communication system lecture4Introduction to communication system lecture4
Introduction to communication system lecture4
Jumaan Ally Mohamed
 
1 PCM & Encoding
1  PCM & Encoding1  PCM & Encoding
1 PCM & Encoding
Water Birds (Ali)
 
Pulse code modulation (PCM)
Pulse code modulation (PCM)Pulse code modulation (PCM)
Pulse code modulation (PCM)
Mahima Shastri
 
Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmissionanuragyadav94
 
Data Encoding
Data EncodingData Encoding
Data EncodingLuka M G
 
Sensor technology module-3-interface electronic circuits
Sensor technology module-3-interface electronic circuitsSensor technology module-3-interface electronic circuits
Sensor technology module-3-interface electronic circuits
Sweta Kumari Barnwal
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
stk_gpg
 
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdfpcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
NahshonMObiri
 
Pulse code modulation
Pulse code modulationPulse code modulation
Pulse code modulationNaveen Sihag
 
Pulse Modulation.ppt
Pulse Modulation.pptPulse Modulation.ppt
Pulse Modulation.ppt
ABYTHOMAS46
 

Similar to Analog_to_Digital.pdf (20)

PCM and delta modulation.ppt
PCM and delta modulation.pptPCM and delta modulation.ppt
PCM and delta modulation.ppt
 
EC6651 COMMUNICATION ENGINEERING UNIT 2
EC6651 COMMUNICATION ENGINEERING UNIT 2EC6651 COMMUNICATION ENGINEERING UNIT 2
EC6651 COMMUNICATION ENGINEERING UNIT 2
 
Pulse Code Modulation
Pulse Code ModulationPulse Code Modulation
Pulse Code Modulation
 
Digitization
DigitizationDigitization
Digitization
 
DIGITAL TRANSMISSION
DIGITAL TRANSMISSIONDIGITAL TRANSMISSION
DIGITAL TRANSMISSION
 
Ch4 2 v1
Ch4 2 v1Ch4 2 v1
Ch4 2 v1
 
4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt
 
ch4_2_v1.ppt
ch4_2_v1.pptch4_2_v1.ppt
ch4_2_v1.ppt
 
Lecture7 encodingmodulation
Lecture7 encodingmodulationLecture7 encodingmodulation
Lecture7 encodingmodulation
 
Digital modulation
Digital modulationDigital modulation
Digital modulation
 
Introduction to communication system lecture4
Introduction to communication system lecture4Introduction to communication system lecture4
Introduction to communication system lecture4
 
1 PCM & Encoding
1  PCM & Encoding1  PCM & Encoding
1 PCM & Encoding
 
Pulse code modulation (PCM)
Pulse code modulation (PCM)Pulse code modulation (PCM)
Pulse code modulation (PCM)
 
Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmission
 
Data Encoding
Data EncodingData Encoding
Data Encoding
 
Sensor technology module-3-interface electronic circuits
Sensor technology module-3-interface electronic circuitsSensor technology module-3-interface electronic circuits
Sensor technology module-3-interface electronic circuits
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdfpcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
 
Pulse code modulation
Pulse code modulationPulse code modulation
Pulse code modulation
 
Pulse Modulation.ppt
Pulse Modulation.pptPulse Modulation.ppt
Pulse Modulation.ppt
 

Recently uploaded

Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 

Recently uploaded (20)

Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 

Analog_to_Digital.pdf

  • 2. 4-2 ANALOG-TO-DIGITAL CONVERSION A digital signal is superior to an analog signal because it is more robust to noise and can easily be recovered, corrected and amplified. For this reason, the tendency today is to change an analog signal to digital data. In this section we describe two techniques, pulse code modulation and delta modulation.  Pulse Code Modulation (PCM) Topics discussed in this section:
  • 3. PCM  PCM consists of three steps to digitize an analog signal: 1. Sampling 2. Quantization 3. Binary encoding  Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.  Filtering should ensure that we do not distort the signal, ie remove high frequency components that affect the signal shape.
  • 4. Figure 4.21 Components of PCM encoder
  • 5. Sampling  Analog signal is sampled every TS secs.  Ts is referred to as the sampling interval.  fs = 1/Ts is called the sampling rate or sampling frequency.  There are 3 sampling methods:  Ideal - an impulse at each sampling instant  Natural - a pulse of short width with varying amplitude  Flattop - sample and hold, like natural but with single amplitude value  The process is referred to as pulse amplitude modulation PAM and the outcome is a signal with analog (non integer) values
  • 6. Figure 4.22 Three different sampling methods for PCM
  • 7. According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal. Note
  • 8. Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals
  • 9. Quantization  Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.  The amplitude values are infinite between the two limits.  We need to map the infinite amplitude values onto a finite set of known values.  This is achieved by dividing the distance between min and max into L zones, each of height   = (max - min)/L
  • 10. Quantization Levels  The midpoint of each zone is assigned a value from 0 to L-1 (resulting in L values)  Each sample falling in a zone is then approximated to the value of the midpoint.
  • 11. Quantization Zones  Assume we have a voltage signal with amplitutes Vmin=-20V and Vmax=+20V.  We want to use L=8 quantization levels.  Zone width = (20 - -20)/8 = 5  The 8 zones are: -20 to -15, -15 to -10, -10 to -5, -5 to 0, 0 to +5, +5 to +10, +10 to +15, +15 to +20  The midpoints are: -17.5, -12.5, -7.5, - 2.5, 2.5, 7.5, 12.5, 17.5
  • 12. Figure 4.26 Quantization and encoding of a sampled signal
  • 13. Quantization Error  When a signal is quantized, we introduce an error - the coded signal is an approximation of the actual amplitude value.  The difference between actual and coded value (midpoint) is referred to as the quantization error.  The more zones, the smaller  which results in smaller errors.  BUT, the more zones the more bits required to encode the samples -> higher bit rate
  • 14. Quantization Error and SNQR  Signals with lower amplitude values will suffer more from quantization error as the error range: /2, is fixed for all signal levels.  Non linear quantization is used to alleviate this problem. Goal is to keep SNQR fixed for all sample values.  Two approaches:  The quantization levels follow a logarithmic curve. Smaller ’s at lower amplitudes and larger’s at higher amplitudes.  Companding: The sample values are compressed at the sender into logarithmic zones, and then expanded at the receiver. The zones are fixed in height.
  • 15. Bit rate and bandwidth requirements of PCM  The bit rate of a PCM signal can be calculated form the number of bits per sample x the sampling rate Bit rate = nb x fs  The bandwidth required to transmit this signal depends on the type of line encoding used. Refer to previous section for discussion and formulas.  A digitized signal will always need more bandwidth than the original analog signal. Price we pay for robustness and other features of digital transmission.