Biosciences	
  research	
  at	
  	
  
Interna.onal	
  Livestock	
  	
  
Research	
  Ins.tute	
  (ILRI)	
  
A	
  seminar	
  given	
  by	
  Steve	
  Kemp	
  and	
  Vish	
  Nene	
  
at	
  University	
  of	
  Nairobi	
  5th	
  June	
  2013	
  
2	
  
3	
  
4	
  
Source:	
  FAOSTAT,	
  2010	
  data	
  
Four	
  out	
  of	
  the	
  five	
  highest	
  value	
  
global	
  commodi.es	
  are	
  livestock	
  
5	
  
Source:	
  FAOSTAT,	
  2010	
  data	
  
%	
  growth	
  in	
  demand	
  for	
  livestock	
  products	
  
2000	
  -­‐	
  2030	
  
6	
  
FAO,	
  2012	
  
ILRI	
  Mission	
  and	
  Strategy	
  	
  
§  ILRI envisions a world where all people have access to enough
food and livelihood options to fulfill their potential.
§  ILRI’s mission is to improve food and nutritional security and to
reduce poverty in developing countries through research for
efficient, safe and sustainable use of livestock— ensuring better
lives through livestock
§  ILRI works in partnerships and alliances with other organizations,
national and international, in livestock research, training and
information. ILRI works in all tropical developing regions of Africa
and Asia.
§  ILRI is a member of the CGIAR Consortium that conducts food
and environmental research to help alleviate poverty and increase
food security while protecting the natural resource base.
Strategic	
  objec.ves	
  
§  ILRI	
  and	
  its	
  partners	
  will	
  develop,	
  test,	
  adapt	
  and	
  promote	
  science-­‐
based	
  prac%ces	
  that—being	
  sustainable	
  and	
  scalable—achieve	
  beXer	
  
lives	
  through	
  livestock.	
  
Ø  ILRI	
  and	
  its	
  partners	
  will	
  provide	
  compelling	
  scien%fic	
  evidence	
  in	
  
ways	
  that	
  persuade	
  decision-­‐makers—from	
  farms	
  to	
  boardrooms	
  
and	
  parliaments—that	
  smarter	
  policies	
  and	
  bigger	
  livestock	
  
investments	
  can	
  deliver	
  significant	
  socio-­‐economic,	
  health	
  and	
  
environmental	
  dividends	
  to	
  both	
  poor	
  na.ons	
  and	
  households.	
  
Ø  ILRI	
  and	
  its	
  partners	
  will	
  work	
  to	
  increase	
  capacity	
  amongst	
  ILRI’s	
  
key	
  stakeholders	
  and	
  the	
  ins.tute	
  itself	
  so	
  that	
  they	
  can	
  make	
  beXer	
  
use	
  of	
  livestock	
  science	
  and	
  investments	
  for	
  beXer	
  lives	
  through	
  
livestock.	
  
ILRI’s	
  competencies	
  
Integrated sciences Biosciences
Gender and equity Vaccines
Resilience Genomics
Value chains and innovation Breeding
Zoonotics and food safety BecA
Feeds Genomics and gene delivery
Livestock and environment (both
directions)
Feed biosciences
Policy, investment and trade Poultry genetics
Animal health delivery
Payment for ecosystem services
Conservation of indigenous animal
genetic resources
Ruminants and monogastrics
ILRI’s	
  research	
  teams	
  
10	
  
Integrated sciences Biosciences
Animal science for sustainable
productivity
BecA-ILRI hub
Food safety and zoonoses Vaccine platform
Livestock systems and the
environment
Animal bioscience
Livelihoods, gender and impact Feed and forage bioscience
Policy, trade, value chains Bioscience facilities
ILRI	
  Resources	
  
•  Staff:	
  700.	
  
•  Budget:	
  $60	
  million.	
  	
  
•  30+	
  scien.fic	
  disciplines.	
  	
  
•  130	
  senior	
  scien.sts	
  from	
  39	
  countries.	
  
•  56%	
  of	
  interna.onally	
  recruited	
  
staff	
  are	
  from	
  22	
  developing	
  countries.	
  
•  34%	
  of	
  interna.onally	
  recruited	
  staff	
  
are	
  women.	
  	
  
•  Large	
  campuses	
  in	
  Kenya	
  and	
  Ethiopia.	
  	
  
•  70%	
  of	
  research	
  in	
  sub-­‐Saharan	
  Africa.	
  
ILRI	
  Offices	
  
Mali	
  
Nigeria	
  
Mozambique	
  
Kenya	
  
Ethiopia	
  
India	
  
Sri	
  Lanka	
  
China	
  
Laos	
  
Vietnam	
  
Thailand	
  
Nairobi: Headquarters
Addis Ababa: principal campus
In 2012, offices opened in:
Kampala, Uganda
Harare, Zimbabwe
Office in Bamako, Mali
relocated to
Ouagadougou, Burkina Faso
Dakar, Senegal
Biosciences	
  eastern	
  and	
  central	
  Africa	
  –	
  ILRI	
  Hub	
  
§ a	
  strategic	
  partnership	
  between	
  ILRI	
  and	
  NEPAD.	
  
§ a	
  biosciences	
  plahorm	
  that	
  makes	
  the	
  best	
  lab	
  facili.es	
  
available	
  to	
  the	
  African	
  scien.fic	
  community.	
  
§ building	
  African	
  scien.fic	
  capacity.	
  
§ iden.fying	
  agricultural	
  solu.ons	
  based	
  on	
  modern	
  
biotechnology.	
  
§ hosted	
  at	
  ILRI’s	
  headquarters,	
  Nairobi,	
  Kenya.	
  
	
  
	
  
§ Biosciences	
  infrastructure	
  
	
  
§ Biorepository	
  
	
  
•  Sampling is a very time-consuming and
expensive exercise.
•  We have an ethical and scientific
responsibility to make the best use of that
effort and money!
§ Biorepository	
  
	
  
§ Sequencing	
  and	
  bioinforma.cs	
  
	
  
The Bioinformatics platform
has 88 compute cores, 31TB
of network-attached
GlusterFS storage and back
up systems.
• 454 GSFLX
– 500 Mbases in 7 hour run
– $10/Mb
– 500bp read lengths
– Homo-polymer problem
• Illumina MiSeq
– 1.5-2Gbases in 27 hour run
– $0.15/Mb
– <150bp read lengths
§ Sequencing	
  and	
  bioinforma.cs	
  
	
  
§ Trypanosomias	
  research.	
  
§ Vaccine	
  research	
  
	
  
African Trypanosomiasis
•  Caused by extracellular protozoan
parasites – Trypanosoma
•  Transmitted between mammals by Tsetse
flies (Glossina sp.)
•  Prevalent in 36 countries of sub-Sahara
Africa.
In cattle
•  A chronic debilitating and fatal disease.
•  A major constraint on livestock and
agricultural production in Africa.
•  Costs US$ 1 billion annually.
In human (Human Sleeping Sickness)
•  Fatal
•  60,000 people die every year
•  Both wild and domestic animals are the
major reservoir of the parasites for human
infection.
Trypanosomias	
  research	
  
Trypanosomes cause fatal
disease in humans and livestock.
T. congolense,
T. vivax
T brucei rhodesiense
T brucei gambiense
Control and Treatment of African Trypanosomiasis
Vector Control (Tsetse Fly)
•  Using toxic insecticide
•  Not sustainable
•  Negative impacts on environment
Vaccine
•  Tryps periodically change the major surface
antigen – variant surface glycoprotein (VSG) and
evade the host immune system.
•  More than 2 decades, there is no effective
vaccine developed.
Drug
•  Drug toxicity and resistance
•  Expensive
Bovins
Bovins et Glossines
Glossines
Cattle
Tsetse
Cattle and tsetse
Origins of N’Dama and Boran cattle
N’Dama
Boran
Contribution of 10 genes from Boran and N’Dama
cattle to reduction in degree of trypanosomosis
Boran (relatively susceptible)
The N’Dama and Boran each contribute trypanotolerance alleles at 5
of the 10 most significant QTL, indicating that a synthetic breed could
have even higher tolerance than the N’Dama.
N’Dama (tolerant)
-15
-10
-5
0
5
10
15
-15
-10
-5
0
5
10
15
Studying the tolerant/susceptible phenotype has
problems:
• Separating cause from effect
• Separating relevant from irrelevant.
• Dominance of the ‘what is happening to this
weeks trendy gene/protein/cytokine?’
approach.
An EST Library screen identifies
ARHGAP15282H->P mutation in the Bta2
(anaemia) QTL
Ø Screened EST libraries made from four
tissues from N’Dama and Boran for SNP
within shortlisted genes.
N'Dama (n = 35) Boran (n = 28)
282P-Allele 0.990 0.125
282H-Allele 0.010 0.875
Gene frequency
H → P mutation at AA282
Alignment of N’Dama ARHGAP15 with
homologues
Cow NDama KFITRRPSLKTLQEKGLIKDQIFGSPLHTLCEREKSTVPRFVKQCIEAVEK !
Cow Boran KFITRRPSLKTLQEKGLIKDQIFGSHLHTLCEREKSTVPRFVKQCIEAVEK !
Human KFISRRPSLKTLQEKGLIKDQIFGSHLHTVCEREHSTVPWFVKQCIEAVEK !
Pig KFITRRPSLKTLQEKGLIKDQIFGSHLHTVCERENSTVPRFVKQCIEAVEK !
Chicken KFISRRPSLKTLQEKGLIKDQIFGSHLHLVCEHENSTVPQFVRQCIKAVER !
Salmon KFISRRPSMKTLQEKGIIKDRVFGCHLLALCEREGTTVPKFVRQCVEAVEK !
ARHGAP15 is a RAC binding protein and the mutation at the
proximal end of the RAC binding domain affects in vitro activity
The tolerant allele would be expected to inhibit RAC1 activity in
the MAPK pathway which plays a key role in regulating
inflammatory responses and could lead to the observed
differences in expression or amplify downstream expression
differences caused by other factors.
African Trypanosomes Infectivity
• T. congolense
• T. vivax
• T. brucei brucei
• T. brucei rhodesiense
T. brucei gambiense
Cattle Human Baboon (Papio papio)
+ - -
+ + -
Human and baboon resistance is due to innate Trypanosome
Lytic Factor (TLF) in serum which is a subclass of high density
lipoprotein (HDL) and can create pores in Tryps lysosome
membrane and kill the trypanosomes by loss of osmoregulation.
- + -
Can we construct a transgenic cow with resistance to
African Trypanosomiasis ?
•  Establish a transgenic cattle model with African
Trypanosomiasis resistance using nuclear transfer (cloning).
•  On the background of a Kenyan indigenous breed – Kenyan
Boran.
•  Introduce the gene – apoL-I from Baboon into Boran, which
is the key trypanolytic component of Baboon’s protective
Trypanosome Lytic Factor (TLF) against both cattle and
human-infective trypanosomes.
Complete	
  protec%on	
  from	
  human	
  infec%ve	
  
Trypanosomes	
  by	
  baboon	
  apoL-­‐I	
  in	
  	
  
transient	
  transgenic	
  mice	
  
0 20 40 60 80 100 120 140
0
20
40
60
80
100
Vector (N=6)
apoL-I + Hpr (N=5)
apoL-I (N=5)
*
*
Days post infection
• P	
  =	
  <	
  0.01	
  
• Vector	
  vs.	
  treatment	
  
Thomson	
  et	
  al	
  PNAS	
  2009	
  	
  106:19509-­‐19514	
  	
  
Apol-3
Construct with
Baboon ApoL-I Genomic
Sequence
Potential
regulator
y
Sequenc
e
Myh 9
(myosin heavy chain 9)
Chromosome 5
Cattle Apol Family Locus
(6, 2 like, 4 like, 3)
Targeting Strategy
Apol-6, 2 like, 4 like
Project Strategy
Genomic locus of
Baboon apoL-I gene
Vector construction
Validate the construct in
transgenic mouse
Bovine embryonic fibroblasts
(BEF) primary culture
Transfection & screening
apoL-I Transgenic BEFs
Nuclear Transfer
Transgenic calves
Phenotyping
Trypanosome resistant
transgenic Boran bull
ILRI
ILRI
Kenya
Boran
Roslin
Institute
New York
University
Michigan
State
University
NuclearTransfer
(Cloning)
Electrofusion
278 days
Bovine
Embryonic
fibroblast
Oocyte
Oocyte-cell couplet
Blastocyst
Cloned calf born
Enuclea.on	
  
Polar body
Polar body
Polar body
MII
plate
UV+Transmitted light
Remove the PB and surrounding
cytoplasm, as little as possible
Check removal of MII plate
under UV light
Cell	
  Transfer	
  Fibroblast
Select the smallest, round cells with
smooth and shining edge
Inject the selected fibroblast into the
peri-vitelline space and push the cell in
touch with the oocyte cytoplasm.
Oocyte-cell couplet
Electrofusion	
  
Line
perpendicular to
the electrodes
electrodes
Cell line: Kenya Boran, BEFs_E5_286, Male	
  
No. of Oocytes	
  
No. of
Reconstructed
Embryos	
  
No. of
Blsts	
  
No. of Blsts
transferred	
  
No. of
Embryo
Transfer	
  
Pregnancy	
   Abortion	
  
No.	
  of	
  born	
  
calves	
  
1244	
   723	
   85	
   22	
   16	
   5	
   3	
   2	
  
	
   58.1%	
   11.8%	
   	
   	
   31.3%	
   60.0%	
   40%	
  
Summary	
  of	
  Control	
  Nuclear	
  Transfer	
  	
  
Name: Tatu
Date of Birth:16 July 2012 (Kapiti)
Sex: Male
Birth Weight:46 kg
Date of Death: 19 July 2012 (74 hrs)
Cause of death: Low temperature,
low blood glucose …
ID: CL001 (Tumaini)
Date of Birth: 21 August 2012
(ILRI)
Sex: Male
Birth Weight: 35 kg
Current age: 7.5 months, healthy
Two Cloned Calves born through Caesarean Section
AtBirth6-Month
CL001 (Tumaini)
Identification of cloned calves with microsatellite markers
MS Marker ID	
   Chromosome	
  
Alleles Size	
   	
  
E5
(Cell line)	
  
231-F
(Tatu)	
  
BH058
(Mother)	
  
CL001
(Tumaini)	
  
Comment	
  
RM006	
   7	
  
103.24	
   103.24	
   	
   103.23	
  
Calf same as E5	
  106.96	
   106.95	
   106.88	
   106.93	
  
	
   	
   110.7	
   	
  
BM4440	
   2	
  
	
   	
   123.69	
   	
  
Calf same as E5
No allele as dam	
  
132.21	
   132.24	
   	
   132.31	
  
136.54	
   136.55	
   	
   136.57	
  
	
   	
   143.41	
   	
  
INRA053	
   7	
  
90.96	
   90.92	
   	
   90.86	
  
Calf same as E5	
  102.69	
   102.7	
   102.7	
   102.7	
  
	
   	
   110.14	
   	
  
BMS1116	
   7	
  
	
   	
   141.67	
   	
  
Calf same as E5	
  143.87	
   143.77	
   	
   143.83	
  
146.03	
   145.93	
   145.96	
   145.96	
  
ILST098	
   2	
  
	
   	
   93.02	
   	
  
Calf same as E5
No allele as dam	
  
101.08	
   101	
   	
   101.08	
  
104.77	
   104.73	
   	
   104.79	
  
	
   	
   110.45	
   	
  
Two born calves are the same as the cell line in 11 microsatellite markers.
Future Activities
Transfection of Boran BEFs line
(Roslin Institute, UK)
Establish Apol-I Transgenic Boran by Nuclear
Transfer with Transgenic Cells
Phenotyping (confirm Tryps resistance)
•  Apol-I expression pattern
•  Killing of Trypanosomes in vitro (serum) and in vivo
(challenge)
•  Monitor the health conditions with growth
Increase Genetic Diversity
•  Establish more transgenic cattle with
Kenya Boran BEFs lines
•  Establish transgenic cattle with other
Kenyan indigenous breeds
Transgene Delivery
•  Develop a breeding programme to
disseminate the transgene with farmers
Regulatory, legal, safety & public awareness issues
Future Activities
Tumaini
A cloned Kenya Boran calf
made by SCNT from a Boran
embryo fibroblast cell line
Cloned NOT transgenic
Current and future animal
vaccine research activities at
ILRI
Vaccine	
  Biosciences	
  
Interna.onal	
  Livestock	
  Research	
  Ins.tute	
  
Seminar	
  at	
  CAVS,	
  Kabete	
  Campus,	
  5th	
  June	
  2013	
  
	
  
Importance	
  of	
  animal	
  health	
  research	
  in	
  
the	
  developing	
  world	
  
Ø Livestock offer a powerful pathway out of poverty for ~750
million poor farmers in South Asia and Africa by providing
nutritional and economic security.
Ø Infectious livestock diseases feature prominently among the
constraints faced by livestock agriculture.
•  Endemic diseases
•  Epidemic/pandemic diseases
•  Trans-boundary diseases
•  Emerging and re-emerging diseases
•  Zoonotic diseases and food safety
Ø For many reasons diseases are neglected problems in affected
countries, a situation exacerbated by a general lack of
investment, vaccine R & D and manufacturing capacity.
List	
  of	
  current	
  ILRI	
  high	
  priority	
  
diseases	
  targeted	
  for	
  control	
  
Ø African swine fever (ASF) – swine
•  African disease threatens the global $150 billion/year pig industry
Ø Contagious bovine pleuropneumonia (CBPP) – cattle
•  Regional losses to CBPP amount to ~ $60 million/year
Ø East Coast fever (ECF) – cattle
•  Regional losses exceed $300 million/year; kills ~ 1million cattle/year
Ø Peste de petits ruminants (PPR) – small ruminants
•  Losses in Kenya alone amount to ~ $13 million/year
Ø Rift Valley Fever (RVF) – small ruminants, cattle and
human
•  2006/7 outbreak in Kenya cost ~ $30 million
•  309 human cases in Kenya, Somalia and Tanzania; 140 deaths
Vaccines save lives and livestock and contribute to food
security and poverty alleviation
Socio-­‐economic	
  impact	
  of	
  East	
  Coast	
  fever	
  
	
  in	
  sub-­‐Saharan	
  Africa	
  
	
  
Ø ECF present in 11 countries; it could spread
to 8 more
Ø ~46 million cattle in region; ~28 million at risk
Ø ~1million deaths/year; losses > 300 $ million
Ø Small-holder farmers who would benefit: ~ 20
Theileria	
  parva	
  	
  life	
  cycle	
  
	
  
R. appendiculatus
schizont-infected cells
sporozoites
piroplasms
merogony
An	
  infec.on	
  and	
  treatment	
  vaccine	
  
A live vaccine for the control of ECF
(Muguga cocktail)
Problems: Liquid nitrogen cold chain, cost, immunological
types
Immune	
  responses	
  that	
  contribute	
  to	
  
immunity	
  
Anti-sporozoite
Anti-schizont
An.-­‐sporozoite	
  immunity:	
  p67	
  can	
  induce	
  
immunity	
  to	
  ECF	
  
p67N
p67M
p67C
21 225
226 571
572 651
9 709
reduction in severe ECF by 50% in lab (25% immunity in field)
Average
A	
  classical	
  CD8+	
  cytotoxic	
  T	
  cell	
  response	
  to	
  
the	
  schizont	
  stage	
  of	
  T.	
  parva	
  
CTL
P
CTL
P
T cell receptor (TCR) on CTL recognizes
parasite peptide associated with MHC class I molecules
Flowchart	
  of	
  CTL	
  an.gen	
  discovery	
  
ACTGGTACGTAGGGCATCGA
TCGACATGATAGAGCATATA
GCATGACGATGCGATCGACA
GTCGACAGCTGACAGCTGAG
GGTGACACCAGCTGCCAGCT
GGACCACCATTAGGACAGAT
GACCACACACAAATAGACGA
TTAGGACCAGATGAGCCACA
TTTTAGGAGGACACACACCA
Bioinformatics
tools
Predict ~ 5000
gene sequences
& list candidate
vaccine antigens
Clone genes of
vaccine interest
Filter genes via
immunological
assays
T. parva genome sequence
A
Random cDNA
library
B
Candidate CTL antigens
Map CTL epitopes
Mapped	
  parasite	
  CTL	
  an.gens/epitopes	
  
CTL epitope Peptide sequence MHC class I gene BoLA sero-type
Tp1214-224 VGYPKVKEEML N*01301 A18 (HD6)
Tp227-37 SHEELKKLGML T2b~
Tp249-59 KSSHGMGKVGK N*01201 A10 (T2a)
Tp296-104 FAQSLVCVL T2c~
Tp298-106 QSLVCVLMK N*01201 A10 (T2a)
Tp4328-336 TGASIQTTL N*00101 A10 (5.1)
Tp587-95 SKADVIAKY T5~
Tp7206-214 EFISFPISL T7~
Tp8379-387 CGAELNHFL N*00101 A10 (5.1)
NetMHCpan	
  –	
  an	
  ar.ficial	
  neural	
  network	
  
to	
  predict	
  CTL	
  an.gens/epitopes	
  
Center for Biological Sequence Analysis at the Technical University of Denmark
Incorporates correlated effects
Morten Nielsen
Use	
  of	
  pep.de-­‐MHC	
  tetramers	
  in	
  ECF	
  
CD8+
Perforin+
Tp1+ cells
CTR
CTR
BB007
BB007
Diversity	
  of	
  BoLA	
  MHC	
  class	
  I	
  genes?	
  
Cattle -
multiplex
RNA isolation from PBMCs
454 pyrosequencing
RT-PCR
Full length cDNAExon 2- Exon 3
• High
throughput
• Rare
variants Nicholas Svitek –
post-doc
Genotypic	
  diversity	
  –	
  a	
  hallmark	
  of	
  T.	
  parva,	
  
can	
  compara.ve	
  genomics	
  help?	
  
Muguga, Marikebuni, Uganda ~ 64,000
SNPs
SNP distribution: ~ 65% exons, ~15% introns, ~ 20% inter-
genic
81/4076 genes under positive selection (includes Tp2)
[Henson et al., BMC Genomics 13: 503,
2012]
Joana da Silva – hybrid capture NGS
Sequencing more cattle and buffalo derived
parasites
An.-­‐schizont	
  immunity:	
  trial	
  of	
  Tp	
  an.gens	
  
Graham et al., PNAS, 2006: 30% vaccinated cattle
We	
  need	
  beXer	
  methods	
  to	
  generate	
  
immune	
  responses	
  in	
  caXle	
  
Anti-sporozoite
Anti-schizont
Exploring vaccination
systems
New adjuvants
Viral vectored systems
Old & new antigens
A	
  porholio	
  of	
  innova.on	
  and	
  vaccine	
  
related	
  technology	
  plahorms	
  
Yeast&with&M.#myc&LC&
genome&
(Delete&puta5ve&&
virulence&factors)&
Less&virulent&M.#myc&LC&
ACTGGTACGTAGGGCATCGA
TCGACATGATAGAGCATATA
GCATGACGATGCGATCGACA
GTCGACAGCTGACAGCTGAG
GGTGACACCAGCTGCCAGCT
GGACCACCATTAGGACAGAT
GACCACACACAAATAGACGA
TTAGGACCAGATGAGCCACA
TTTTAGGAGGACACACACCA
Bioinformatics
tools
Predict gene
sequences and
list candidate
vaccine antigens
Test experimental vaccine
Clone genes of
vaccine interest
(100’s of genes)
Filter genes via
immunological
assays
Pathogen genome mining
(1000’s of genes)
Molecular immunology
tools to assess immune
responses in cattle
(10’s genes)
BASIC&RESEARCH&
Increasing&our&
knowledge&base&
&
“Knowledge*lays*the*
founda2on*for*science”***
!
!  Map&immune&responses&to&
infec>on&
!  Dissect&pathogen&biology&&&
diversity&
!  Study&hostDvectorD
pathogen&interac>ons&
!  Characterize&pathogen&
virulence&factors&
!  Inves>gate&the&
epidemiology&of&disease&
!  Iden>fy&vaccine&and&
diagnos>c&molecules&
&
&
&
&
&
APPLIED&RESEARCH&
Developing&new&
vaccines&&&diagnos>cs&
&
“Vaccines*are*cost8effec2ve*
an28disease*inven2ons”*
&
!  Assess&candidate&subunit&
vaccines&
!  Assess&aHenuated&
pathogen&vaccines&
!  Assess&different&vaccina>on&
systems&
!  Engineer&thermoDstable&
vaccine&formula>ons&
!  Develop&smarter&easier&to&
use&diagnos>c&tests&
!  Facilitate&transla>on&of&
outputs&to&products&
BASIC&RESEARCH&
Increasing&our&
knowledge&base&
&
“Knowledge*lays*the*
founda2on*for*science”***
!
!  Map&immune&responses&to&
infec>on&
!  Dissect&pathogen&biology&&&
diversity&
!  Study&hostDvectorD
pathogen&interac>ons&
!  Characterize&pathogen&
virulence&factors&
!  Inves>gate&the&
epidemiology&of&disease&
!  Iden>fy&vaccine&and&
diagnos>c&molecules&
&
&
&
&
&
APPLIED&RESEARCH&
Developing&new&
vaccines&&&diagnos>cs&
&
“Vaccines*are*cost8effec2ve*
an28disease*inven2ons”*
&
!  Assess&candidate&subunit&
vaccines&
!  Assess&aHenuated&
pathogen&vaccines&
!  Assess&different&vaccina>on&
systems&
!  Engineer&thermoDstable&
vaccine&formula>ons&
!  Develop&smarter&easier&to&
use&diagnos>c&tests&
!  Facilitate&transla>on&of&
outputs&to&products&
Acknowledgments	
  
Large number of past and current scientists at ILRI
(Evans Taracha et al) and collaborators (LICR, Oxford Uni, Merial)
Immuno-informatics approach:
John Barlow – University of Vermont
Bill Golde – USDA-ARS (Plum Island)
Soren Buus – University of Copenhagen
Morten Nielsen - Technical University of Denmark
ILRI CRP funds
TIGR and Craig Venter
DFID
NSF-BMFG (BREAD program)
USAID – Feed the Future via USDA-ARS
The presentation has a Creative Commons licence. You are free to re-use or distribute this work, provided credit is
given to ILRI.
ilri.org
Box 30709, Nairobi 00100, Kenya
Phone: + 254 20 422 3000
Fax: +254 20 422 3001
Email: ILRI-Kenya@cgiar.org
Box 5689,Addis Ababa, Ethiopia
Phone: +251 11 617 2000
Fax: +251 11 617 2001
Email: ILRI-Ethiopia@cgiar.org
other offices
China • India • Mali
Mozambique • Nigeria • Tanzania
Thailand • Uganda • Vietnam
Better lives through livestock
ILRI is a member of the CGIAR Consortium
BeFer	
  lives	
  through	
  livestock	
  
ilri.org
The presentation has a Creative Commons licence. You are free to re-use or distribute this work, provided credit is
given to ILRI.
ilri.org
Box 30709, Nairobi 00100, Kenya
Phone: + 254 20 422 3000
Fax: +254 20 422 3001
Email: ILRI-Kenya@cgiar.org
Box 5689,Addis Ababa, Ethiopia
Phone: +251 11 617 2000
Fax: +251 11 617 2001
Email: ILRI-Ethiopia@cgiar.org
other offices
China • India • Mali
Mozambique • Nigeria • Tanzania
Thailand • Uganda • Vietnam
Better lives through livestock
ILRI is a member of the CGIAR Consortium
BeFer	
  lives	
  through	
  livestock	
  
ilri.org

Biosciences research at the International Livestock Research Institute (ILRI)

  • 1.
    Biosciences  research  at     Interna.onal  Livestock     Research  Ins.tute  (ILRI)   A  seminar  given  by  Steve  Kemp  and  Vish  Nene   at  University  of  Nairobi  5th  June  2013  
  • 2.
  • 3.
  • 4.
    4   Source:  FAOSTAT,  2010  data  
  • 5.
    Four  out  of  the  five  highest  value   global  commodi.es  are  livestock   5   Source:  FAOSTAT,  2010  data  
  • 6.
    %  growth  in  demand  for  livestock  products   2000  -­‐  2030   6   FAO,  2012  
  • 7.
    ILRI  Mission  and  Strategy     §  ILRI envisions a world where all people have access to enough food and livelihood options to fulfill their potential. §  ILRI’s mission is to improve food and nutritional security and to reduce poverty in developing countries through research for efficient, safe and sustainable use of livestock— ensuring better lives through livestock §  ILRI works in partnerships and alliances with other organizations, national and international, in livestock research, training and information. ILRI works in all tropical developing regions of Africa and Asia. §  ILRI is a member of the CGIAR Consortium that conducts food and environmental research to help alleviate poverty and increase food security while protecting the natural resource base.
  • 8.
    Strategic  objec.ves   § ILRI  and  its  partners  will  develop,  test,  adapt  and  promote  science-­‐ based  prac%ces  that—being  sustainable  and  scalable—achieve  beXer   lives  through  livestock.   Ø  ILRI  and  its  partners  will  provide  compelling  scien%fic  evidence  in   ways  that  persuade  decision-­‐makers—from  farms  to  boardrooms   and  parliaments—that  smarter  policies  and  bigger  livestock   investments  can  deliver  significant  socio-­‐economic,  health  and   environmental  dividends  to  both  poor  na.ons  and  households.   Ø  ILRI  and  its  partners  will  work  to  increase  capacity  amongst  ILRI’s   key  stakeholders  and  the  ins.tute  itself  so  that  they  can  make  beXer   use  of  livestock  science  and  investments  for  beXer  lives  through   livestock.  
  • 9.
    ILRI’s  competencies   Integratedsciences Biosciences Gender and equity Vaccines Resilience Genomics Value chains and innovation Breeding Zoonotics and food safety BecA Feeds Genomics and gene delivery Livestock and environment (both directions) Feed biosciences Policy, investment and trade Poultry genetics Animal health delivery Payment for ecosystem services Conservation of indigenous animal genetic resources Ruminants and monogastrics
  • 10.
    ILRI’s  research  teams   10   Integrated sciences Biosciences Animal science for sustainable productivity BecA-ILRI hub Food safety and zoonoses Vaccine platform Livestock systems and the environment Animal bioscience Livelihoods, gender and impact Feed and forage bioscience Policy, trade, value chains Bioscience facilities
  • 11.
    ILRI  Resources   • Staff:  700.   •  Budget:  $60  million.     •  30+  scien.fic  disciplines.     •  130  senior  scien.sts  from  39  countries.   •  56%  of  interna.onally  recruited   staff  are  from  22  developing  countries.   •  34%  of  interna.onally  recruited  staff   are  women.     •  Large  campuses  in  Kenya  and  Ethiopia.     •  70%  of  research  in  sub-­‐Saharan  Africa.  
  • 12.
    ILRI  Offices   Mali   Nigeria   Mozambique   Kenya   Ethiopia   India   Sri  Lanka   China   Laos   Vietnam   Thailand   Nairobi: Headquarters Addis Ababa: principal campus In 2012, offices opened in: Kampala, Uganda Harare, Zimbabwe Office in Bamako, Mali relocated to Ouagadougou, Burkina Faso Dakar, Senegal
  • 13.
    Biosciences  eastern  and  central  Africa  –  ILRI  Hub   § a  strategic  partnership  between  ILRI  and  NEPAD.   § a  biosciences  plahorm  that  makes  the  best  lab  facili.es   available  to  the  African  scien.fic  community.   § building  African  scien.fic  capacity.   § iden.fying  agricultural  solu.ons  based  on  modern   biotechnology.   § hosted  at  ILRI’s  headquarters,  Nairobi,  Kenya.      
  • 14.
  • 15.
    § Biorepository     • Sampling is a very time-consuming and expensive exercise. •  We have an ethical and scientific responsibility to make the best use of that effort and money!
  • 16.
  • 17.
    § Sequencing  and  bioinforma.cs     The Bioinformatics platform has 88 compute cores, 31TB of network-attached GlusterFS storage and back up systems. • 454 GSFLX – 500 Mbases in 7 hour run – $10/Mb – 500bp read lengths – Homo-polymer problem • Illumina MiSeq – 1.5-2Gbases in 27 hour run – $0.15/Mb – <150bp read lengths
  • 18.
  • 19.
  • 20.
    African Trypanosomiasis •  Causedby extracellular protozoan parasites – Trypanosoma •  Transmitted between mammals by Tsetse flies (Glossina sp.) •  Prevalent in 36 countries of sub-Sahara Africa. In cattle •  A chronic debilitating and fatal disease. •  A major constraint on livestock and agricultural production in Africa. •  Costs US$ 1 billion annually. In human (Human Sleeping Sickness) •  Fatal •  60,000 people die every year •  Both wild and domestic animals are the major reservoir of the parasites for human infection.
  • 21.
    Trypanosomias  research   Trypanosomescause fatal disease in humans and livestock. T. congolense, T. vivax T brucei rhodesiense T brucei gambiense
  • 25.
    Control and Treatmentof African Trypanosomiasis Vector Control (Tsetse Fly) •  Using toxic insecticide •  Not sustainable •  Negative impacts on environment Vaccine •  Tryps periodically change the major surface antigen – variant surface glycoprotein (VSG) and evade the host immune system. •  More than 2 decades, there is no effective vaccine developed. Drug •  Drug toxicity and resistance •  Expensive
  • 27.
    Bovins Bovins et Glossines Glossines Cattle Tsetse Cattleand tsetse Origins of N’Dama and Boran cattle N’Dama Boran
  • 28.
    Contribution of 10genes from Boran and N’Dama cattle to reduction in degree of trypanosomosis Boran (relatively susceptible) The N’Dama and Boran each contribute trypanotolerance alleles at 5 of the 10 most significant QTL, indicating that a synthetic breed could have even higher tolerance than the N’Dama. N’Dama (tolerant) -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
  • 29.
    Studying the tolerant/susceptiblephenotype has problems: • Separating cause from effect • Separating relevant from irrelevant. • Dominance of the ‘what is happening to this weeks trendy gene/protein/cytokine?’ approach.
  • 30.
    An EST Libraryscreen identifies ARHGAP15282H->P mutation in the Bta2 (anaemia) QTL Ø Screened EST libraries made from four tissues from N’Dama and Boran for SNP within shortlisted genes.
  • 31.
    N'Dama (n =35) Boran (n = 28) 282P-Allele 0.990 0.125 282H-Allele 0.010 0.875 Gene frequency H → P mutation at AA282 Alignment of N’Dama ARHGAP15 with homologues Cow NDama KFITRRPSLKTLQEKGLIKDQIFGSPLHTLCEREKSTVPRFVKQCIEAVEK ! Cow Boran KFITRRPSLKTLQEKGLIKDQIFGSHLHTLCEREKSTVPRFVKQCIEAVEK ! Human KFISRRPSLKTLQEKGLIKDQIFGSHLHTVCEREHSTVPWFVKQCIEAVEK ! Pig KFITRRPSLKTLQEKGLIKDQIFGSHLHTVCERENSTVPRFVKQCIEAVEK ! Chicken KFISRRPSLKTLQEKGLIKDQIFGSHLHLVCEHENSTVPQFVRQCIKAVER ! Salmon KFISRRPSMKTLQEKGIIKDRVFGCHLLALCEREGTTVPKFVRQCVEAVEK !
  • 32.
    ARHGAP15 is aRAC binding protein and the mutation at the proximal end of the RAC binding domain affects in vitro activity The tolerant allele would be expected to inhibit RAC1 activity in the MAPK pathway which plays a key role in regulating inflammatory responses and could lead to the observed differences in expression or amplify downstream expression differences caused by other factors.
  • 33.
    African Trypanosomes Infectivity • T.congolense • T. vivax • T. brucei brucei • T. brucei rhodesiense T. brucei gambiense Cattle Human Baboon (Papio papio) + - - + + - Human and baboon resistance is due to innate Trypanosome Lytic Factor (TLF) in serum which is a subclass of high density lipoprotein (HDL) and can create pores in Tryps lysosome membrane and kill the trypanosomes by loss of osmoregulation. - + -
  • 34.
    Can we constructa transgenic cow with resistance to African Trypanosomiasis ? •  Establish a transgenic cattle model with African Trypanosomiasis resistance using nuclear transfer (cloning). •  On the background of a Kenyan indigenous breed – Kenyan Boran. •  Introduce the gene – apoL-I from Baboon into Boran, which is the key trypanolytic component of Baboon’s protective Trypanosome Lytic Factor (TLF) against both cattle and human-infective trypanosomes.
  • 35.
    Complete  protec%on  from  human  infec%ve   Trypanosomes  by  baboon  apoL-­‐I  in     transient  transgenic  mice   0 20 40 60 80 100 120 140 0 20 40 60 80 100 Vector (N=6) apoL-I + Hpr (N=5) apoL-I (N=5) * * Days post infection • P  =  <  0.01   • Vector  vs.  treatment   Thomson  et  al  PNAS  2009    106:19509-­‐19514    
  • 36.
    Apol-3 Construct with Baboon ApoL-IGenomic Sequence Potential regulator y Sequenc e Myh 9 (myosin heavy chain 9) Chromosome 5 Cattle Apol Family Locus (6, 2 like, 4 like, 3) Targeting Strategy Apol-6, 2 like, 4 like
  • 37.
    Project Strategy Genomic locusof Baboon apoL-I gene Vector construction Validate the construct in transgenic mouse Bovine embryonic fibroblasts (BEF) primary culture Transfection & screening apoL-I Transgenic BEFs Nuclear Transfer Transgenic calves Phenotyping Trypanosome resistant transgenic Boran bull ILRI ILRI Kenya Boran Roslin Institute New York University Michigan State University
  • 38.
  • 39.
    Enuclea.on   Polar body Polarbody Polar body MII plate UV+Transmitted light Remove the PB and surrounding cytoplasm, as little as possible Check removal of MII plate under UV light
  • 40.
    Cell  Transfer  Fibroblast Selectthe smallest, round cells with smooth and shining edge Inject the selected fibroblast into the peri-vitelline space and push the cell in touch with the oocyte cytoplasm. Oocyte-cell couplet
  • 41.
  • 42.
    Cell line: KenyaBoran, BEFs_E5_286, Male   No. of Oocytes   No. of Reconstructed Embryos   No. of Blsts   No. of Blsts transferred   No. of Embryo Transfer   Pregnancy   Abortion   No.  of  born   calves   1244   723   85   22   16   5   3   2     58.1%   11.8%       31.3%   60.0%   40%   Summary  of  Control  Nuclear  Transfer    
  • 43.
    Name: Tatu Date ofBirth:16 July 2012 (Kapiti) Sex: Male Birth Weight:46 kg Date of Death: 19 July 2012 (74 hrs) Cause of death: Low temperature, low blood glucose … ID: CL001 (Tumaini) Date of Birth: 21 August 2012 (ILRI) Sex: Male Birth Weight: 35 kg Current age: 7.5 months, healthy Two Cloned Calves born through Caesarean Section
  • 44.
  • 45.
    Identification of clonedcalves with microsatellite markers MS Marker ID   Chromosome   Alleles Size     E5 (Cell line)   231-F (Tatu)   BH058 (Mother)   CL001 (Tumaini)   Comment   RM006   7   103.24   103.24     103.23   Calf same as E5  106.96   106.95   106.88   106.93       110.7     BM4440   2       123.69     Calf same as E5 No allele as dam   132.21   132.24     132.31   136.54   136.55     136.57       143.41     INRA053   7   90.96   90.92     90.86   Calf same as E5  102.69   102.7   102.7   102.7       110.14     BMS1116   7       141.67     Calf same as E5  143.87   143.77     143.83   146.03   145.93   145.96   145.96   ILST098   2       93.02     Calf same as E5 No allele as dam   101.08   101     101.08   104.77   104.73     104.79       110.45     Two born calves are the same as the cell line in 11 microsatellite markers.
  • 46.
    Future Activities Transfection ofBoran BEFs line (Roslin Institute, UK) Establish Apol-I Transgenic Boran by Nuclear Transfer with Transgenic Cells Phenotyping (confirm Tryps resistance) •  Apol-I expression pattern •  Killing of Trypanosomes in vitro (serum) and in vivo (challenge) •  Monitor the health conditions with growth Increase Genetic Diversity •  Establish more transgenic cattle with Kenya Boran BEFs lines •  Establish transgenic cattle with other Kenyan indigenous breeds Transgene Delivery •  Develop a breeding programme to disseminate the transgene with farmers Regulatory, legal, safety & public awareness issues
  • 47.
    Future Activities Tumaini A clonedKenya Boran calf made by SCNT from a Boran embryo fibroblast cell line Cloned NOT transgenic
  • 48.
    Current and futureanimal vaccine research activities at ILRI Vaccine  Biosciences   Interna.onal  Livestock  Research  Ins.tute   Seminar  at  CAVS,  Kabete  Campus,  5th  June  2013    
  • 49.
    Importance  of  animal  health  research  in   the  developing  world   Ø Livestock offer a powerful pathway out of poverty for ~750 million poor farmers in South Asia and Africa by providing nutritional and economic security. Ø Infectious livestock diseases feature prominently among the constraints faced by livestock agriculture. •  Endemic diseases •  Epidemic/pandemic diseases •  Trans-boundary diseases •  Emerging and re-emerging diseases •  Zoonotic diseases and food safety Ø For many reasons diseases are neglected problems in affected countries, a situation exacerbated by a general lack of investment, vaccine R & D and manufacturing capacity.
  • 50.
    List  of  current  ILRI  high  priority   diseases  targeted  for  control   Ø African swine fever (ASF) – swine •  African disease threatens the global $150 billion/year pig industry Ø Contagious bovine pleuropneumonia (CBPP) – cattle •  Regional losses to CBPP amount to ~ $60 million/year Ø East Coast fever (ECF) – cattle •  Regional losses exceed $300 million/year; kills ~ 1million cattle/year Ø Peste de petits ruminants (PPR) – small ruminants •  Losses in Kenya alone amount to ~ $13 million/year Ø Rift Valley Fever (RVF) – small ruminants, cattle and human •  2006/7 outbreak in Kenya cost ~ $30 million •  309 human cases in Kenya, Somalia and Tanzania; 140 deaths Vaccines save lives and livestock and contribute to food security and poverty alleviation
  • 51.
    Socio-­‐economic  impact  of  East  Coast  fever    in  sub-­‐Saharan  Africa     Ø ECF present in 11 countries; it could spread to 8 more Ø ~46 million cattle in region; ~28 million at risk Ø ~1million deaths/year; losses > 300 $ million Ø Small-holder farmers who would benefit: ~ 20
  • 52.
    Theileria  parva    life  cycle     R. appendiculatus schizont-infected cells sporozoites piroplasms merogony
  • 53.
    An  infec.on  and  treatment  vaccine   A live vaccine for the control of ECF (Muguga cocktail) Problems: Liquid nitrogen cold chain, cost, immunological types
  • 54.
    Immune  responses  that  contribute  to   immunity   Anti-sporozoite Anti-schizont
  • 55.
    An.-­‐sporozoite  immunity:  p67  can  induce   immunity  to  ECF   p67N p67M p67C 21 225 226 571 572 651 9 709 reduction in severe ECF by 50% in lab (25% immunity in field) Average
  • 56.
    A  classical  CD8+  cytotoxic  T  cell  response  to   the  schizont  stage  of  T.  parva   CTL P CTL P T cell receptor (TCR) on CTL recognizes parasite peptide associated with MHC class I molecules
  • 57.
    Flowchart  of  CTL  an.gen  discovery   ACTGGTACGTAGGGCATCGA TCGACATGATAGAGCATATA GCATGACGATGCGATCGACA GTCGACAGCTGACAGCTGAG GGTGACACCAGCTGCCAGCT GGACCACCATTAGGACAGAT GACCACACACAAATAGACGA TTAGGACCAGATGAGCCACA TTTTAGGAGGACACACACCA Bioinformatics tools Predict ~ 5000 gene sequences & list candidate vaccine antigens Clone genes of vaccine interest Filter genes via immunological assays T. parva genome sequence A Random cDNA library B Candidate CTL antigens Map CTL epitopes
  • 58.
    Mapped  parasite  CTL  an.gens/epitopes   CTL epitope Peptide sequence MHC class I gene BoLA sero-type Tp1214-224 VGYPKVKEEML N*01301 A18 (HD6) Tp227-37 SHEELKKLGML T2b~ Tp249-59 KSSHGMGKVGK N*01201 A10 (T2a) Tp296-104 FAQSLVCVL T2c~ Tp298-106 QSLVCVLMK N*01201 A10 (T2a) Tp4328-336 TGASIQTTL N*00101 A10 (5.1) Tp587-95 SKADVIAKY T5~ Tp7206-214 EFISFPISL T7~ Tp8379-387 CGAELNHFL N*00101 A10 (5.1)
  • 59.
    NetMHCpan  –  an  ar.ficial  neural  network   to  predict  CTL  an.gens/epitopes   Center for Biological Sequence Analysis at the Technical University of Denmark Incorporates correlated effects Morten Nielsen
  • 60.
    Use  of  pep.de-­‐MHC  tetramers  in  ECF   CD8+ Perforin+ Tp1+ cells CTR CTR BB007 BB007
  • 61.
    Diversity  of  BoLA  MHC  class  I  genes?   Cattle - multiplex RNA isolation from PBMCs 454 pyrosequencing RT-PCR Full length cDNAExon 2- Exon 3 • High throughput • Rare variants Nicholas Svitek – post-doc
  • 62.
    Genotypic  diversity  –  a  hallmark  of  T.  parva,   can  compara.ve  genomics  help?   Muguga, Marikebuni, Uganda ~ 64,000 SNPs SNP distribution: ~ 65% exons, ~15% introns, ~ 20% inter- genic 81/4076 genes under positive selection (includes Tp2) [Henson et al., BMC Genomics 13: 503, 2012] Joana da Silva – hybrid capture NGS Sequencing more cattle and buffalo derived parasites
  • 63.
    An.-­‐schizont  immunity:  trial  of  Tp  an.gens   Graham et al., PNAS, 2006: 30% vaccinated cattle
  • 64.
    We  need  beXer  methods  to  generate   immune  responses  in  caXle   Anti-sporozoite Anti-schizont Exploring vaccination systems New adjuvants Viral vectored systems Old & new antigens
  • 65.
    A  porholio  of  innova.on  and  vaccine   related  technology  plahorms   Yeast&with&M.#myc&LC& genome& (Delete&puta5ve&& virulence&factors)& Less&virulent&M.#myc&LC& ACTGGTACGTAGGGCATCGA TCGACATGATAGAGCATATA GCATGACGATGCGATCGACA GTCGACAGCTGACAGCTGAG GGTGACACCAGCTGCCAGCT GGACCACCATTAGGACAGAT GACCACACACAAATAGACGA TTAGGACCAGATGAGCCACA TTTTAGGAGGACACACACCA Bioinformatics tools Predict gene sequences and list candidate vaccine antigens Test experimental vaccine Clone genes of vaccine interest (100’s of genes) Filter genes via immunological assays Pathogen genome mining (1000’s of genes) Molecular immunology tools to assess immune responses in cattle (10’s genes) BASIC&RESEARCH& Increasing&our& knowledge&base& & “Knowledge*lays*the* founda2on*for*science”*** ! !  Map&immune&responses&to& infec>on& !  Dissect&pathogen&biology&&& diversity& !  Study&hostDvectorD pathogen&interac>ons& !  Characterize&pathogen& virulence&factors& !  Inves>gate&the& epidemiology&of&disease& !  Iden>fy&vaccine&and& diagnos>c&molecules& & & & & & APPLIED&RESEARCH& Developing&new& vaccines&&&diagnos>cs& & “Vaccines*are*cost8effec2ve* an28disease*inven2ons”* & !  Assess&candidate&subunit& vaccines& !  Assess&aHenuated& pathogen&vaccines& !  Assess&different&vaccina>on& systems& !  Engineer&thermoDstable& vaccine&formula>ons& !  Develop&smarter&easier&to& use&diagnos>c&tests& !  Facilitate&transla>on&of& outputs&to&products& BASIC&RESEARCH& Increasing&our& knowledge&base& & “Knowledge*lays*the* founda2on*for*science”*** ! !  Map&immune&responses&to& infec>on& !  Dissect&pathogen&biology&&& diversity& !  Study&hostDvectorD pathogen&interac>ons& !  Characterize&pathogen& virulence&factors& !  Inves>gate&the& epidemiology&of&disease& !  Iden>fy&vaccine&and& diagnos>c&molecules& & & & & & APPLIED&RESEARCH& Developing&new& vaccines&&&diagnos>cs& & “Vaccines*are*cost8effec2ve* an28disease*inven2ons”* & !  Assess&candidate&subunit& vaccines& !  Assess&aHenuated& pathogen&vaccines& !  Assess&different&vaccina>on& systems& !  Engineer&thermoDstable& vaccine&formula>ons& !  Develop&smarter&easier&to& use&diagnos>c&tests& !  Facilitate&transla>on&of& outputs&to&products&
  • 66.
    Acknowledgments   Large numberof past and current scientists at ILRI (Evans Taracha et al) and collaborators (LICR, Oxford Uni, Merial) Immuno-informatics approach: John Barlow – University of Vermont Bill Golde – USDA-ARS (Plum Island) Soren Buus – University of Copenhagen Morten Nielsen - Technical University of Denmark ILRI CRP funds TIGR and Craig Venter DFID NSF-BMFG (BREAD program) USAID – Feed the Future via USDA-ARS
  • 67.
    The presentation hasa Creative Commons licence. You are free to re-use or distribute this work, provided credit is given to ILRI. ilri.org Box 30709, Nairobi 00100, Kenya Phone: + 254 20 422 3000 Fax: +254 20 422 3001 Email: ILRI-Kenya@cgiar.org Box 5689,Addis Ababa, Ethiopia Phone: +251 11 617 2000 Fax: +251 11 617 2001 Email: ILRI-Ethiopia@cgiar.org other offices China • India • Mali Mozambique • Nigeria • Tanzania Thailand • Uganda • Vietnam Better lives through livestock ILRI is a member of the CGIAR Consortium BeFer  lives  through  livestock   ilri.org
  • 68.
    The presentation hasa Creative Commons licence. You are free to re-use or distribute this work, provided credit is given to ILRI. ilri.org Box 30709, Nairobi 00100, Kenya Phone: + 254 20 422 3000 Fax: +254 20 422 3001 Email: ILRI-Kenya@cgiar.org Box 5689,Addis Ababa, Ethiopia Phone: +251 11 617 2000 Fax: +251 11 617 2001 Email: ILRI-Ethiopia@cgiar.org other offices China • India • Mali Mozambique • Nigeria • Tanzania Thailand • Uganda • Vietnam Better lives through livestock ILRI is a member of the CGIAR Consortium BeFer  lives  through  livestock   ilri.org