1
Big Data – a view
DBC
14 January 2016
Bjarne Kjær Ersbøll / bker@dtu.dk
2 DTU Compute, Technical University of Denmark
Acknowledgements
This slide deck is compiled from material from a lot of my colleagues and
people I collaborate with at DTU. The following list is incomplete:
• Jakob Eg Larsen
• Mark Riis
• Mads Odgaard
• Knut Conradsen
• Tage Thyrsted
• Lone Falsig Hansen
• Elena Guarneri
• And many more…
2
3 DTU Compute, Technical University of Denmark
So, what is Big Data anyway?
4 DTU Compute, Technical University of Denmark
The 4 V’s
3
5 DTU Compute, Technical University of Denmark
Data
explosion
6 DTU Compute, Technical University of Denmark
4
7 DTU Compute, Technical University of Denmark
Crowds, Bluetooth and Rock n’ Roll:
Understanding Music Festival Participant
Behavior
8 DTU Compute, Technical University of Denmark
5
9 DTU Compute, Technical University of Denmark
10 DTU Compute, Technical University of Denmark
6
BIG1
Den 3. december 2013
12 DTU Compute, Technical University of Denmark
BIG1 purpose
• Identify technological challenges associated with exploiting the
potential of Big Data / Data-driven business development - to
improve animal health and higher food quality and safety.
7
13 DTU Compute, Technical University of Denmark
BIG1 participants
• DTU Compute
• DTU National Food Institute
• DTU Veterinary Institute
• DTU Management
• DTU Biosys
• DTU Administration
14 DTU Compute, Technical University of Denmark
Big Data Value-chain
Data 
Origins
The Internet, 
sensors, 
machines, 
etc.
Data 
Collection 
Web log,
sensor data,  
images/au‐
dio, RFID and 
videos etc.
Data 
Storage
Technologies 
supporting 
data storage
Analytics 
Predictive 
analytics, 
patterns in 
data, 
decision 
making
Consumers
Business 
processes, 
humans, and 
applications
Sense Think Act
8
15 DTU Compute, Technical University of Denmark
Feed/plants Animals Processing Consumers
Value chain
Actors
Data
Feed producers
Plant producers
Equipm. producers
Farmers
Abbatoir
Dairy
Retail sector
Export
Eg feed quality Eg growth rate
of animals
Eg efficiency in
slaughtering
process
Consumer
patterns and
food quality
Big Data
Stakeholders in BIG1 value-chain
16 DTU Compute, Technical University of Denmark
Optimere/speede algoritmernes funktionalitet og gøre beregningerne billigere
GenericBigData
problemtopics
Domain / application areas
Cattle Pigs Nutritional
composition
… and other
applications
Collection of data, eg sensors on individuals (eg RFID or image analysis)
Storage, manipulation, real-time data
Establising a dynamic Big Data cloud
Structuring data, distributed data and data-sharing
Merging and integration of databases
Pattern recognition, machine learning, artificial intelligence, query-algorithms
Multivariat analsis and advanced statistics and data analysis
Privacy/ethics regarding data
Visualisation of data wrt descision support
Platform project
Targeted projects
Optimation/speed-up algorithm functionality and lower cost of calculation
BIG1: What can we do?
9
17 DTU Compute, Technical University of Denmark
18 DTU Compute, Technical University of Denmark
Sensors and data generation
10
19 DTU Compute, Technical University of Denmark
Hardware and software
DTU Compute, Technical University of Denmark
Big Data – 1991 – Economic Geology
20 18.01.2016
11
DTU Compute, Technical University of Denmark
Data
• Landsat satellite (common reference) – 4 scenes – 8 tapes
– Geometric rectification, mosaicking, ratios, factor scores,
• Geological – geological maps, topographic maps
– Structural information, lineaments converted to concentrations in 10
directions
• Geochemical – K, Rb, Sr, U, Nb, Y, Ga, Fe in stream sediments.
– Kriging to a 1 km grid, interpolation by bicubic spline to Landsat
pixels
• Radiometric – helicoptor-bourne gamma-spectrometric measurements,
U, Th, K, and Total concentration.
– Max in 1 km grid interpolated by minimum curvature and further by
bicubic spline
• Aeromagnetic data – 11 map sheets
– Manually digitized and interpolated
• Resulting in 40 variables on a pixel level (50.8m x 50.8m)
21 18.01.2016
DTU Compute, Technical University of Denmark
Data
• Converted to a 5km x 5km grid – trying to preserve information by
taking (when relevant):
– Min, max, 1%, 5%, median, 95%, 99%, mean, stddev, %land-cover
– 240 variables in all in 1084 squares
• Training set of
– 17 mineralized, central
– 21 mineralized, marginal
– 14 barren, central
– 5 barren, marginal
• Discriminant analysis using stepwise selection
– 1084 squares classified
22 18.01.2016
12
DTU Compute, Technical University of Denmark23 18.01.2016
DTU Compute, Technical University of Denmark24 18.01.2016
13
DTU Compute, Technical University of Denmark
Big Data ?
25 18.01.2016
DTU Compute, Technical University of Denmark
Other Big Data cases
ELIXIR Data describing the human
genetic variation
Development of personal
medical drugs which take
variation between patients
into account
Global Microbial Identifier Global system on genome-
sequence data from micro-
organismes to improve
national clinical diagnostics
and international
surveillance of diseases
CITIES IT-solutions for analysis,
operation and development
of integrated energy-
systems (electricity, gas,
district heating and bio-
masse) in cities to achieve
higher flexibility in eg
energy-storage
14
Data Science (Big Data)
Profile at DTU Compute
28 DTU Compute, Technical University of Denmark
Data Science – main elements
 Ambitious – courses: 45 ECTS (4/6
core) + thesis: A further 30-35 ECTS
 Pioneering – across the Big Data
value chain and competences
 Application oriented:
o Work with concrete data sets
o Collaboration with companies
15
29 DTU Compute, Technical University of Denmark
Entry via all 3 DTU Compute programs
• Computer Science and Engineering
• Mathematical Modelling and Computation
• Digital Media Engineering
• …and now also: IT & Health (combination education btw KU & DTU)
• Cross-educational skills
30 DTU Compute, Technical University of Denmark
Big Data Value chain
data BIG data model
analysis
Data Origins
The Internet, sensors, 
machines, etc.
Data Collection 
Web log, sensor data, 
images/audio, RFID and 
videos, etc.
Data Storage
Technologies 
supporting data storage
Analytics: 
Predictive analytics, 
patterns in data, 
decision making
Consumers: 
Business processes, 
humans, and 
applications
Sense Think Act
16
31 DTU Compute, Technical University of Denmark
Courses in Data Science specialization
Origin Collection Storage Analytics Consumers
01227 Graph theory (5) 1 3
01405 Error correcting codes 2 1 1
01617 Dynamical Systems 1 2
02170 Database systems (5) 4
02232 Applied Cryptography (5) 2 3 1 1
Core 02239 Data Security 1 4 1
02249 Computationally hard problems (7.5) 1 1 4
02266 User experience engineering 1 1 5
02281 Data Logic (5) 1 2 1 1
Core 02282 Algorithms for Massive Data Sets (7.5) 2 3 3
Core 02288 Missing a course on “Advanced databases/w arehouses”? 2
02407 Stochastic Processes (5) 3
02409 Multivariate Statistics (5) 4
02417 Time Series Analysis (5) 4
02443 Stochastic Simulation (5) 4 1
02450 Introduction to Machine Learning and Data Modeling (5) 3 1
02457 Non-linear signal processing 1 1
02458 Cognitive Modelling (5) 3 2
02460 Advanced Machine Learning (5) 1 3 1
02506 Advanced Image Analysis 3
02515 Health technology 1 2
Core 02582 Computational dataanalysis 3
02586 Statistical Genetics (5) 2
Core 02806 Social data analysis and visualization(5) 2 3
Core 02819 Data Mining using Python (5) 1 3 1
30530 Geographical information systems 1 1 1
25303 Mathematical Biology 1 1 1 1
27411 Biological data analysis and chemometrics 1
27625 Algorithms in bioinformatics 1 1
42112 Mathematical Programming w ith Modelling Softw are 1 1
32 DTU Compute, Technical University of Denmark
Big Data
Hackathon
65 students
 10 groups
 48 hours
 DTU's Skylab
 Funding
 1-2 start up companies
17
33 DTU Compute, Technical University of Denmark
Big Data solutions for Lyngby-Taarbæk
municipality
”Smart City app” to make it a better place to
live
34 DTU Compute, Technical University of Denmark
Projects!
 Energy utilization in buildings
 Optimization of Bus-routes
 Smart Traffic-regulation
 Smart Energy renovation
 Personalized Care for elderly
 Smart tests for the Schools
 Flexible collection of Waste
18
35 DTU Compute, Technical University of Denmark
36 DTU Compute, Technical University of Denmark
Implementation of first recommendation:
Big Data•DTU

Big Data - A view

  • 1.
    1 Big Data –a view DBC 14 January 2016 Bjarne Kjær Ersbøll / bker@dtu.dk 2 DTU Compute, Technical University of Denmark Acknowledgements This slide deck is compiled from material from a lot of my colleagues and people I collaborate with at DTU. The following list is incomplete: • Jakob Eg Larsen • Mark Riis • Mads Odgaard • Knut Conradsen • Tage Thyrsted • Lone Falsig Hansen • Elena Guarneri • And many more…
  • 2.
    2 3 DTU Compute,Technical University of Denmark So, what is Big Data anyway? 4 DTU Compute, Technical University of Denmark The 4 V’s
  • 3.
    3 5 DTU Compute,Technical University of Denmark Data explosion 6 DTU Compute, Technical University of Denmark
  • 4.
    4 7 DTU Compute,Technical University of Denmark Crowds, Bluetooth and Rock n’ Roll: Understanding Music Festival Participant Behavior 8 DTU Compute, Technical University of Denmark
  • 5.
    5 9 DTU Compute,Technical University of Denmark 10 DTU Compute, Technical University of Denmark
  • 6.
    6 BIG1 Den 3. december2013 12 DTU Compute, Technical University of Denmark BIG1 purpose • Identify technological challenges associated with exploiting the potential of Big Data / Data-driven business development - to improve animal health and higher food quality and safety.
  • 7.
    7 13 DTU Compute,Technical University of Denmark BIG1 participants • DTU Compute • DTU National Food Institute • DTU Veterinary Institute • DTU Management • DTU Biosys • DTU Administration 14 DTU Compute, Technical University of Denmark Big Data Value-chain Data  Origins The Internet,  sensors,  machines,  etc. Data  Collection  Web log, sensor data,   images/au‐ dio, RFID and  videos etc. Data  Storage Technologies  supporting  data storage Analytics  Predictive  analytics,  patterns in  data,  decision  making Consumers Business  processes,  humans, and  applications Sense Think Act
  • 8.
    8 15 DTU Compute,Technical University of Denmark Feed/plants Animals Processing Consumers Value chain Actors Data Feed producers Plant producers Equipm. producers Farmers Abbatoir Dairy Retail sector Export Eg feed quality Eg growth rate of animals Eg efficiency in slaughtering process Consumer patterns and food quality Big Data Stakeholders in BIG1 value-chain 16 DTU Compute, Technical University of Denmark Optimere/speede algoritmernes funktionalitet og gøre beregningerne billigere GenericBigData problemtopics Domain / application areas Cattle Pigs Nutritional composition … and other applications Collection of data, eg sensors on individuals (eg RFID or image analysis) Storage, manipulation, real-time data Establising a dynamic Big Data cloud Structuring data, distributed data and data-sharing Merging and integration of databases Pattern recognition, machine learning, artificial intelligence, query-algorithms Multivariat analsis and advanced statistics and data analysis Privacy/ethics regarding data Visualisation of data wrt descision support Platform project Targeted projects Optimation/speed-up algorithm functionality and lower cost of calculation BIG1: What can we do?
  • 9.
    9 17 DTU Compute,Technical University of Denmark 18 DTU Compute, Technical University of Denmark Sensors and data generation
  • 10.
    10 19 DTU Compute,Technical University of Denmark Hardware and software DTU Compute, Technical University of Denmark Big Data – 1991 – Economic Geology 20 18.01.2016
  • 11.
    11 DTU Compute, TechnicalUniversity of Denmark Data • Landsat satellite (common reference) – 4 scenes – 8 tapes – Geometric rectification, mosaicking, ratios, factor scores, • Geological – geological maps, topographic maps – Structural information, lineaments converted to concentrations in 10 directions • Geochemical – K, Rb, Sr, U, Nb, Y, Ga, Fe in stream sediments. – Kriging to a 1 km grid, interpolation by bicubic spline to Landsat pixels • Radiometric – helicoptor-bourne gamma-spectrometric measurements, U, Th, K, and Total concentration. – Max in 1 km grid interpolated by minimum curvature and further by bicubic spline • Aeromagnetic data – 11 map sheets – Manually digitized and interpolated • Resulting in 40 variables on a pixel level (50.8m x 50.8m) 21 18.01.2016 DTU Compute, Technical University of Denmark Data • Converted to a 5km x 5km grid – trying to preserve information by taking (when relevant): – Min, max, 1%, 5%, median, 95%, 99%, mean, stddev, %land-cover – 240 variables in all in 1084 squares • Training set of – 17 mineralized, central – 21 mineralized, marginal – 14 barren, central – 5 barren, marginal • Discriminant analysis using stepwise selection – 1084 squares classified 22 18.01.2016
  • 12.
    12 DTU Compute, TechnicalUniversity of Denmark23 18.01.2016 DTU Compute, Technical University of Denmark24 18.01.2016
  • 13.
    13 DTU Compute, TechnicalUniversity of Denmark Big Data ? 25 18.01.2016 DTU Compute, Technical University of Denmark Other Big Data cases ELIXIR Data describing the human genetic variation Development of personal medical drugs which take variation between patients into account Global Microbial Identifier Global system on genome- sequence data from micro- organismes to improve national clinical diagnostics and international surveillance of diseases CITIES IT-solutions for analysis, operation and development of integrated energy- systems (electricity, gas, district heating and bio- masse) in cities to achieve higher flexibility in eg energy-storage
  • 14.
    14 Data Science (BigData) Profile at DTU Compute 28 DTU Compute, Technical University of Denmark Data Science – main elements  Ambitious – courses: 45 ECTS (4/6 core) + thesis: A further 30-35 ECTS  Pioneering – across the Big Data value chain and competences  Application oriented: o Work with concrete data sets o Collaboration with companies
  • 15.
    15 29 DTU Compute,Technical University of Denmark Entry via all 3 DTU Compute programs • Computer Science and Engineering • Mathematical Modelling and Computation • Digital Media Engineering • …and now also: IT & Health (combination education btw KU & DTU) • Cross-educational skills 30 DTU Compute, Technical University of Denmark Big Data Value chain data BIG data model analysis Data Origins The Internet, sensors,  machines, etc. Data Collection  Web log, sensor data,  images/audio, RFID and  videos, etc. Data Storage Technologies  supporting data storage Analytics:  Predictive analytics,  patterns in data,  decision making Consumers:  Business processes,  humans, and  applications Sense Think Act
  • 16.
    16 31 DTU Compute,Technical University of Denmark Courses in Data Science specialization Origin Collection Storage Analytics Consumers 01227 Graph theory (5) 1 3 01405 Error correcting codes 2 1 1 01617 Dynamical Systems 1 2 02170 Database systems (5) 4 02232 Applied Cryptography (5) 2 3 1 1 Core 02239 Data Security 1 4 1 02249 Computationally hard problems (7.5) 1 1 4 02266 User experience engineering 1 1 5 02281 Data Logic (5) 1 2 1 1 Core 02282 Algorithms for Massive Data Sets (7.5) 2 3 3 Core 02288 Missing a course on “Advanced databases/w arehouses”? 2 02407 Stochastic Processes (5) 3 02409 Multivariate Statistics (5) 4 02417 Time Series Analysis (5) 4 02443 Stochastic Simulation (5) 4 1 02450 Introduction to Machine Learning and Data Modeling (5) 3 1 02457 Non-linear signal processing 1 1 02458 Cognitive Modelling (5) 3 2 02460 Advanced Machine Learning (5) 1 3 1 02506 Advanced Image Analysis 3 02515 Health technology 1 2 Core 02582 Computational dataanalysis 3 02586 Statistical Genetics (5) 2 Core 02806 Social data analysis and visualization(5) 2 3 Core 02819 Data Mining using Python (5) 1 3 1 30530 Geographical information systems 1 1 1 25303 Mathematical Biology 1 1 1 1 27411 Biological data analysis and chemometrics 1 27625 Algorithms in bioinformatics 1 1 42112 Mathematical Programming w ith Modelling Softw are 1 1 32 DTU Compute, Technical University of Denmark Big Data Hackathon 65 students  10 groups  48 hours  DTU's Skylab  Funding  1-2 start up companies
  • 17.
    17 33 DTU Compute,Technical University of Denmark Big Data solutions for Lyngby-Taarbæk municipality ”Smart City app” to make it a better place to live 34 DTU Compute, Technical University of Denmark Projects!  Energy utilization in buildings  Optimization of Bus-routes  Smart Traffic-regulation  Smart Energy renovation  Personalized Care for elderly  Smart tests for the Schools  Flexible collection of Waste
  • 18.
    18 35 DTU Compute,Technical University of Denmark 36 DTU Compute, Technical University of Denmark Implementation of first recommendation: Big Data•DTU