SlideShare a Scribd company logo
Complexity bounds for
    batch active learning
                            P. Rolet, O. Teytaud

What is active learning ?
What is batch active learning ?
Upper bounds on the speed­up
Lower bounds on the speed­up
Good cases
Conclusions, take­home messages
Complexity bounds for
      batch active learning

What is active learning ?
What is batch active learning ?
Upper bounds on the speed­up
Lower bounds on the speed­up
Good cases
Conclusions, take­home messages
What is active learning ?

Supervised learning:
  I have examples x1,x2,x3,...,xn
  I have labels y1,y2,...,yn
  They are randomly drawn.
  I try to build f such that
         E (f(x) – y)2   is small.
What is active learning ?
Active supervised learning:
  I choose x1
  I get y1
  I choose x2
  I get y2
  … until xn,yn.
  I try to build f such that
         E (f(x) – y)2   is small.
What is active learning ?
Typical application
  I build a prototype of a car (x1)
  I test it and get caracteristics (y1)
  I build a prototype of a car (x2)
  I test it and get caracteristics (y2)
  … until xn,yn.
  I try to build f such that
         E (f(x) – y)2   is small.
  I can predict the caracteristics of a new car
==> Very related to optimization
What is active learning ?
Other typical applications
  Learning value functions in reinforcement learning (==> 
   really efficient in moderate dimension)
  Modelizing the effect of parameters on a big numerical 
   code
Complexity bounds for
      batch active learning

What is active learning ?
What is batch active learning ?
Upper bounds on the speed­up
Lower bounds on the speed­up
Good cases
Conclusions, take­home messages
Batch active learning ?
Active supervised learning (reminder):
  I choose x1
  I get y1                               Non-batch
  I choose x2                               case
                                         (active
  I get y2                                 learning)
  … until xn,yn.
  I try to build f such that
         E (f(x) – y)2   is small.
Batch active learning ?
Batch active supervised learning:
  I choose x1,x2,...,x
  I get y1,x2,...,x
  I choose x+1,x+2,...,x2            Batch
  I get y+1,y+2,...,y2               case
                                     (active
  … until xn,yn.                     learning)
  I try to build f such that
         E (f(x) – y)2   is small.
Batch active learning ?
Batch active supervised learning:
  I choose   x (1­)
  I get   y (1­)
  I choose   x (+1 ­ 2)               Batch
  I get y(+1 ­ 2)                     case
                                     (active
  … until x(1­n),y(1­n).             learning)
  I try to build f such that
         E (f(x) – y)2   is small.
Batch active learning

Advantage: parallelism.
Drawbacks: not necessarily  times faster.
Question: how much faster ?
Notations

A bit tedious, sorry. Necessary I guess.




                                       Target
                                      function
Notations

A bit tedious, sorry. Necessary I guess.




                             Approximation
Notations

A bit tedious, sorry. Necessary I guess.




        Cost
Notations

A bit tedious, sorry. Necessary I guess.




                                     Cost for the best
                                        possible
                                        algorithm
Complexity bounds for
      batch active learning

What is active learning ?
What is batch active learning ?
Upper bounds on the speed­up
Lower bounds on the speed­up
Good cases
Conclusions, take­home messages
Upper bound 1: triviality.

First, in the best case, it's linear:
Upper bound 2: VC-dim.

                         V=VC-dim




To be compared with:
Upper bound 2: VC-dim.



   Proof (sketch of the formal proof in the paper):
   - VC-dimension V ==> at most K = Shattering(,V)
      possible different combinations.
   - Therefore at most K possible cases,
       so log2(K) bits of information
   - Speed-up at most log2(K)


To be compared with:
Upper bound 2: VC-dim.



   Proof (sketch of the formal proof in the paper):
   - VC-dimension V ==> at most K = Shattering(,V)
      possible different combinations.
   - Therefore at most K possible cases,
       so log2(K) bits of information
   - Speed-up at most log2(K)


To be compared with:
Upper bound 2: VC-dim.



   Proof (sketch of the formal proof in the paper):
                      Logarithmic speed-up
   - VC-dimension V ==> at most K = Shattering(,V)
                                 +
      possible different combinations.
                          a factor V has
                          disappeared!
   - Therefore at most K possible cases,
       so log2(K) bits of information
                     Linear speed-up until V
   - Speed-up at most log2(K)
                         (in some cases)
                       and then logarithmic
To be compared with:
Complexity bounds for
      batch active learning

What is active learning ?
What is batch active learning ?
Upper bounds on the speed­up
Lower bounds on the speed­up
Good cases
Conclusions, take­home messages
Lower bounds
Lower bounds




i.e. speed-up logarithmic, starting at any .

So:
 - choose  such that your favorite algorithm
       has linear speed-up (if possible)
 - then apply theorem above for extending to '
Complexity bounds for
      batch active learning

What is active learning ?
What is batch active learning ?
Upper bounds on the speed­up
Lower bounds on the speed­up
Good cases
Conclusions, take­home messages
Good cases




Then,


   and
Complexity bounds for
      batch active learning

What is active learning ?
What is batch active learning ?
Upper bounds on the speed­up
Lower bounds on the speed­up
Good cases
Conclusions, take­home messages
Conclusions
You can always have a logarithmic speed­up in batch 
 active learning
Asymptotically, it will never be better than 
 logarithmic.
Sometimes, linear until V and then logarithmic.

More Related Content

What's hot

Sparse autoencoder
Sparse autoencoderSparse autoencoder
Sparse autoencoder
Devashish Patel
 
Skip-gram Model Broken Down
Skip-gram Model Broken DownSkip-gram Model Broken Down
Skip-gram Model Broken Down
Chin Huan Tan
 
Cheatsheet supervised-learning
Cheatsheet supervised-learningCheatsheet supervised-learning
Cheatsheet supervised-learning
Steve Nouri
 
Refresher probabilities-statistics
Refresher probabilities-statisticsRefresher probabilities-statistics
Refresher probabilities-statistics
Steve Nouri
 
CS571:: Part of-Speech Tagging
CS571:: Part of-Speech TaggingCS571:: Part of-Speech Tagging
CS571:: Part of-Speech Tagging
Jinho Choi
 
Tensor Decomposition and its Applications
Tensor Decomposition and its ApplicationsTensor Decomposition and its Applications
Tensor Decomposition and its Applications
Keisuke OTAKI
 
Limits of Computation
Limits of ComputationLimits of Computation
Limits of Computation
Joshua Reuben
 
Intro probability 4
Intro probability 4Intro probability 4
Intro probability 4Phong Vo
 
Cheatsheet deep-learning
Cheatsheet deep-learningCheatsheet deep-learning
Cheatsheet deep-learning
Steve Nouri
 
Ml mle_bayes
Ml  mle_bayesMl  mle_bayes
Ml mle_bayesPhong Vo
 
Pointing the Unknown Words
Pointing the Unknown WordsPointing the Unknown Words
Pointing the Unknown Words
hytae
 
CS571: Distributional semantics
CS571: Distributional semanticsCS571: Distributional semantics
CS571: Distributional semantics
Jinho Choi
 
Interactive Visualization in Human Time -StampedeCon 2015
Interactive Visualization in Human Time -StampedeCon 2015Interactive Visualization in Human Time -StampedeCon 2015
Interactive Visualization in Human Time -StampedeCon 2015
StampedeCon
 
BITS C464.doc
BITS C464.docBITS C464.doc
BITS C464.docbutest
 
Chapter 24 aoa
Chapter 24 aoaChapter 24 aoa
Chapter 24 aoa
Hanif Durad
 
Dynamic Feature Induction: The Last Gist to the State-of-the-Art
Dynamic Feature Induction: The Last Gist to the State-of-the-ArtDynamic Feature Induction: The Last Gist to the State-of-the-Art
Dynamic Feature Induction: The Last Gist to the State-of-the-Art
Jinho Choi
 
Iclr2016 vaeまとめ
Iclr2016 vaeまとめIclr2016 vaeまとめ
Iclr2016 vaeまとめ
Deep Learning JP
 
Influence of the sampling on Functional Data Analysis
Influence of the sampling on Functional Data AnalysisInfluence of the sampling on Functional Data Analysis
Influence of the sampling on Functional Data Analysis
tuxette
 

What's hot (19)

Sparse autoencoder
Sparse autoencoderSparse autoencoder
Sparse autoencoder
 
Skip-gram Model Broken Down
Skip-gram Model Broken DownSkip-gram Model Broken Down
Skip-gram Model Broken Down
 
Cheatsheet supervised-learning
Cheatsheet supervised-learningCheatsheet supervised-learning
Cheatsheet supervised-learning
 
Refresher probabilities-statistics
Refresher probabilities-statisticsRefresher probabilities-statistics
Refresher probabilities-statistics
 
CS571:: Part of-Speech Tagging
CS571:: Part of-Speech TaggingCS571:: Part of-Speech Tagging
CS571:: Part of-Speech Tagging
 
Tensor Decomposition and its Applications
Tensor Decomposition and its ApplicationsTensor Decomposition and its Applications
Tensor Decomposition and its Applications
 
Limits of Computation
Limits of ComputationLimits of Computation
Limits of Computation
 
Intro probability 4
Intro probability 4Intro probability 4
Intro probability 4
 
Cheatsheet deep-learning
Cheatsheet deep-learningCheatsheet deep-learning
Cheatsheet deep-learning
 
Ml mle_bayes
Ml  mle_bayesMl  mle_bayes
Ml mle_bayes
 
Pointing the Unknown Words
Pointing the Unknown WordsPointing the Unknown Words
Pointing the Unknown Words
 
CS571: Distributional semantics
CS571: Distributional semanticsCS571: Distributional semantics
CS571: Distributional semantics
 
Interactive Visualization in Human Time -StampedeCon 2015
Interactive Visualization in Human Time -StampedeCon 2015Interactive Visualization in Human Time -StampedeCon 2015
Interactive Visualization in Human Time -StampedeCon 2015
 
BITS C464.doc
BITS C464.docBITS C464.doc
BITS C464.doc
 
Chapter 24 aoa
Chapter 24 aoaChapter 24 aoa
Chapter 24 aoa
 
Dynamic Feature Induction: The Last Gist to the State-of-the-Art
Dynamic Feature Induction: The Last Gist to the State-of-the-ArtDynamic Feature Induction: The Last Gist to the State-of-the-Art
Dynamic Feature Induction: The Last Gist to the State-of-the-Art
 
Ss 2013 midterm
Ss 2013 midtermSs 2013 midterm
Ss 2013 midterm
 
Iclr2016 vaeまとめ
Iclr2016 vaeまとめIclr2016 vaeまとめ
Iclr2016 vaeまとめ
 
Influence of the sampling on Functional Data Analysis
Influence of the sampling on Functional Data AnalysisInfluence of the sampling on Functional Data Analysis
Influence of the sampling on Functional Data Analysis
 

Viewers also liked

Plantilla trazos
Plantilla trazosPlantilla trazos
Plantilla trazos
Ledis Gutierrez
 
Why power system studies (and many others!) should be open data / open source
Why power system studies (and many others!) should be open data / open sourceWhy power system studies (and many others!) should be open data / open source
Why power system studies (and many others!) should be open data / open source
Olivier Teytaud
 
Complexity of multiobjective optimization
Complexity of multiobjective optimizationComplexity of multiobjective optimization
Complexity of multiobjective optimizationOlivier Teytaud
 
Derivative Free Optimization
Derivative Free OptimizationDerivative Free Optimization
Derivative Free Optimization
Olivier Teytaud
 
Undecidability in partially observable deterministic games
Undecidability in partially observable deterministic gamesUndecidability in partially observable deterministic games
Undecidability in partially observable deterministic games
Olivier Teytaud
 
France presented to Taiwanese people
France presented to Taiwanese peopleFrance presented to Taiwanese people
France presented to Taiwanese people
Olivier Teytaud
 
Machine learning 2016: deep networks and Monte Carlo Tree Search
Machine learning 2016: deep networks and Monte Carlo Tree SearchMachine learning 2016: deep networks and Monte Carlo Tree Search
Machine learning 2016: deep networks and Monte Carlo Tree Search
Olivier Teytaud
 
Presentación1 1
Presentación1 1Presentación1 1
Presentación1 1Jhavi17
 
Derandomized evolution strategies (quasi-random)
Derandomized evolution strategies (quasi-random)Derandomized evolution strategies (quasi-random)
Derandomized evolution strategies (quasi-random)
Olivier Teytaud
 
reinforcement learning for difficult settings
reinforcement learning for difficult settingsreinforcement learning for difficult settings
reinforcement learning for difficult settings
Olivier Teytaud
 

Viewers also liked (11)

Plantilla trazos
Plantilla trazosPlantilla trazos
Plantilla trazos
 
Why power system studies (and many others!) should be open data / open source
Why power system studies (and many others!) should be open data / open sourceWhy power system studies (and many others!) should be open data / open source
Why power system studies (and many others!) should be open data / open source
 
Complexity of multiobjective optimization
Complexity of multiobjective optimizationComplexity of multiobjective optimization
Complexity of multiobjective optimization
 
Derivative Free Optimization
Derivative Free OptimizationDerivative Free Optimization
Derivative Free Optimization
 
Undecidability in partially observable deterministic games
Undecidability in partially observable deterministic gamesUndecidability in partially observable deterministic games
Undecidability in partially observable deterministic games
 
An introduction to SVN
An introduction to SVNAn introduction to SVN
An introduction to SVN
 
France presented to Taiwanese people
France presented to Taiwanese peopleFrance presented to Taiwanese people
France presented to Taiwanese people
 
Machine learning 2016: deep networks and Monte Carlo Tree Search
Machine learning 2016: deep networks and Monte Carlo Tree SearchMachine learning 2016: deep networks and Monte Carlo Tree Search
Machine learning 2016: deep networks and Monte Carlo Tree Search
 
Presentación1 1
Presentación1 1Presentación1 1
Presentación1 1
 
Derandomized evolution strategies (quasi-random)
Derandomized evolution strategies (quasi-random)Derandomized evolution strategies (quasi-random)
Derandomized evolution strategies (quasi-random)
 
reinforcement learning for difficult settings
reinforcement learning for difficult settingsreinforcement learning for difficult settings
reinforcement learning for difficult settings
 

Similar to Batchal slides

19 - Neural Networks I.pptx
19 - Neural Networks I.pptx19 - Neural Networks I.pptx
19 - Neural Networks I.pptx
EmanAl15
 
A note on word embedding
A note on word embeddingA note on word embedding
A note on word embedding
Khang Pham
 
course slides of Support-Vector-Machine.pdf
course slides of Support-Vector-Machine.pdfcourse slides of Support-Vector-Machine.pdf
course slides of Support-Vector-Machine.pdf
onurenginar1
 
05 history of cv a machine learning (theory) perspective on computer vision
05  history of cv a machine learning (theory) perspective on computer vision05  history of cv a machine learning (theory) perspective on computer vision
05 history of cv a machine learning (theory) perspective on computer visionzukun
 
Skiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programmingSkiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programmingzukun
 
Sure interview algorithm-1103
Sure interview algorithm-1103Sure interview algorithm-1103
Sure interview algorithm-1103Sure Interview
 
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Beniamino Murgante
 
lecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdflecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdf
AnaNeacsu5
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programming
Gopi Saiteja
 
Cuckoo Search Algorithm: An Introduction
Cuckoo Search Algorithm: An IntroductionCuckoo Search Algorithm: An Introduction
Cuckoo Search Algorithm: An Introduction
Xin-She Yang
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
Ashwin P N
 
dynamic programming Rod cutting class
dynamic programming Rod cutting classdynamic programming Rod cutting class
dynamic programming Rod cutting class
giridaroori
 
Sienna 10 dynamic
Sienna 10 dynamicSienna 10 dynamic
Sienna 10 dynamicchidabdu
 
AAC ch 3 Advance strategies (Dynamic Programming).pptx
AAC ch 3 Advance strategies (Dynamic Programming).pptxAAC ch 3 Advance strategies (Dynamic Programming).pptx
AAC ch 3 Advance strategies (Dynamic Programming).pptx
HarshitSingh334328
 
T Stem Mnths Fancher
T Stem Mnths FancherT Stem Mnths Fancher
T Stem Mnths Fancher
Chris Fancher
 
Neural Networks - How do they work?
Neural Networks - How do they work?Neural Networks - How do they work?
Neural Networks - How do they work?
Accubits Technologies
 
Recursion - Computer Algorithms
Recursion - Computer AlgorithmsRecursion - Computer Algorithms
Recursion - Computer Algorithms
Alaa Al-Makhzoomy
 

Similar to Batchal slides (20)

19 - Neural Networks I.pptx
19 - Neural Networks I.pptx19 - Neural Networks I.pptx
19 - Neural Networks I.pptx
 
A note on word embedding
A note on word embeddingA note on word embedding
A note on word embedding
 
course slides of Support-Vector-Machine.pdf
course slides of Support-Vector-Machine.pdfcourse slides of Support-Vector-Machine.pdf
course slides of Support-Vector-Machine.pdf
 
05 history of cv a machine learning (theory) perspective on computer vision
05  history of cv a machine learning (theory) perspective on computer vision05  history of cv a machine learning (theory) perspective on computer vision
05 history of cv a machine learning (theory) perspective on computer vision
 
Skiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programmingSkiena algorithm 2007 lecture16 introduction to dynamic programming
Skiena algorithm 2007 lecture16 introduction to dynamic programming
 
Sure interview algorithm-1103
Sure interview algorithm-1103Sure interview algorithm-1103
Sure interview algorithm-1103
 
Dynamic programing
Dynamic programingDynamic programing
Dynamic programing
 
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
 
lecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdflecture01_lecture01_lecture0001_ceva.pdf
lecture01_lecture01_lecture0001_ceva.pdf
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programming
 
Cuckoo Search Algorithm: An Introduction
Cuckoo Search Algorithm: An IntroductionCuckoo Search Algorithm: An Introduction
Cuckoo Search Algorithm: An Introduction
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
dynamic programming Rod cutting class
dynamic programming Rod cutting classdynamic programming Rod cutting class
dynamic programming Rod cutting class
 
Review
ReviewReview
Review
 
Sienna 10 dynamic
Sienna 10 dynamicSienna 10 dynamic
Sienna 10 dynamic
 
AI Lesson 38
AI Lesson 38AI Lesson 38
AI Lesson 38
 
AAC ch 3 Advance strategies (Dynamic Programming).pptx
AAC ch 3 Advance strategies (Dynamic Programming).pptxAAC ch 3 Advance strategies (Dynamic Programming).pptx
AAC ch 3 Advance strategies (Dynamic Programming).pptx
 
T Stem Mnths Fancher
T Stem Mnths FancherT Stem Mnths Fancher
T Stem Mnths Fancher
 
Neural Networks - How do they work?
Neural Networks - How do they work?Neural Networks - How do they work?
Neural Networks - How do they work?
 
Recursion - Computer Algorithms
Recursion - Computer AlgorithmsRecursion - Computer Algorithms
Recursion - Computer Algorithms
 

Recently uploaded

AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
Bhaskar Mitra
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
Fwdays
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
Abida Shariff
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 

Recently uploaded (20)

AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
Search and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical FuturesSearch and Society: Reimagining Information Access for Radical Futures
Search and Society: Reimagining Information Access for Radical Futures
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 

Batchal slides

  • 1. Complexity bounds for batch active learning P. Rolet, O. Teytaud What is active learning ? What is batch active learning ? Upper bounds on the speed­up Lower bounds on the speed­up Good cases Conclusions, take­home messages
  • 2. Complexity bounds for batch active learning What is active learning ? What is batch active learning ? Upper bounds on the speed­up Lower bounds on the speed­up Good cases Conclusions, take­home messages
  • 3. What is active learning ? Supervised learning: I have examples x1,x2,x3,...,xn I have labels y1,y2,...,yn They are randomly drawn. I try to build f such that     E (f(x) – y)2   is small.
  • 4. What is active learning ? Active supervised learning: I choose x1 I get y1 I choose x2 I get y2 … until xn,yn. I try to build f such that     E (f(x) – y)2   is small.
  • 5. What is active learning ? Typical application I build a prototype of a car (x1) I test it and get caracteristics (y1) I build a prototype of a car (x2) I test it and get caracteristics (y2) … until xn,yn. I try to build f such that     E (f(x) – y)2   is small. I can predict the caracteristics of a new car ==> Very related to optimization
  • 6. What is active learning ? Other typical applications Learning value functions in reinforcement learning (==>  really efficient in moderate dimension) Modelizing the effect of parameters on a big numerical  code
  • 7. Complexity bounds for batch active learning What is active learning ? What is batch active learning ? Upper bounds on the speed­up Lower bounds on the speed­up Good cases Conclusions, take­home messages
  • 8. Batch active learning ? Active supervised learning (reminder): I choose x1 I get y1 Non-batch I choose x2 case (active I get y2 learning) … until xn,yn. I try to build f such that     E (f(x) – y)2   is small.
  • 9. Batch active learning ? Batch active supervised learning: I choose x1,x2,...,x I get y1,x2,...,x I choose x+1,x+2,...,x2 Batch I get y+1,y+2,...,y2 case (active … until xn,yn. learning) I try to build f such that     E (f(x) – y)2   is small.
  • 10. Batch active learning ? Batch active supervised learning: I choose   x (1­) I get   y (1­) I choose   x (+1 ­ 2) Batch I get y(+1 ­ 2) case (active … until x(1­n),y(1­n). learning) I try to build f such that     E (f(x) – y)2   is small.
  • 15. Notations A bit tedious, sorry. Necessary I guess. Cost for the best possible algorithm
  • 16. Complexity bounds for batch active learning What is active learning ? What is batch active learning ? Upper bounds on the speed­up Lower bounds on the speed­up Good cases Conclusions, take­home messages
  • 17. Upper bound 1: triviality. First, in the best case, it's linear:
  • 18. Upper bound 2: VC-dim. V=VC-dim To be compared with:
  • 19. Upper bound 2: VC-dim. Proof (sketch of the formal proof in the paper): - VC-dimension V ==> at most K = Shattering(,V) possible different combinations. - Therefore at most K possible cases, so log2(K) bits of information - Speed-up at most log2(K) To be compared with:
  • 20. Upper bound 2: VC-dim. Proof (sketch of the formal proof in the paper): - VC-dimension V ==> at most K = Shattering(,V) possible different combinations. - Therefore at most K possible cases, so log2(K) bits of information - Speed-up at most log2(K) To be compared with:
  • 21. Upper bound 2: VC-dim. Proof (sketch of the formal proof in the paper): Logarithmic speed-up - VC-dimension V ==> at most K = Shattering(,V) + possible different combinations. a factor V has disappeared! - Therefore at most K possible cases, so log2(K) bits of information Linear speed-up until V - Speed-up at most log2(K) (in some cases) and then logarithmic To be compared with:
  • 22. Complexity bounds for batch active learning What is active learning ? What is batch active learning ? Upper bounds on the speed­up Lower bounds on the speed­up Good cases Conclusions, take­home messages
  • 24. Lower bounds i.e. speed-up logarithmic, starting at any . So: - choose  such that your favorite algorithm has linear speed-up (if possible) - then apply theorem above for extending to '
  • 25. Complexity bounds for batch active learning What is active learning ? What is batch active learning ? Upper bounds on the speed­up Lower bounds on the speed­up Good cases Conclusions, take­home messages
  • 27. Complexity bounds for batch active learning What is active learning ? What is batch active learning ? Upper bounds on the speed­up Lower bounds on the speed­up Good cases Conclusions, take­home messages