This document discusses augmenting methods for intrusion detection using the KDD Cup 99 dataset. It aims to improve detection accuracy and reduce false positives. The key points are:
- It analyzes detection precision and true positive rate (recall) for different attack classes in the KDD Cup 99 dataset to help improve dataset accuracy.
- Experimental results show the contribution of each attack class to recall and precision, which can help optimize the dataset to achieve highest accuracy with lowest false positives.
- The goal is to enhance testing of detection models and improve data quality to advance offline intrusion detection capabilities.