This thesis proposes and evaluates a compressive sensing (CS)-based indoor positioning and tracking system using received signal strength (RSS) from wireless local area network access points. The system is designed and implemented on mobile devices with limited resources.
In the offline phase, RSS fingerprints are collected and clustered using affinity propagation. In the online phase, coarse localization is done by matching RSS measurements to precomputed clusters, and fine localization refines the position using CS recovery on the sparse location signal.
An indoor tracking system is also presented, which integrates the CS-based positioning with a Kalman filter for sequential location estimates. Experimental results on two testbeds show the system achieves better accuracy than other fingerprinting methods, suitable for implementation