SlideShare a Scribd company logo
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
CMOS-­‐Compa*ble	
  Surface-­‐
Micromachined	
  RF-­‐Relay	
  
Prepared	
  for	
  the	
  2011	
  UCLA	
  EE	
  ARR	
  
November	
  14	
  
Jere	
  Harrison,	
  Xiaoxu	
  Wu,	
  &	
  Professor	
  Rob	
  Candler	
  
TC3	
   TC4	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Presenta*on	
  outline	
  
Mo*va*on	
  
State	
  of	
  the	
  art	
  
Design	
  
Performance	
  
Next	
  genera*on	
  switch	
  
Future	
  direc*on	
  for	
  our	
  magne*c	
  MEMS	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
A	
  liSle	
  bit	
  of	
  perspec*ve	
  
1	
  m	
  
1	
  cm	
  
1	
  mm	
  
10	
  nm	
  
<1	
  nm	
  
1	
  μm	
  
100	
  μm	
  
Device	
  scale	
  
Some	
  parameters	
  to	
  compare	
  across	
  devices:	
  
	
  
Power	
  handling	
  –	
  How	
  much	
  power	
  can	
  the	
  relay	
  handle?	
  	
  
Isola*on	
  –	
  How	
  much	
  power	
  leaks	
  when	
  switched	
  off?	
  	
  
Inser*on	
  loss	
  –	
  How	
  much	
  power	
  is	
  lost	
  when	
  switched	
  on?	
  	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
A	
  liSle	
  bit	
  of	
  perspec*ve	
  
1	
  m	
  
1	
  cm	
  
1	
  mm	
  
10	
  nm	
  
<1	
  nm	
  
1	
  μm	
  
100	
  μm	
  
Transmission	
  line	
  
isolators:	
  
Ultra-­‐high	
  power,	
  
ultra-­‐high	
  isola*on,	
  
&	
  low	
  loss	
  
Device	
  scale	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
A	
  liSle	
  bit	
  of	
  perspec*ve	
  
1	
  m	
  
1	
  cm	
  
1	
  mm	
  
10	
  nm	
  
<1	
  nm	
  
1	
  μm	
  
100	
  μm	
  
Transmission	
  line	
  
isolators:	
  
Ultra-­‐high	
  power,	
  
ultra-­‐high	
  isola*on,	
  
&	
  low	
  loss	
   Vacuum	
  
triodes	
  &	
  
macro-­‐relays:	
  
High	
  power,	
  
high	
  isola*on,	
  
&	
  low	
  loss	
  
Device	
  scale	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
A	
  liSle	
  bit	
  of	
  perspec*ve	
  
1	
  m	
  
1	
  cm	
  
1	
  mm	
  
10	
  nm	
  
<1	
  nm	
  
1	
  μm	
  
100	
  μm	
  
Transmission	
  line	
  
isolators:	
  
Ultra-­‐high	
  power,	
  
ultra-­‐high	
  isola*on,	
  
&	
  low	
  loss	
   Vacuum	
  
triodes	
  &	
  
macro-­‐relays:	
  
High	
  power,	
  
high	
  isola*on,	
  
&	
  low	
  loss	
  
MEMS	
  relays:	
  
Moderate	
  power,	
  
high	
  isola*on,	
  &	
  
low	
  loss	
  
Device	
  scale	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
A	
  liSle	
  bit	
  of	
  perspec*ve	
  
1	
  m	
  
1	
  cm	
  
1	
  mm	
  
10	
  nm	
  
<1	
  nm	
  
1	
  μm	
  
100	
  μm	
  
Transmission	
  line	
  
isolators:	
  
Ultra-­‐high	
  power,	
  
ultra-­‐high	
  isola*on,	
  
&	
  low	
  loss	
   Vacuum	
  
triodes	
  &	
  
macro-­‐relays:	
  
High	
  power,	
  
high	
  isola*on,	
  
&	
  low	
  loss	
  
MEMS	
  relays:	
  
Moderate	
  power,	
  
high	
  isola*on,	
  &	
  
low	
  loss	
  
Semiconductor	
  
transistors:	
  
Moderate	
  power,	
  
moderate	
  isola*on,	
  
&	
  moderate	
  loss	
  	
  
Device	
  scale	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
A	
  liSle	
  bit	
  of	
  perspec*ve	
  
1	
  m	
  
1	
  cm	
  
1	
  mm	
  
10	
  nm	
  
<1	
  nm	
  
1	
  μm	
  
100	
  μm	
  
Transmission	
  line	
  
isolators:	
  
Ultra-­‐high	
  power,	
  
ultra-­‐high	
  isola*on,	
  
&	
  low	
  loss	
   Vacuum	
  
triodes	
  &	
  
macro-­‐relays:	
  
High	
  power,	
  
high	
  isola*on,	
  
&	
  low	
  loss	
  
MEMS	
  relays:	
  
Moderate	
  power,	
  
high	
  isola*on,	
  &	
  
low	
  loss	
  
Biological	
  ion	
  
channels:	
  
Ultra-­‐small	
  
Semiconductor	
  
transistors:	
  
Moderate	
  power,	
  
moderate	
  isola*on,	
  
&	
  moderate	
  loss	
  	
  
Device	
  scale	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Who	
  needs	
  a	
  high	
  isola*on,	
  
	
  low	
  loss	
  relay?	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Who	
  needs	
  a	
  high	
  isola*on,	
  
	
  low	
  loss	
  relay?	
  
TelecommunicaDon	
  
Switched	
  capacitor	
  banks	
  
for	
  low-­‐loss	
  tunable	
  filters	
  
	
  
	
  
	
  
	
  
Antenna	
  switches	
  for	
  
mul*-­‐band	
  phones	
  	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Who	
  needs	
  a	
  high	
  isola*on,	
  
	
  low	
  loss	
  relay?	
  
Precision	
  measurement	
  instruments	
  
TelecommunicaDon	
  
Switched	
  capacitor	
  banks	
  
for	
  low-­‐loss	
  tunable	
  filters	
  
	
  
	
  
	
  
	
  
Antenna	
  switches	
  for	
  
mul*-­‐band	
  phones	
  	
  
Precision	
  digital	
  filters	
  
	
  
	
  
	
  
Switched	
  amplifiers	
  for	
  
expanded	
  dynamic	
  range	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Who	
  needs	
  a	
  high	
  isola*on,	
  
	
  low	
  loss	
  relay?	
  
Aerospace	
  &	
  Defense	
  
Precision	
  measurement	
  instruments	
  
TelecommunicaDon	
  
Precision	
  digital	
  filters	
  
	
  
	
  
	
  
Switched	
  amplifiers	
  for	
  
expanded	
  dynamic	
  range	
  
RF	
  isolators	
  
	
  
Radia*on-­‐hardened	
  
electronics	
  
Switched	
  capacitor	
  banks	
  
for	
  low-­‐loss	
  tunable	
  filters	
  
	
  
	
  
	
  
	
  
Antenna	
  switches	
  for	
  
mul*-­‐band	
  phones	
  	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Presenta*on	
  outline	
  
Mo*va*on	
  
State	
  of	
  the	
  art	
  
Design	
  
Performance	
  
Next	
  genera*on	
  relay	
  
Future	
  direc*on	
  for	
  our	
  magne*c	
  MEMS	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
State	
  of	
  the	
  art	
  in	
  MEMS	
  Relays	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
State	
  of	
  the	
  art	
  in	
  MEMS	
  Relays	
  
Middle	
  of	
  the	
  road	
  performance	
  in	
  inser*on	
  loss	
  for	
  MEMS	
  switches.	
  
For	
  reference:	
  GaAs	
  and	
  GaN	
  FETs	
  have	
  ~1	
  dB	
  inser*on	
  loss	
  beyond	
  1	
  GHz.	
  	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
State	
  of	
  the	
  art	
  in	
  MEMS	
  Relays	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
State	
  of	
  the	
  art	
  in	
  MEMS	
  Relays	
  
UCLA	
  Magne*c	
  MEMS	
  Relay	
  uses	
  the	
  highest	
  isola*on	
  topology	
  and	
  achieves	
  a	
  
longer	
  relay	
  throw.	
  Should	
  be	
  the	
  highest	
  isolaDon	
  MEMS	
  switch	
  reported.	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
State	
  of	
  the	
  art	
  in	
  MEMS	
  Relays	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
State	
  of	
  the	
  art	
  in	
  MEMS	
  Relays	
  
	
  
A	
  long	
  throw	
  magneDc	
  actuator	
  has	
  CMOS	
  compaDble	
  voltage	
  levels.	
  	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Presenta*on	
  outline	
  
Mo*va*on	
  
State	
  of	
  the	
  art	
  
Design	
  
Performance	
  
Next	
  genera*on	
  relay	
  
Future	
  direc*on	
  for	
  our	
  magne*c	
  MEMS	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
The	
  case	
  for	
  magne*c	
  actua*on	
  
Inser*on	
  loss	
  is	
  propor*onal	
  to	
  actuator	
  
force.	
  
Isola*on	
  is	
  propor*onal	
  to	
  maximum	
  
actuator	
  throw.	
  	
  
The	
  actuator	
  for	
  a	
  relay	
  should	
  have	
  high	
  
force	
  across	
  a	
  long	
  actuaDon	
  distance.	
  	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
The	
  case	
  for	
  magne*c	
  actua*on	
  
4x105J/m3	
  @	
  gap	
  =	
  10	
  μm	
  
7x103J/m3	
  
@	
  gap	
  =	
  10	
  μm	
  
MagnetostaDc	
  energy	
  
limited	
  by	
  magneDc	
  
saturaDon	
  
ElectrostaDc	
  	
  
energy	
  limited	
  by	
  
Townsend	
  breakdown	
  
ElectrostaDc	
  energy	
  
limited	
  by	
  field	
  emission	
  
MagneDc	
  actuaDon	
  provides	
  more	
  force	
  than	
  is	
  possible	
  with	
  
electrostaDc	
  actuaDon,	
  and	
  does	
  so	
  over	
  longer	
  distances.	
  	
  
Force	
  is	
  propor*onal	
  
to	
  the	
  stored	
  energy:	
  	
  
F = −∇U
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Actuator	
  
With	
  enough	
  remanence,	
  
actuators	
  are	
  bi-­‐stable.	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Actuator	
  
Force	
  Calcula*on:	
  
	
  	
  
	
  	
  	
  
	
  We	
  can	
  calculate	
  the	
  simple	
  force	
  
generated	
  by	
  a	
  gap	
  closing	
  magne*c	
  
actuator	
  with	
  a	
  few	
  assump*ons:	
  
	
  	
  
•  Neglect	
  fringing	
  and	
  satura*on	
  
•  Uniform	
  permeability	
  
•  Constant	
  cross	
  sec*onal	
  area	
  
€
F = −∇(E)
€
E =
1
2
LI2
€
Rcore =
Lcore
µrµ0Acore
€
Rgap =
Lgap
1× µ0Agap€
L =
n2
R
ϕ
Rtotal	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Actuator	
  
Force	
  Calcula*on:	
  
	
  	
  
	
  	
  	
  
	
  We	
  can	
  calculate	
  the	
  simple	
  force	
  
generated	
  by	
  a	
  gap	
  closing	
  magne*c	
  
actuator	
  with	
  a	
  few	
  assump*ons:	
  
	
  	
  
•  Neglect	
  fringing	
  and	
  satura*on	
  
•  Uniform	
  permeability	
  
•  Constant	
  cross	
  sec*onal	
  area	
  
€
F = −∇(E)
ϕ
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Fabrica*on	
  
C	
  
C’	
  
A	
   A’	
  
All	
  processes	
  <	
  300°	
  C	
  
(Back-­‐end	
  CMOS	
  compaDble)	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Fabrica*on	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Fabrica*on	
  
C	
  
C’	
  
A	
   A’	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Presenta*on	
  outline	
  
Mo*va*on	
  
State	
  of	
  the	
  art	
  
Design	
  
Performance	
  
Next	
  genera*on	
  relay	
  
Future	
  direc*on	
  for	
  our	
  magne*c	
  MEMS	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Actuator	
  
Relay	
  closes	
  at	
  1	
  V.	
  
	
  
Actuator	
  mo*on	
  is	
  measured	
  with	
  a	
  calibrated	
  
camera	
  at	
  various	
  current	
  bias	
  levels.	
  Measurements	
  
match	
  analy*cal	
  models	
  and	
  FEM	
  simula*ons.	
  
	
  
Inductance	
  is	
  measured	
  on	
  wafer	
  and	
  matches	
  
analy*cal	
  models	
  and	
  FEM	
  simula*ons.	
  
	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Switch	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Switch	
  
Closing	
  Dme	
  =	
  64	
  μs	
   Opening	
  Dme	
  =	
  4	
  μs	
  
Switch	
  
Bounce	
   100	
  μs	
  
measurement	
  
*me	
  constant	
  
DC	
  switch	
  contact	
  resistance	
  was	
  measured	
  at	
  250	
  mΩ.	
  
	
  
100	
  Million	
  switch	
  cycles	
  before	
  failure.	
  
	
  
RF-­‐waveguide	
  not	
  func*onal	
  on	
  current	
  genera*on	
  relay.	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Presenta*on	
  outline	
  
Mo*va*on	
  
State	
  of	
  the	
  art	
  
Design	
  
Performance	
  
Next	
  genera*on	
  relay	
  
Future	
  direc*on	
  for	
  our	
  magne*c	
  MEMS	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
High	
  frequency	
  
Coplanar	
  waveguide	
  
switch	
  integrated	
  
into	
  the	
  film	
  stack	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
High	
  isola*on	
  &	
  Bi-­‐stability	
  
Need	
  a	
  thicker	
  core	
  to	
  develop	
  
enough	
  force	
  to	
  close	
  magne*c	
  gap	
  
	
  
Periodic	
  ‘anchors’	
  remove	
  low	
  order	
  
mechanical	
  buckling	
  modes	
  of	
  the	
  	
  
sacrificial	
  electropla*ng	
  mold,	
  
increasing	
  cri*cal	
  stress	
  by	
  8x.	
  	
  
Sacrificial	
  
‘anchors’	
   4x	
  thicker	
  
magneDc	
  core	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
High	
  isola*on	
  &	
  Bi-­‐stability	
  
Need	
  a	
  thicker	
  core	
  to	
  develop	
  
enough	
  force	
  to	
  close	
  magne*c	
  gap	
  
	
  
Periodic	
  ‘anchors’	
  remove	
  low	
  order	
  
mechanical	
  buckling	
  modes	
  of	
  the	
  	
  
sacrificial	
  electropla*ng	
  mold,	
  
increasing	
  cri*cal	
  stress	
  by	
  8x.	
  	
  
FEM	
  simula*ons	
  show	
  a	
  
<	
  5%	
  reduc*on	
  in	
  field	
  
due	
  to	
  anchors.	
  
Sacrificial	
  
‘anchors’	
   4x	
  thicker	
  
magneDc	
  core	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Fabrica*on	
  
A’ B  B’ 
Silicon 
Dioxide 
Amorphous 
Si 
A 
A 
A 
A 
A’ 
A’ 
A’ 
A’ B 
B 
B 
B 
B’ 
B’ 
B’ 
B’ 
(1) 
(5) 
(6) 
(7) 
Magne8c 
Core 
Copper 
Gold 
A  A’ 
B 
B’ 
C  C’ 
A 
(3) 
C  C’ 
C  C’ 
A’ B  B’ A  C  C’ 
(4) 
SU‐8 
C  C’ 
C  C’ 
C  C’ 
(1) 	
   Etch	
   trenches	
   into	
   substrate	
   and	
   fill	
  
with	
   electroformed	
   copper,	
   forming	
  
the	
  boSom	
  windings	
  of	
  the	
  flux	
  source.	
  
(3) 	
   Isolate	
   the	
   boSom	
   copper	
   from	
   the	
  
film	
   stack	
   with	
   silicon	
   nitride.	
   Deposit	
  
and	
  paSern	
  amorphous	
  silicon	
  release	
  
layer,	
   silicon	
   dioxide	
   actuator-­‐
waveguide	
  linkage,	
  and	
  top	
  amorphous	
  
silicon	
  release	
  layer.	
  
(4) 	
   Electroform	
   the	
   gold	
   through	
   a	
  
paSerned	
   sacrificial	
   mold	
   to	
   form	
   the	
  
waveguide.	
  
(5) 	
   Electroform	
   NiFe	
   on	
   the	
   surface	
  
through	
   a	
   paSerned	
   polymer	
   mold	
   to	
  
form	
  the	
  magne*c	
  core.	
  
(6) 	
   Insulate	
   the	
   core	
   and	
   planarize	
   the	
  
surface	
   with	
   a	
   photo-­‐paSerned	
  
structural	
   polymer.	
   Etch	
   through	
   the	
  
silicon	
   nitride	
   to	
   the	
   copper	
   in	
   the	
  
exposed	
  vias.	
  
(7) 	
  Complete	
  the	
  top	
  of	
  the	
  windings	
  with	
  
electroformed	
   copper	
   through	
   a	
  
paSerned	
  mold.	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Presenta*on	
  outline	
  
Mo*va*on	
  
State	
  of	
  the	
  art	
  
Design	
  
Performance	
  
Next	
  genera*on	
  relay	
  
Future	
  direc*on	
  for	
  our	
  magne*c	
  MEMS	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
And	
  now,	
  for	
  something	
  completely	
  
different	
  
Free	
  electron	
  lasers	
  are	
  kilowaS–megawaS	
  class	
  tunable	
  lasers	
  from	
  infrared	
  light	
  to	
  X-­‐rays,	
  and	
  
have	
  enabled	
  en*rely	
  new	
  paradigms	
  of	
  ultra-­‐fast	
  high-­‐energy	
  measurement.	
  	
  
FELs	
  have	
  been	
  used	
  for	
  atomic-­‐scale	
  Dme-­‐resolved	
  imaging	
  of	
  chemical	
  reacDons,	
  
instantaneous	
  MRI	
  quality	
  imaging	
  of	
  so_	
  Dssue,	
  and	
  automated	
  non-­‐invasive	
  cancer	
  surgery.	
  	
  	
  
You	
  need	
  an	
  electron	
  accelerator	
   and	
  an	
  undulator	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
And	
  now,	
  for	
  something	
  completely	
  
different	
  
Miniaturize	
  by	
  	
  
3	
  orders	
  of	
  
magnitude	
  with	
  
microfabricaDon	
  
2011	
  Electrical	
  Engineering	
  Department	
  Annual	
  Research	
  Review	
  
Thank	
  you!	
  

More Related Content

What's hot

Fundamentals of electromagnetic compatibility (EMC)
Fundamentals of electromagnetic compatibility (EMC)Fundamentals of electromagnetic compatibility (EMC)
Fundamentals of electromagnetic compatibility (EMC)
Bruno De Wachter
 
Wireless charging ppt
Wireless charging  pptWireless charging  ppt
Wireless charging ppt
Kartik Kalpande Patil
 
Wireless Energy Harvesting to Charge Cell phone Batteries
Wireless Energy Harvesting to Charge Cell phone BatteriesWireless Energy Harvesting to Charge Cell phone Batteries
Wireless Energy Harvesting to Charge Cell phone Batteries
idescitation
 
Wireless power transfer in 3D space
Wireless power transfer in 3D spaceWireless power transfer in 3D space
Wireless power transfer in 3D space
Aishwarya kalbandhe
 
Lecture 1 Introduction of Power Electronics
Lecture 1 Introduction of Power ElectronicsLecture 1 Introduction of Power Electronics
Lecture 1 Introduction of Power Electronics
aadesharya
 
An Ethernet Cable Discharge Event (CDE) Test and Measurement System
An Ethernet Cable Discharge Event (CDE)  Test and Measurement SystemAn Ethernet Cable Discharge Event (CDE)  Test and Measurement System
An Ethernet Cable Discharge Event (CDE) Test and Measurement System
ESDEMC Technology LLC
 
Lecture 1 introduction of Power Electronics
Lecture 1 introduction of Power ElectronicsLecture 1 introduction of Power Electronics
Lecture 1 introduction of Power Electronics
aadesharya
 
Two marks
Two marksTwo marks
Two marks
balaji1986
 
wireless power transfer
wireless power transfer wireless power transfer
wireless power transfer
AmitKumar6849
 
ENERGY HARVESTING METHOD IN WIRELESS SENSOR NETWORK
ENERGY HARVESTING METHOD IN WIRELESS SENSOR NETWORKENERGY HARVESTING METHOD IN WIRELESS SENSOR NETWORK
ENERGY HARVESTING METHOD IN WIRELESS SENSOR NETWORK
ijejournal
 
Wireless Charging
Wireless ChargingWireless Charging
Wireless Charging
Seminar Links
 
Wireless power transfer through metal using inductive link
Wireless power transfer through metal using inductive linkWireless power transfer through metal using inductive link
Wireless power transfer through metal using inductive link
International Journal of Power Electronics and Drive Systems
 
EE110-elementary-circuit-and-network-theory-(a)
EE110-elementary-circuit-and-network-theory-(a)EE110-elementary-circuit-and-network-theory-(a)
EE110-elementary-circuit-and-network-theory-(a)
rsamurti
 
Wireless power transfer by high frequency resonating coils
Wireless power transfer by high frequency resonating coilsWireless power transfer by high frequency resonating coils
Wireless power transfer by high frequency resonating coils
Edgefxkits & Solutions
 
Lecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power ElectronicsLecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power Electronics
rsamurti
 
Powercast - RF Energy Harvesting for Controllable Wireless Power Systems
Powercast - RF Energy Harvesting for Controllable Wireless Power SystemsPowercast - RF Energy Harvesting for Controllable Wireless Power Systems
Powercast - RF Energy Harvesting for Controllable Wireless Power Systems
Harry Ostaffe
 
Bidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converterBidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converter
Vasudeva Guptha
 
Lec 1 electronics, application &amp; components
Lec 1 electronics, application &amp; componentsLec 1 electronics, application &amp; components
Lec 1 electronics, application &amp; components
Haseeb Anwar Hayat Qureshi
 

What's hot (20)

Fundamentals of electromagnetic compatibility (EMC)
Fundamentals of electromagnetic compatibility (EMC)Fundamentals of electromagnetic compatibility (EMC)
Fundamentals of electromagnetic compatibility (EMC)
 
Wireless charging ppt
Wireless charging  pptWireless charging  ppt
Wireless charging ppt
 
Wireless Energy Harvesting to Charge Cell phone Batteries
Wireless Energy Harvesting to Charge Cell phone BatteriesWireless Energy Harvesting to Charge Cell phone Batteries
Wireless Energy Harvesting to Charge Cell phone Batteries
 
Wireless power transfer in 3D space
Wireless power transfer in 3D spaceWireless power transfer in 3D space
Wireless power transfer in 3D space
 
Lecture 1 Introduction of Power Electronics
Lecture 1 Introduction of Power ElectronicsLecture 1 Introduction of Power Electronics
Lecture 1 Introduction of Power Electronics
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 
An Ethernet Cable Discharge Event (CDE) Test and Measurement System
An Ethernet Cable Discharge Event (CDE)  Test and Measurement SystemAn Ethernet Cable Discharge Event (CDE)  Test and Measurement System
An Ethernet Cable Discharge Event (CDE) Test and Measurement System
 
Neeraj kumar
Neeraj kumarNeeraj kumar
Neeraj kumar
 
Lecture 1 introduction of Power Electronics
Lecture 1 introduction of Power ElectronicsLecture 1 introduction of Power Electronics
Lecture 1 introduction of Power Electronics
 
Two marks
Two marksTwo marks
Two marks
 
wireless power transfer
wireless power transfer wireless power transfer
wireless power transfer
 
ENERGY HARVESTING METHOD IN WIRELESS SENSOR NETWORK
ENERGY HARVESTING METHOD IN WIRELESS SENSOR NETWORKENERGY HARVESTING METHOD IN WIRELESS SENSOR NETWORK
ENERGY HARVESTING METHOD IN WIRELESS SENSOR NETWORK
 
Wireless Charging
Wireless ChargingWireless Charging
Wireless Charging
 
Wireless power transfer through metal using inductive link
Wireless power transfer through metal using inductive linkWireless power transfer through metal using inductive link
Wireless power transfer through metal using inductive link
 
EE110-elementary-circuit-and-network-theory-(a)
EE110-elementary-circuit-and-network-theory-(a)EE110-elementary-circuit-and-network-theory-(a)
EE110-elementary-circuit-and-network-theory-(a)
 
Wireless power transfer by high frequency resonating coils
Wireless power transfer by high frequency resonating coilsWireless power transfer by high frequency resonating coils
Wireless power transfer by high frequency resonating coils
 
Lecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power ElectronicsLecture-1 : Introduction to Power Electronics
Lecture-1 : Introduction to Power Electronics
 
Powercast - RF Energy Harvesting for Controllable Wireless Power Systems
Powercast - RF Energy Harvesting for Controllable Wireless Power SystemsPowercast - RF Energy Harvesting for Controllable Wireless Power Systems
Powercast - RF Energy Harvesting for Controllable Wireless Power Systems
 
Bidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converterBidirectional DC-DC isolated converter
Bidirectional DC-DC isolated converter
 
Lec 1 electronics, application &amp; components
Lec 1 electronics, application &amp; componentsLec 1 electronics, application &amp; components
Lec 1 electronics, application &amp; components
 

Viewers also liked

Mujeres inmigrants en Chile_Lana Alman
Mujeres inmigrants en Chile_Lana AlmanMujeres inmigrants en Chile_Lana Alman
Mujeres inmigrants en Chile_Lana AlmanLana Alman
 
MikeWard CV 7May2015
MikeWard CV 7May2015MikeWard CV 7May2015
MikeWard CV 7May2015Michael Ward
 
AFS_Presentation_Housela_updated
AFS_Presentation_Housela_updatedAFS_Presentation_Housela_updated
AFS_Presentation_Housela_updatedLindsay House
 
Ratio analysis
Ratio analysisRatio analysis
Ratio analysis
Nit Dudhrejiya
 
Website Design Company
Website Design Company Website Design Company
Website Design Company
Icode Breakers
 
VISITA A LA UNA-PERÚ
VISITA A LA UNA-PERÚVISITA A LA UNA-PERÚ
VISITA A LA UNA-PERÚ
CASITA FELIZ
 
West Look Ahead Schedule 03.31.15
West Look Ahead Schedule 03.31.15West Look Ahead Schedule 03.31.15
West Look Ahead Schedule 03.31.15Rick Sommerfeld
 
PLANIFICACIÓN EDUCATIVA 2016
PLANIFICACIÓN EDUCATIVA 2016PLANIFICACIÓN EDUCATIVA 2016
PLANIFICACIÓN EDUCATIVA 2016
CASITA FELIZ
 
Mc177 supplemental registration
Mc177 supplemental registrationMc177 supplemental registration
Mc177 supplemental registration
Vinzboyles
 
Presentacion bethles michael jacson
Presentacion bethles michael jacsonPresentacion bethles michael jacson
Presentacion bethles michael jacson
Erika Arteaga
 
Workshop 8 kullcha
Workshop 8 kullchaWorkshop 8 kullcha
Workshop 8 kullcha
kullcha
 
Get started with dropbox
Get started with dropboxGet started with dropbox
Get started with dropbox
kimmingel
 
SBM PREVIEW
SBM PREVIEWSBM PREVIEW
SBM PREVIEW
junaserbaserbi
 
Assignment 7 - OER Pros & Cons
Assignment 7 - OER Pros & ConsAssignment 7 - OER Pros & Cons
Assignment 7 - OER Pros & Cons
scp6
 
No Technology
No TechnologyNo Technology
No Technology
ginawartgow
 
publicly financed campaigns
publicly financed campaignspublicly financed campaigns
publicly financed campaignsAidan Barrett
 
U.S. Navy Comabt Helmets MC&H Vol 66 No 2 - Munnikhuyen
U.S. Navy Comabt Helmets MC&H Vol 66 No 2 - MunnikhuyenU.S. Navy Comabt Helmets MC&H Vol 66 No 2 - Munnikhuyen
U.S. Navy Comabt Helmets MC&H Vol 66 No 2 - MunnikhuyenLarry Munnikhuysen
 

Viewers also liked (20)

Mujeres inmigrants en Chile_Lana Alman
Mujeres inmigrants en Chile_Lana AlmanMujeres inmigrants en Chile_Lana Alman
Mujeres inmigrants en Chile_Lana Alman
 
MikeWard CV 7May2015
MikeWard CV 7May2015MikeWard CV 7May2015
MikeWard CV 7May2015
 
AFS_Presentation_Housela_updated
AFS_Presentation_Housela_updatedAFS_Presentation_Housela_updated
AFS_Presentation_Housela_updated
 
Ratio analysis
Ratio analysisRatio analysis
Ratio analysis
 
Website Design Company
Website Design Company Website Design Company
Website Design Company
 
VISITA A LA UNA-PERÚ
VISITA A LA UNA-PERÚVISITA A LA UNA-PERÚ
VISITA A LA UNA-PERÚ
 
West Look Ahead Schedule 03.31.15
West Look Ahead Schedule 03.31.15West Look Ahead Schedule 03.31.15
West Look Ahead Schedule 03.31.15
 
PLANIFICACIÓN EDUCATIVA 2016
PLANIFICACIÓN EDUCATIVA 2016PLANIFICACIÓN EDUCATIVA 2016
PLANIFICACIÓN EDUCATIVA 2016
 
Mc177 supplemental registration
Mc177 supplemental registrationMc177 supplemental registration
Mc177 supplemental registration
 
Ramonotsi Ndlebi - New
Ramonotsi Ndlebi - NewRamonotsi Ndlebi - New
Ramonotsi Ndlebi - New
 
Presentacion bethles michael jacson
Presentacion bethles michael jacsonPresentacion bethles michael jacson
Presentacion bethles michael jacson
 
Workshop 8 kullcha
Workshop 8 kullchaWorkshop 8 kullcha
Workshop 8 kullcha
 
Hsp mat-t4
Hsp mat-t4Hsp mat-t4
Hsp mat-t4
 
Eps
EpsEps
Eps
 
Get started with dropbox
Get started with dropboxGet started with dropbox
Get started with dropbox
 
SBM PREVIEW
SBM PREVIEWSBM PREVIEW
SBM PREVIEW
 
Assignment 7 - OER Pros & Cons
Assignment 7 - OER Pros & ConsAssignment 7 - OER Pros & Cons
Assignment 7 - OER Pros & Cons
 
No Technology
No TechnologyNo Technology
No Technology
 
publicly financed campaigns
publicly financed campaignspublicly financed campaigns
publicly financed campaigns
 
U.S. Navy Comabt Helmets MC&H Vol 66 No 2 - Munnikhuyen
U.S. Navy Comabt Helmets MC&H Vol 66 No 2 - MunnikhuyenU.S. Navy Comabt Helmets MC&H Vol 66 No 2 - Munnikhuyen
U.S. Navy Comabt Helmets MC&H Vol 66 No 2 - Munnikhuyen
 

Similar to ARR_Presentation

WIRELESS POWER TRANSMISSION Project
WIRELESS POWER TRANSMISSION ProjectWIRELESS POWER TRANSMISSION Project
WIRELESS POWER TRANSMISSION Project
sagnikchoudhury
 
RECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAARECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAA
aditiagrawal97
 
Wireless Power Transfer Project
Wireless Power Transfer  ProjectWireless Power Transfer  Project
Wireless Power Transfer Project
sagnikchoudhury
 
Wireless mobile charger using inductive coil
Wireless mobile charger using inductive coilWireless mobile charger using inductive coil
Wireless mobile charger using inductive coil
Niranjan kumar sah
 
3_SK_MEMS based design and all basic sincldued.ppt
3_SK_MEMS based design and all basic sincldued.ppt3_SK_MEMS based design and all basic sincldued.ppt
3_SK_MEMS based design and all basic sincldued.ppt
deveshsoni26
 
ECE2708 Microwave Engineering Lab Joournal
ECE2708 Microwave Engineering Lab JoournalECE2708 Microwave Engineering Lab Joournal
ECE2708 Microwave Engineering Lab Joournal
Chaitanya Vijaykumar Mahamuni
 
optical transmitter
optical transmitteroptical transmitter
optical transmitter
@zenafaris91
 
MAGNETIC OPTICAL CURRENT TRANSFORMER
MAGNETIC OPTICAL CURRENT TRANSFORMERMAGNETIC OPTICAL CURRENT TRANSFORMER
MAGNETIC OPTICAL CURRENT TRANSFORMER
Muhammad Afzal
 
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERSISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERSSalman Lulat
 
1# Chapter-1.ppt
1# Chapter-1.ppt1# Chapter-1.ppt
1# Chapter-1.ppt
MuhammadBilalFarid
 
Electric Field Analysis and Impact Study with Shrubbery on the 11 kV Distribu...
Electric Field Analysis and Impact Study with Shrubbery on the 11 kV Distribu...Electric Field Analysis and Impact Study with Shrubbery on the 11 kV Distribu...
Electric Field Analysis and Impact Study with Shrubbery on the 11 kV Distribu...
IRJET Journal
 
Fabrication Of Low Power Audio Amplifier Using IC LM386
Fabrication Of Low Power Audio Amplifier Using IC LM386Fabrication Of Low Power Audio Amplifier Using IC LM386
Fabrication Of Low Power Audio Amplifier Using IC LM386
Kapil Tapsi
 
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
IOSRJECE
 
Wireless power transmission via resonance coupling.
Wireless power transmission via resonance coupling.Wireless power transmission via resonance coupling.
Wireless power transmission via resonance coupling.
Xûbåįr Kakar
 
Analysis and Implementation of Solid-State Relays in Industrial application F...
Analysis and Implementation of Solid-State Relays in Industrial application F...Analysis and Implementation of Solid-State Relays in Industrial application F...
Analysis and Implementation of Solid-State Relays in Industrial application F...
IJMREMJournal
 
Review Paper on Wireless Power Transmission by using Inductive Coupling for D...
Review Paper on Wireless Power Transmission by using Inductive Coupling for D...Review Paper on Wireless Power Transmission by using Inductive Coupling for D...
Review Paper on Wireless Power Transmission by using Inductive Coupling for D...
IRJET Journal
 

Similar to ARR_Presentation (20)

WIRELESS POWER TRANSMISSION Project
WIRELESS POWER TRANSMISSION ProjectWIRELESS POWER TRANSMISSION Project
WIRELESS POWER TRANSMISSION Project
 
RECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAARECONFIGURABLE ANTENAA
RECONFIGURABLE ANTENAA
 
Wireless Power Transfer Project
Wireless Power Transfer  ProjectWireless Power Transfer  Project
Wireless Power Transfer Project
 
Wireless mobile charger using inductive coil
Wireless mobile charger using inductive coilWireless mobile charger using inductive coil
Wireless mobile charger using inductive coil
 
3_SK_MEMS based design and all basic sincldued.ppt
3_SK_MEMS based design and all basic sincldued.ppt3_SK_MEMS based design and all basic sincldued.ppt
3_SK_MEMS based design and all basic sincldued.ppt
 
ECE2708 Microwave Engineering Lab Joournal
ECE2708 Microwave Engineering Lab JoournalECE2708 Microwave Engineering Lab Joournal
ECE2708 Microwave Engineering Lab Joournal
 
optical transmitter
optical transmitteroptical transmitter
optical transmitter
 
MAGNETIC OPTICAL CURRENT TRANSFORMER
MAGNETIC OPTICAL CURRENT TRANSFORMERMAGNETIC OPTICAL CURRENT TRANSFORMER
MAGNETIC OPTICAL CURRENT TRANSFORMER
 
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERSISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
 
Mobile detection
Mobile detectionMobile detection
Mobile detection
 
1# Chapter-1.ppt
1# Chapter-1.ppt1# Chapter-1.ppt
1# Chapter-1.ppt
 
Electric Field Analysis and Impact Study with Shrubbery on the 11 kV Distribu...
Electric Field Analysis and Impact Study with Shrubbery on the 11 kV Distribu...Electric Field Analysis and Impact Study with Shrubbery on the 11 kV Distribu...
Electric Field Analysis and Impact Study with Shrubbery on the 11 kV Distribu...
 
155 iit bomby
155 iit bomby155 iit bomby
155 iit bomby
 
Fabrication Of Low Power Audio Amplifier Using IC LM386
Fabrication Of Low Power Audio Amplifier Using IC LM386Fabrication Of Low Power Audio Amplifier Using IC LM386
Fabrication Of Low Power Audio Amplifier Using IC LM386
 
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
Study of RF-MEMS Capacitive Shunt Switch for Microwave Backhaul Applications
 
power electronics.pdf
power electronics.pdfpower electronics.pdf
power electronics.pdf
 
Wireless power transmission via resonance coupling.
Wireless power transmission via resonance coupling.Wireless power transmission via resonance coupling.
Wireless power transmission via resonance coupling.
 
Analysis and Implementation of Solid-State Relays in Industrial application F...
Analysis and Implementation of Solid-State Relays in Industrial application F...Analysis and Implementation of Solid-State Relays in Industrial application F...
Analysis and Implementation of Solid-State Relays in Industrial application F...
 
Bo25391394
Bo25391394Bo25391394
Bo25391394
 
Review Paper on Wireless Power Transmission by using Inductive Coupling for D...
Review Paper on Wireless Power Transmission by using Inductive Coupling for D...Review Paper on Wireless Power Transmission by using Inductive Coupling for D...
Review Paper on Wireless Power Transmission by using Inductive Coupling for D...
 

ARR_Presentation

  • 1. 2011  Electrical  Engineering  Department  Annual  Research  Review   CMOS-­‐Compa*ble  Surface-­‐ Micromachined  RF-­‐Relay   Prepared  for  the  2011  UCLA  EE  ARR   November  14   Jere  Harrison,  Xiaoxu  Wu,  &  Professor  Rob  Candler   TC3   TC4  
  • 2. 2011  Electrical  Engineering  Department  Annual  Research  Review   Presenta*on  outline   Mo*va*on   State  of  the  art   Design   Performance   Next  genera*on  switch   Future  direc*on  for  our  magne*c  MEMS  
  • 3. 2011  Electrical  Engineering  Department  Annual  Research  Review   A  liSle  bit  of  perspec*ve   1  m   1  cm   1  mm   10  nm   <1  nm   1  μm   100  μm   Device  scale   Some  parameters  to  compare  across  devices:     Power  handling  –  How  much  power  can  the  relay  handle?     Isola*on  –  How  much  power  leaks  when  switched  off?     Inser*on  loss  –  How  much  power  is  lost  when  switched  on?    
  • 4. 2011  Electrical  Engineering  Department  Annual  Research  Review   A  liSle  bit  of  perspec*ve   1  m   1  cm   1  mm   10  nm   <1  nm   1  μm   100  μm   Transmission  line   isolators:   Ultra-­‐high  power,   ultra-­‐high  isola*on,   &  low  loss   Device  scale  
  • 5. 2011  Electrical  Engineering  Department  Annual  Research  Review   A  liSle  bit  of  perspec*ve   1  m   1  cm   1  mm   10  nm   <1  nm   1  μm   100  μm   Transmission  line   isolators:   Ultra-­‐high  power,   ultra-­‐high  isola*on,   &  low  loss   Vacuum   triodes  &   macro-­‐relays:   High  power,   high  isola*on,   &  low  loss   Device  scale  
  • 6. 2011  Electrical  Engineering  Department  Annual  Research  Review   A  liSle  bit  of  perspec*ve   1  m   1  cm   1  mm   10  nm   <1  nm   1  μm   100  μm   Transmission  line   isolators:   Ultra-­‐high  power,   ultra-­‐high  isola*on,   &  low  loss   Vacuum   triodes  &   macro-­‐relays:   High  power,   high  isola*on,   &  low  loss   MEMS  relays:   Moderate  power,   high  isola*on,  &   low  loss   Device  scale  
  • 7. 2011  Electrical  Engineering  Department  Annual  Research  Review   A  liSle  bit  of  perspec*ve   1  m   1  cm   1  mm   10  nm   <1  nm   1  μm   100  μm   Transmission  line   isolators:   Ultra-­‐high  power,   ultra-­‐high  isola*on,   &  low  loss   Vacuum   triodes  &   macro-­‐relays:   High  power,   high  isola*on,   &  low  loss   MEMS  relays:   Moderate  power,   high  isola*on,  &   low  loss   Semiconductor   transistors:   Moderate  power,   moderate  isola*on,   &  moderate  loss     Device  scale  
  • 8. 2011  Electrical  Engineering  Department  Annual  Research  Review   A  liSle  bit  of  perspec*ve   1  m   1  cm   1  mm   10  nm   <1  nm   1  μm   100  μm   Transmission  line   isolators:   Ultra-­‐high  power,   ultra-­‐high  isola*on,   &  low  loss   Vacuum   triodes  &   macro-­‐relays:   High  power,   high  isola*on,   &  low  loss   MEMS  relays:   Moderate  power,   high  isola*on,  &   low  loss   Biological  ion   channels:   Ultra-­‐small   Semiconductor   transistors:   Moderate  power,   moderate  isola*on,   &  moderate  loss     Device  scale  
  • 9. 2011  Electrical  Engineering  Department  Annual  Research  Review   Who  needs  a  high  isola*on,    low  loss  relay?  
  • 10. 2011  Electrical  Engineering  Department  Annual  Research  Review   Who  needs  a  high  isola*on,    low  loss  relay?   TelecommunicaDon   Switched  capacitor  banks   for  low-­‐loss  tunable  filters           Antenna  switches  for   mul*-­‐band  phones    
  • 11. 2011  Electrical  Engineering  Department  Annual  Research  Review   Who  needs  a  high  isola*on,    low  loss  relay?   Precision  measurement  instruments   TelecommunicaDon   Switched  capacitor  banks   for  low-­‐loss  tunable  filters           Antenna  switches  for   mul*-­‐band  phones     Precision  digital  filters         Switched  amplifiers  for   expanded  dynamic  range  
  • 12. 2011  Electrical  Engineering  Department  Annual  Research  Review   Who  needs  a  high  isola*on,    low  loss  relay?   Aerospace  &  Defense   Precision  measurement  instruments   TelecommunicaDon   Precision  digital  filters         Switched  amplifiers  for   expanded  dynamic  range   RF  isolators     Radia*on-­‐hardened   electronics   Switched  capacitor  banks   for  low-­‐loss  tunable  filters           Antenna  switches  for   mul*-­‐band  phones    
  • 13. 2011  Electrical  Engineering  Department  Annual  Research  Review   Presenta*on  outline   Mo*va*on   State  of  the  art   Design   Performance   Next  genera*on  relay   Future  direc*on  for  our  magne*c  MEMS  
  • 14. 2011  Electrical  Engineering  Department  Annual  Research  Review   State  of  the  art  in  MEMS  Relays  
  • 15. 2011  Electrical  Engineering  Department  Annual  Research  Review   State  of  the  art  in  MEMS  Relays   Middle  of  the  road  performance  in  inser*on  loss  for  MEMS  switches.   For  reference:  GaAs  and  GaN  FETs  have  ~1  dB  inser*on  loss  beyond  1  GHz.    
  • 16. 2011  Electrical  Engineering  Department  Annual  Research  Review   State  of  the  art  in  MEMS  Relays  
  • 17. 2011  Electrical  Engineering  Department  Annual  Research  Review   State  of  the  art  in  MEMS  Relays   UCLA  Magne*c  MEMS  Relay  uses  the  highest  isola*on  topology  and  achieves  a   longer  relay  throw.  Should  be  the  highest  isolaDon  MEMS  switch  reported.  
  • 18. 2011  Electrical  Engineering  Department  Annual  Research  Review   State  of  the  art  in  MEMS  Relays  
  • 19. 2011  Electrical  Engineering  Department  Annual  Research  Review   State  of  the  art  in  MEMS  Relays     A  long  throw  magneDc  actuator  has  CMOS  compaDble  voltage  levels.    
  • 20. 2011  Electrical  Engineering  Department  Annual  Research  Review   Presenta*on  outline   Mo*va*on   State  of  the  art   Design   Performance   Next  genera*on  relay   Future  direc*on  for  our  magne*c  MEMS  
  • 21. 2011  Electrical  Engineering  Department  Annual  Research  Review   The  case  for  magne*c  actua*on   Inser*on  loss  is  propor*onal  to  actuator   force.   Isola*on  is  propor*onal  to  maximum   actuator  throw.     The  actuator  for  a  relay  should  have  high   force  across  a  long  actuaDon  distance.    
  • 22. 2011  Electrical  Engineering  Department  Annual  Research  Review   The  case  for  magne*c  actua*on   4x105J/m3  @  gap  =  10  μm   7x103J/m3   @  gap  =  10  μm   MagnetostaDc  energy   limited  by  magneDc   saturaDon   ElectrostaDc     energy  limited  by   Townsend  breakdown   ElectrostaDc  energy   limited  by  field  emission   MagneDc  actuaDon  provides  more  force  than  is  possible  with   electrostaDc  actuaDon,  and  does  so  over  longer  distances.     Force  is  propor*onal   to  the  stored  energy:     F = −∇U
  • 23. 2011  Electrical  Engineering  Department  Annual  Research  Review   Actuator   With  enough  remanence,   actuators  are  bi-­‐stable.  
  • 24. 2011  Electrical  Engineering  Department  Annual  Research  Review   Actuator   Force  Calcula*on:              We  can  calculate  the  simple  force   generated  by  a  gap  closing  magne*c   actuator  with  a  few  assump*ons:       •  Neglect  fringing  and  satura*on   •  Uniform  permeability   •  Constant  cross  sec*onal  area   € F = −∇(E) € E = 1 2 LI2 € Rcore = Lcore µrµ0Acore € Rgap = Lgap 1× µ0Agap€ L = n2 R ϕ Rtotal  
  • 25. 2011  Electrical  Engineering  Department  Annual  Research  Review   Actuator   Force  Calcula*on:              We  can  calculate  the  simple  force   generated  by  a  gap  closing  magne*c   actuator  with  a  few  assump*ons:       •  Neglect  fringing  and  satura*on   •  Uniform  permeability   •  Constant  cross  sec*onal  area   € F = −∇(E) ϕ
  • 26. 2011  Electrical  Engineering  Department  Annual  Research  Review   Fabrica*on   C   C’   A   A’   All  processes  <  300°  C   (Back-­‐end  CMOS  compaDble)  
  • 27. 2011  Electrical  Engineering  Department  Annual  Research  Review   Fabrica*on  
  • 28. 2011  Electrical  Engineering  Department  Annual  Research  Review   Fabrica*on   C   C’   A   A’  
  • 29. 2011  Electrical  Engineering  Department  Annual  Research  Review   Presenta*on  outline   Mo*va*on   State  of  the  art   Design   Performance   Next  genera*on  relay   Future  direc*on  for  our  magne*c  MEMS  
  • 30. 2011  Electrical  Engineering  Department  Annual  Research  Review   Actuator   Relay  closes  at  1  V.     Actuator  mo*on  is  measured  with  a  calibrated   camera  at  various  current  bias  levels.  Measurements   match  analy*cal  models  and  FEM  simula*ons.     Inductance  is  measured  on  wafer  and  matches   analy*cal  models  and  FEM  simula*ons.    
  • 31. 2011  Electrical  Engineering  Department  Annual  Research  Review   Switch  
  • 32. 2011  Electrical  Engineering  Department  Annual  Research  Review   Switch   Closing  Dme  =  64  μs   Opening  Dme  =  4  μs   Switch   Bounce   100  μs   measurement   *me  constant   DC  switch  contact  resistance  was  measured  at  250  mΩ.     100  Million  switch  cycles  before  failure.     RF-­‐waveguide  not  func*onal  on  current  genera*on  relay.  
  • 33. 2011  Electrical  Engineering  Department  Annual  Research  Review   Presenta*on  outline   Mo*va*on   State  of  the  art   Design   Performance   Next  genera*on  relay   Future  direc*on  for  our  magne*c  MEMS  
  • 34. 2011  Electrical  Engineering  Department  Annual  Research  Review   High  frequency   Coplanar  waveguide   switch  integrated   into  the  film  stack  
  • 35. 2011  Electrical  Engineering  Department  Annual  Research  Review   High  isola*on  &  Bi-­‐stability   Need  a  thicker  core  to  develop   enough  force  to  close  magne*c  gap     Periodic  ‘anchors’  remove  low  order   mechanical  buckling  modes  of  the     sacrificial  electropla*ng  mold,   increasing  cri*cal  stress  by  8x.     Sacrificial   ‘anchors’   4x  thicker   magneDc  core  
  • 36. 2011  Electrical  Engineering  Department  Annual  Research  Review   High  isola*on  &  Bi-­‐stability   Need  a  thicker  core  to  develop   enough  force  to  close  magne*c  gap     Periodic  ‘anchors’  remove  low  order   mechanical  buckling  modes  of  the     sacrificial  electropla*ng  mold,   increasing  cri*cal  stress  by  8x.     FEM  simula*ons  show  a   <  5%  reduc*on  in  field   due  to  anchors.   Sacrificial   ‘anchors’   4x  thicker   magneDc  core  
  • 37. 2011  Electrical  Engineering  Department  Annual  Research  Review   Fabrica*on   A’ B  B’  Silicon  Dioxide  Amorphous  Si  A  A  A  A  A’  A’  A’  A’ B  B  B  B  B’  B’  B’  B’  (1)  (5)  (6)  (7)  Magne8c  Core  Copper  Gold  A  A’  B  B’  C  C’  A  (3)  C  C’  C  C’  A’ B  B’ A  C  C’  (4)  SU‐8  C  C’  C  C’  C  C’  (1)   Etch   trenches   into   substrate   and   fill   with   electroformed   copper,   forming   the  boSom  windings  of  the  flux  source.   (3)   Isolate   the   boSom   copper   from   the   film   stack   with   silicon   nitride.   Deposit   and  paSern  amorphous  silicon  release   layer,   silicon   dioxide   actuator-­‐ waveguide  linkage,  and  top  amorphous   silicon  release  layer.   (4)   Electroform   the   gold   through   a   paSerned   sacrificial   mold   to   form   the   waveguide.   (5)   Electroform   NiFe   on   the   surface   through   a   paSerned   polymer   mold   to   form  the  magne*c  core.   (6)   Insulate   the   core   and   planarize   the   surface   with   a   photo-­‐paSerned   structural   polymer.   Etch   through   the   silicon   nitride   to   the   copper   in   the   exposed  vias.   (7)  Complete  the  top  of  the  windings  with   electroformed   copper   through   a   paSerned  mold.  
  • 38. 2011  Electrical  Engineering  Department  Annual  Research  Review   Presenta*on  outline   Mo*va*on   State  of  the  art   Design   Performance   Next  genera*on  relay   Future  direc*on  for  our  magne*c  MEMS  
  • 39. 2011  Electrical  Engineering  Department  Annual  Research  Review   And  now,  for  something  completely   different   Free  electron  lasers  are  kilowaS–megawaS  class  tunable  lasers  from  infrared  light  to  X-­‐rays,  and   have  enabled  en*rely  new  paradigms  of  ultra-­‐fast  high-­‐energy  measurement.     FELs  have  been  used  for  atomic-­‐scale  Dme-­‐resolved  imaging  of  chemical  reacDons,   instantaneous  MRI  quality  imaging  of  so_  Dssue,  and  automated  non-­‐invasive  cancer  surgery.       You  need  an  electron  accelerator   and  an  undulator  
  • 40. 2011  Electrical  Engineering  Department  Annual  Research  Review   And  now,  for  something  completely   different   Miniaturize  by     3  orders  of   magnitude  with   microfabricaDon  
  • 41. 2011  Electrical  Engineering  Department  Annual  Research  Review   Thank  you!