SlideShare a Scribd company logo
Chapter-12
sound
Activity :- Strike the prongs of a tuning
fork on a rubber pad and bring it near
the ear. We can hear a sound. If a
suspended table tennis ball is touched
with the vibrating prong, the ball is
pushed away repeatedly. This shows
that the prong is vibrating and
vibrating objects produces sound.
Sound is produced due to the vibration of objects.
Vibration is the rapid to and fro motion of an
object.
Eg :- The sound of human voice is produced due to
the vibration of the vocal cords.
A stretched rubber band when plucked vibrates
and produces sound
1) Production
of sound :-
Vibrating
tuning fork
Thread
2) Propagation of sound :-
The sound produced by a vibrating object travels through a medium to a
listener. The medium can be solid, liquid or gas.
When an object vibrates, the particles around the medium vibrates. The
particle in contact with the vibrating object is first displaced from its equilibrium
position. It then exerts a force on the adjacent particle and the adjacent particle is
displaced from its position of rest. After displacing the adjacent particle the first
particle comes back to its original position. This process repeats in the medium
till the sound reaches the ear.
The disturbance produced by the vibrating body travels through the medium
but the particles do not move forward themselves.
A wave is a disturbance which moves through a medium by the vibration of the
particles of the medium. So sound is considered as a wave. Since sound waves
are produced due to the vibration of particles of the medium sound waves are
called mechanical waves.
AIR IS THE MOST COMMON MEDIUM THROUGH WHICH SOUND TRAVELS. WHEN A VIBRATING OBJECT MOVES
FORWARD, IT PUSHES AND COMPRESSES THE AIR IN FRONT OF IT FORMING A REGION OF HIGH PRESSURE CALLED
COMPRESSION (C). THE COMPRESSION MOVES AWAY FROM THE VIBRATING OBJECT. WHEN THE VIBRATING OBJECT
MOVES BACKWARD, IT FORMS A REGION OF LOW PRESSURE CALLED RAREFACTION (R). AS THE OBJECT MOVES TO
AND FRO RAPIDLY, IT PRODUCES A SERIES OF COMPRESSIONS AND RAREFACTION IN THE AIR WHICH MAKES THE
SOUND TO PROPAGATE IN THE MEDIUM.
A vibrating object producing a series of
compressions (C) and rarefaction (R)
3) Sound needs a medium to travel :-
Sound is a mechanical wave and needs a medium for propagation. Sound travels through solids,
liquids and gases. Sound does not travel in vacuum.
Activity:-
Suspend an electric bell in an air tight bell jar. Connect the bell jar to a vacuum pump. If the
switch is pressed, we can hear the sound of the bell. If air is pumped out through the vacuum
pump, we cannot hear the sound of the bell. This shows that sound needs a medium to travel and
sound cannot travel in vacuum.
Cork
Bell jar
Electric bell
“
”
:4) Sound waves are longitudinal
waves -Activity :- Stretch a slinky and push and Sound propagates in a medium as a series of
compressions (C) and rarefactions (R).
In these waves the particles move back and forth parallel to the direction of propagation of the
disturbance. Such waves are called longitudinal waves.
There is another kind of waves called transverse waves. In these waves the particles oscillate up
and down perpendicular to the propagation of the direction of disturbancepull it alternately at one
end. If you mark a dot on the slinky, the dot moves back and forth parallel to the direction of the
propagation of the disturbance.
5) Characteristics of a sound wave :-
 Sound wave can be described by its frequency, amplitude and speed.
 Sound can be graphically represented as a wave. There is changes in the density and
pressure as sound moves in a medium.
 Compressions are the regions of high pressure and density where the particles are crowded
and are represented by the upper portion of the curve called crest.
 Rarefactions are the regions of low pressure and density where the particles are spread out
and are represented by the lower portion of the curve called trough.
 The distance between two consecutive compressions (crests) or two consecutive troughs is
called wave length. It is represented by the symbol . (Greek letter lamda). Its SI unit is metre
(m).
compression rarefaction
Crest
Trough
λλ
PressureorDensity
λ
i) Frequency of sound wave :-
The time taken for the change in the density of the medium from a maximum value to a minimum value and
again to the maximum value is the time period of the sound wave.
Or
The time taken for one complete oscillation in the density of the medium is called the time period of the
sound wave.
It is represented by the letter T.
The SI unit is second (s).
Frequency and time are represented as follows :-
٧ for one oscillation
1 1
T = ---- or ٧ = ----
٧ T
iii) Amplitude of sound wave :-
The magnitude of the maximum disturbance in the medium on either
side of the mean value is the amplitude of the sound wave.
Or
The amplitude of sound wave is the height of the crest or tough.
It is represented by the letter A.
The SI unit is the same as that of density or pressure.
Wavedisturbance
Wavelength and Amplitude
The wavelength is the distance between the "crests" of two waves that are next to
each other. The amplitude is how high the crests are.
iv) Pitch and loudness of sound :-
The pitch of sound (shrillness or flatness) depends on the frequency of vibration.
If the frequency is high, the sound has high pitch and if the frequency is low,
the sound has low pitch.
Wavelength, Frequency, and Pitch
Since the sounds are travelling at about the same speed, the one with the shorter wavelength
will go by more frequently; it has a higher frequency, or pitch. In other words, it sounds higher.
The loudness of sound depends upon the amplitude of
vibration.
If the amplitude is bigger, the sound is loud and if the
amplitude is smaller, the sound is soft.
Amplitude is Loudness
The size of a wave (how much it is "piled up" at the high points) is its amplitude. For
sound waves, the bigger the amplitude, the louder the sound.
v) Speed of sound :-
The speed of sound is different in different media. The speed of
sound is more in solids, less in liquids and least in gases.
The speed of sound also depends on the temperature of the
medium. If the temperature of the medium is more, the speed of
sound is more.
Speed of sound in different media at 250C.
Relationship between
Speed (v), frequency
(٧) and wave length
(λ)
Speed = wave length x
frequency
v = λ x ٧
Like light, sound gets reflected at the surface of a solid or liquid and follows the laws
of reflection.
i) The angle of incidence is equal to the angle of reflection.
ii) The incident ray, the reflected ray and normal at the point of incidence all lie in
the same plane.
Activity :- Take two pipes of the same length and arrange them on a
table near a wall or metal plate. Keep a clock near the open end of one
pipe and try to hear the sound of the clock through the other pipe by
adjusting the position of the pipe.
Now measure the angles of incidence
and reflection. Then lift the second
pipe and try to hear the sound.
It will be seen that the angle of
incidence is equal to the angle of
reflection. The incident ray, the
reflected ray and normal all lie in
the same plane.
7a)Echo:-
If we shout or clap near a reflecting surface like tall building or a
mountain, we hear the same sound again. This sound which we hear is
called echo. It is caused due to the reflection of sound.
To hear an echo clearly, the time interval between the original
sound and the echo must be at least 0.1 s.
Since the speed of sound in air is 344 m/s, the distance travelled
by sound in 0.I s = 344 m/s x 0.1 s = 34.4 m
So to hear an echo clearly, the minimum distance of the reflecting
surface should be half this distance, that is 17.2 m.
b) Reverberation :-
Echoes may be heard more than once due to repeated or multiple
reflections of sound from several reflecting surfaces. This causes
persistence of sound called reverberation.
In big halls or auditoriums to reduce reverberation, the roofs and
walls are covered by sound absorbing materials like compressed fibre
boards, rough plaster or draperies.
sounds from the human body through a
stethoscope. The soun i) Megaphones, horns, musical instruments like
trumpets, shehnais
etc. are deigned to send sound by multiple reflection in a particular
direction without spreading in all directions.
ii) Doctors listen to d of heartbeat reaches the doctor’s ears by
multiple reflection.
iii) Generally the ceilings of cinema halls and auditoriums are curved
so that sound after multiple reflection reaches all parts of the hall.
Sometimes a curved sound board is placed behind the stage so that
sound after multiple reflection spreads evenly across the hall.
8) Range of Hearing :-
i) Ultrasonic sound is used to clean objects like electronic
components. The components to be cleaned are kept in a
cleaning solution and ultrasonic waves are sent into the
solution. Due to the high frequency, the dirt particles get
detached from the components.
ii) Ultrasonic sound is used to detect cracks in metal
blocks. Ultrasonic waves are sent through the metal
blocks and if there are cracks, the waves are reflected
back and the cracks can be detected.
iii) Ultrasonic sound is used in ultra sound scanners for
getting images of internal organs of the human body.
iv) Ultrasonic sound is used to break small stones formed in
the kidneys into fine grains so that they are removed
through the urine.
Sonar stands for Sound Navigation And Ranging. It is a device which uses
ultrasonic waves to measure distance, direction and speed of underwater objects.
Sonar has a transmitter and a detector installed in ships. The transmitter
produces ultrasonic sound waves which travel through the water and after striking
the object in the sea bed is reflected back to the detector.
The distance of the object can be calculated by knowing the speed of sound in
water and the time taken between the transmission and reception of ultrasound.
If the time taken for the transmission and reception of ultra sound is t and the
distance travelled is 2d by the ultra sound, then 2d = v x t
or d = v x t
2
10) SONAR:-
11) Structure of the human ear :-
The outer ear called pinna collects the sound waves. The sound waves
passes through the ear canal to a thin membrane called eardrum. The
eardrum vibrates. The vibrations are amplified by the three bones of the
middle ear called hammer, anvil and stirrup. The middle ear then
transmits the sound waves to the inner ear. In the inner ear the sound
waves are converted into electrical signals by the cochlea and sent to the
brain through the auditory nerves. The brain then interprets the signals as
sound.
Pinna
Hammer Anvil
Stirrup
Cochlea
Arpit meena

More Related Content

What's hot

Sound class 9
Sound class 9Sound class 9
Sound class 9
kritish antil
 
Sound class-8
Sound class-8Sound class-8
Sound class-8
ShanmukhreddyCheemar
 
12sound (1)
12sound (1)12sound (1)
12sound (1)
CHEKIT SHARMA
 
gravitation
gravitationgravitation
gravitation
shiva prasad
 
Std 9 Chapter 15 Music of Sound
Std 9 Chapter 15 Music of SoundStd 9 Chapter 15 Music of Sound
Std 9 Chapter 15 Music of Sound
Gurudatta Wagh
 
Sound chapter 12 class-8
Sound chapter  12 class-8Sound chapter  12 class-8
Sound chapter 12 class-8
Ravi Prakash
 
sound
 sound  sound
sound
shiva prasad
 
Presentation of science (sound)
Presentation of science (sound)Presentation of science (sound)
Presentation of science (sound)Kunnu Aggarwal
 
class 8 sound
class 8 sound class 8 sound
class 8 sound
gaayatrisharma
 
Friction / class 8 ncert / science / physics
Friction / class 8 ncert / science / physicsFriction / class 8 ncert / science / physics
Friction / class 8 ncert / science / physics
TaufiqOMG
 
Sound
SoundSound
Class 9 chapter 10 Gravitation
Class 9 chapter 10 Gravitation Class 9 chapter 10 Gravitation
Class 9 chapter 10 Gravitation
Prachi Mishra
 
propogation of sound (CLASS 9 ICSE)
propogation of sound (CLASS 9 ICSE)propogation of sound (CLASS 9 ICSE)
propogation of sound (CLASS 9 ICSE)
karthikgangula
 
Sound Waves ( Loudness and Intensity)
Sound Waves ( Loudness and Intensity)Sound Waves ( Loudness and Intensity)
Sound Waves ( Loudness and Intensity)Rose Paras
 
1sound
1sound1sound
1sound
Bhanu Kalra
 
Sound for class 9 physics
Sound for class 9 physicsSound for class 9 physics
Sound for class 9 physics
Shariq Hussain
 
Light shadows and reflections
Light shadows and reflectionsLight shadows and reflections
Light shadows and reflections
MuhammedAjeesh
 
Sound
SoundSound

What's hot (20)

Sound class 9
Sound class 9Sound class 9
Sound class 9
 
Sound class-8
Sound class-8Sound class-8
Sound class-8
 
12sound (1)
12sound (1)12sound (1)
12sound (1)
 
Sound
SoundSound
Sound
 
gravitation
gravitationgravitation
gravitation
 
Std 9 Chapter 15 Music of Sound
Std 9 Chapter 15 Music of SoundStd 9 Chapter 15 Music of Sound
Std 9 Chapter 15 Music of Sound
 
Sound chapter 12 class-8
Sound chapter  12 class-8Sound chapter  12 class-8
Sound chapter 12 class-8
 
sound
 sound  sound
sound
 
Presentation of science (sound)
Presentation of science (sound)Presentation of science (sound)
Presentation of science (sound)
 
Sound
SoundSound
Sound
 
class 8 sound
class 8 sound class 8 sound
class 8 sound
 
Friction / class 8 ncert / science / physics
Friction / class 8 ncert / science / physicsFriction / class 8 ncert / science / physics
Friction / class 8 ncert / science / physics
 
Sound
SoundSound
Sound
 
Class 9 chapter 10 Gravitation
Class 9 chapter 10 Gravitation Class 9 chapter 10 Gravitation
Class 9 chapter 10 Gravitation
 
propogation of sound (CLASS 9 ICSE)
propogation of sound (CLASS 9 ICSE)propogation of sound (CLASS 9 ICSE)
propogation of sound (CLASS 9 ICSE)
 
Sound Waves ( Loudness and Intensity)
Sound Waves ( Loudness and Intensity)Sound Waves ( Loudness and Intensity)
Sound Waves ( Loudness and Intensity)
 
1sound
1sound1sound
1sound
 
Sound for class 9 physics
Sound for class 9 physicsSound for class 9 physics
Sound for class 9 physics
 
Light shadows and reflections
Light shadows and reflectionsLight shadows and reflections
Light shadows and reflections
 
Sound
SoundSound
Sound
 

Similar to Arpit meena

CLASS 9 _ SOUND.pptx
CLASS 9 _ SOUND.pptxCLASS 9 _ SOUND.pptx
CLASS 9 _ SOUND.pptx
SureshNeeluri6
 
12sound
12sound12sound
12sound
ramankaveri
 
12sound-201208075306.pdf..................
12sound-201208075306.pdf..................12sound-201208075306.pdf..................
12sound-201208075306.pdf..................
VishwatejNalawade1
 
SOUND
SOUNDSOUND
i AM YEDA
i AM YEDAi AM YEDA
i AM YEDA
SapnaPatiye
 
SOUND
SOUND SOUND
SOUND
Rks Ptl
 
Introduction to Audiography/Sound
Introduction to Audiography/SoundIntroduction to Audiography/Sound
Introduction to Audiography/Sound
Sankaranarayanan K B
 
Sound And It's Applications | Science PPT | Pritam Priyambad Sahoo
Sound And It's Applications | Science PPT | Pritam Priyambad SahooSound And It's Applications | Science PPT | Pritam Priyambad Sahoo
Sound And It's Applications | Science PPT | Pritam Priyambad Sahoo
PritamPriyambadSahoo
 
Sound ppt
Sound pptSound ppt
Sound ppt
ananyatodi2
 
ch 12 sound.pdf
ch 12 sound.pdfch 12 sound.pdf
ch 12 sound.pdf
LUXMIKANTGIRI
 
5sound-181206142548.pd
5sound-181206142548.pd5sound-181206142548.pd
5sound-181206142548.pd
Praveen0073
 
Sound 130822001856-phpapp01
Sound 130822001856-phpapp01Sound 130822001856-phpapp01
Sound 130822001856-phpapp01
aryan174
 
CBSE Class IX Sciense Physics Sound
CBSE Class IX Sciense Physics SoundCBSE Class IX Sciense Physics Sound
CBSE Class IX Sciense Physics Sound
Pranav Ghildiyal
 
Sound
SoundSound
Ppt on sound
Ppt on soundPpt on sound
Ppt on sound
arunavabera
 
Sound Sound physics Sound physics Sound physics physics.pptx
Sound Sound physics Sound physics Sound physics physics.pptxSound Sound physics Sound physics Sound physics physics.pptx
Sound Sound physics Sound physics Sound physics physics.pptx
nsaqib5313
 
Exp SPA - Chp 15 Sound
Exp SPA - Chp 15 SoundExp SPA - Chp 15 Sound
Exp SPA - Chp 15 Sound
harrywwh
 
physics - SOUND - AJAY
physics - SOUND - AJAYphysics - SOUND - AJAY
physics - SOUND - AJAY
Ajay krishnan
 

Similar to Arpit meena (20)

CLASS 9 _ SOUND.pptx
CLASS 9 _ SOUND.pptxCLASS 9 _ SOUND.pptx
CLASS 9 _ SOUND.pptx
 
12sound
12sound12sound
12sound
 
12sound-201208075306.pdf..................
12sound-201208075306.pdf..................12sound-201208075306.pdf..................
12sound-201208075306.pdf..................
 
SOUND
SOUNDSOUND
SOUND
 
Sund
SundSund
Sund
 
i AM YEDA
i AM YEDAi AM YEDA
i AM YEDA
 
SOUND
SOUND SOUND
SOUND
 
Introduction to Audiography/Sound
Introduction to Audiography/SoundIntroduction to Audiography/Sound
Introduction to Audiography/Sound
 
Sound And It's Applications | Science PPT | Pritam Priyambad Sahoo
Sound And It's Applications | Science PPT | Pritam Priyambad SahooSound And It's Applications | Science PPT | Pritam Priyambad Sahoo
Sound And It's Applications | Science PPT | Pritam Priyambad Sahoo
 
Sound ppt
Sound pptSound ppt
Sound ppt
 
ch 12 sound.pdf
ch 12 sound.pdfch 12 sound.pdf
ch 12 sound.pdf
 
5sound-181206142548.pd
5sound-181206142548.pd5sound-181206142548.pd
5sound-181206142548.pd
 
Sound 130822001856-phpapp01
Sound 130822001856-phpapp01Sound 130822001856-phpapp01
Sound 130822001856-phpapp01
 
CBSE Class IX Sciense Physics Sound
CBSE Class IX Sciense Physics SoundCBSE Class IX Sciense Physics Sound
CBSE Class IX Sciense Physics Sound
 
Sound
SoundSound
Sound
 
Ch5 wave motions and sound
Ch5 wave motions and soundCh5 wave motions and sound
Ch5 wave motions and sound
 
Ppt on sound
Ppt on soundPpt on sound
Ppt on sound
 
Sound Sound physics Sound physics Sound physics physics.pptx
Sound Sound physics Sound physics Sound physics physics.pptxSound Sound physics Sound physics Sound physics physics.pptx
Sound Sound physics Sound physics Sound physics physics.pptx
 
Exp SPA - Chp 15 Sound
Exp SPA - Chp 15 SoundExp SPA - Chp 15 Sound
Exp SPA - Chp 15 Sound
 
physics - SOUND - AJAY
physics - SOUND - AJAYphysics - SOUND - AJAY
physics - SOUND - AJAY
 

More from Arpit Meena

Class 12th Solids and semiconductor devices part 3
Class 12th Solids and semiconductor devices part 3Class 12th Solids and semiconductor devices part 3
Class 12th Solids and semiconductor devices part 3
Arpit Meena
 
Class 12th Solids and semiconductor devices part 2 ppt
Class 12th Solids and semiconductor devices part 2 pptClass 12th Solids and semiconductor devices part 2 ppt
Class 12th Solids and semiconductor devices part 2 ppt
Arpit Meena
 
Class 12th Solids and semiconductor devices part 1
Class 12th Solids and semiconductor devices part 1Class 12th Solids and semiconductor devices part 1
Class 12th Solids and semiconductor devices part 1
Arpit Meena
 
Class 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiationsClass 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiations
Arpit Meena
 
Class 12th Physics Electrostatics part 2
Class 12th Physics Electrostatics part 2Class 12th Physics Electrostatics part 2
Class 12th Physics Electrostatics part 2
Arpit Meena
 
Class 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPtClass 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPt
Arpit Meena
 
Class 12th Physics wave optics ppt part 2
Class 12th Physics wave optics ppt part 2 Class 12th Physics wave optics ppt part 2
Class 12th Physics wave optics ppt part 2
Arpit Meena
 
Class 12th physics magnetism ppt
Class 12th physics magnetism pptClass 12th physics magnetism ppt
Class 12th physics magnetism ppt
Arpit Meena
 
Class 12th Physics wave optics ppt
Class 12th Physics wave optics pptClass 12th Physics wave optics ppt
Class 12th Physics wave optics ppt
Arpit Meena
 
Class 12 Concept of pulse modulation
Class 12 Concept of pulse modulationClass 12 Concept of pulse modulation
Class 12 Concept of pulse modulation
Arpit Meena
 
ray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshareray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshare
Arpit Meena
 
concept of (FM) Frequency modulation class 12th full ppt
concept of (FM) Frequency modulation class 12th full pptconcept of (FM) Frequency modulation class 12th full ppt
concept of (FM) Frequency modulation class 12th full ppt
Arpit Meena
 
Class 12th physics current electricity part 2 ppt
Class 12th physics current electricity part 2 ppt Class 12th physics current electricity part 2 ppt
Class 12th physics current electricity part 2 ppt
Arpit Meena
 
Class 12th physics current electricity ppt
Class 12th physics current electricity ppt Class 12th physics current electricity ppt
Class 12th physics current electricity ppt
Arpit Meena
 
class 12th physics (AC) alternating currents ppt
class 12th physics (AC) alternating currents pptclass 12th physics (AC) alternating currents ppt
class 12th physics (AC) alternating currents ppt
Arpit Meena
 
ray optics class 12 ppt slideshare
ray optics class 12 ppt slideshareray optics class 12 ppt slideshare
ray optics class 12 ppt slideshare
Arpit Meena
 
magnetic effect of current class 12th physics ppt
magnetic effect of current class 12th physics pptmagnetic effect of current class 12th physics ppt
magnetic effect of current class 12th physics ppt
Arpit Meena
 
Class 12 chemistry Full practical file [2020] ,PDF Link in Description
Class 12 chemistry Full practical file [2020] ,PDF Link in Description Class 12 chemistry Full practical file [2020] ,PDF Link in Description
Class 12 chemistry Full practical file [2020] ,PDF Link in Description
Arpit Meena
 
Address change name_correction IGNOU
Address change name_correction IGNOUAddress change name_correction IGNOU
Address change name_correction IGNOU
Arpit Meena
 
Flow of control c++
Flow of control c++Flow of control c++
Flow of control c++
Arpit Meena
 

More from Arpit Meena (20)

Class 12th Solids and semiconductor devices part 3
Class 12th Solids and semiconductor devices part 3Class 12th Solids and semiconductor devices part 3
Class 12th Solids and semiconductor devices part 3
 
Class 12th Solids and semiconductor devices part 2 ppt
Class 12th Solids and semiconductor devices part 2 pptClass 12th Solids and semiconductor devices part 2 ppt
Class 12th Solids and semiconductor devices part 2 ppt
 
Class 12th Solids and semiconductor devices part 1
Class 12th Solids and semiconductor devices part 1Class 12th Solids and semiconductor devices part 1
Class 12th Solids and semiconductor devices part 1
 
Class 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiationsClass 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiations
 
Class 12th Physics Electrostatics part 2
Class 12th Physics Electrostatics part 2Class 12th Physics Electrostatics part 2
Class 12th Physics Electrostatics part 2
 
Class 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPtClass 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPt
 
Class 12th Physics wave optics ppt part 2
Class 12th Physics wave optics ppt part 2 Class 12th Physics wave optics ppt part 2
Class 12th Physics wave optics ppt part 2
 
Class 12th physics magnetism ppt
Class 12th physics magnetism pptClass 12th physics magnetism ppt
Class 12th physics magnetism ppt
 
Class 12th Physics wave optics ppt
Class 12th Physics wave optics pptClass 12th Physics wave optics ppt
Class 12th Physics wave optics ppt
 
Class 12 Concept of pulse modulation
Class 12 Concept of pulse modulationClass 12 Concept of pulse modulation
Class 12 Concept of pulse modulation
 
ray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshareray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshare
 
concept of (FM) Frequency modulation class 12th full ppt
concept of (FM) Frequency modulation class 12th full pptconcept of (FM) Frequency modulation class 12th full ppt
concept of (FM) Frequency modulation class 12th full ppt
 
Class 12th physics current electricity part 2 ppt
Class 12th physics current electricity part 2 ppt Class 12th physics current electricity part 2 ppt
Class 12th physics current electricity part 2 ppt
 
Class 12th physics current electricity ppt
Class 12th physics current electricity ppt Class 12th physics current electricity ppt
Class 12th physics current electricity ppt
 
class 12th physics (AC) alternating currents ppt
class 12th physics (AC) alternating currents pptclass 12th physics (AC) alternating currents ppt
class 12th physics (AC) alternating currents ppt
 
ray optics class 12 ppt slideshare
ray optics class 12 ppt slideshareray optics class 12 ppt slideshare
ray optics class 12 ppt slideshare
 
magnetic effect of current class 12th physics ppt
magnetic effect of current class 12th physics pptmagnetic effect of current class 12th physics ppt
magnetic effect of current class 12th physics ppt
 
Class 12 chemistry Full practical file [2020] ,PDF Link in Description
Class 12 chemistry Full practical file [2020] ,PDF Link in Description Class 12 chemistry Full practical file [2020] ,PDF Link in Description
Class 12 chemistry Full practical file [2020] ,PDF Link in Description
 
Address change name_correction IGNOU
Address change name_correction IGNOUAddress change name_correction IGNOU
Address change name_correction IGNOU
 
Flow of control c++
Flow of control c++Flow of control c++
Flow of control c++
 

Recently uploaded

RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
subedisuryaofficial
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 

Recently uploaded (20)

RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 

Arpit meena

  • 2. Activity :- Strike the prongs of a tuning fork on a rubber pad and bring it near the ear. We can hear a sound. If a suspended table tennis ball is touched with the vibrating prong, the ball is pushed away repeatedly. This shows that the prong is vibrating and vibrating objects produces sound. Sound is produced due to the vibration of objects. Vibration is the rapid to and fro motion of an object. Eg :- The sound of human voice is produced due to the vibration of the vocal cords. A stretched rubber band when plucked vibrates and produces sound 1) Production of sound :- Vibrating tuning fork Thread
  • 3. 2) Propagation of sound :- The sound produced by a vibrating object travels through a medium to a listener. The medium can be solid, liquid or gas. When an object vibrates, the particles around the medium vibrates. The particle in contact with the vibrating object is first displaced from its equilibrium position. It then exerts a force on the adjacent particle and the adjacent particle is displaced from its position of rest. After displacing the adjacent particle the first particle comes back to its original position. This process repeats in the medium till the sound reaches the ear. The disturbance produced by the vibrating body travels through the medium but the particles do not move forward themselves. A wave is a disturbance which moves through a medium by the vibration of the particles of the medium. So sound is considered as a wave. Since sound waves are produced due to the vibration of particles of the medium sound waves are called mechanical waves.
  • 4. AIR IS THE MOST COMMON MEDIUM THROUGH WHICH SOUND TRAVELS. WHEN A VIBRATING OBJECT MOVES FORWARD, IT PUSHES AND COMPRESSES THE AIR IN FRONT OF IT FORMING A REGION OF HIGH PRESSURE CALLED COMPRESSION (C). THE COMPRESSION MOVES AWAY FROM THE VIBRATING OBJECT. WHEN THE VIBRATING OBJECT MOVES BACKWARD, IT FORMS A REGION OF LOW PRESSURE CALLED RAREFACTION (R). AS THE OBJECT MOVES TO AND FRO RAPIDLY, IT PRODUCES A SERIES OF COMPRESSIONS AND RAREFACTION IN THE AIR WHICH MAKES THE SOUND TO PROPAGATE IN THE MEDIUM.
  • 5. A vibrating object producing a series of compressions (C) and rarefaction (R)
  • 6. 3) Sound needs a medium to travel :- Sound is a mechanical wave and needs a medium for propagation. Sound travels through solids, liquids and gases. Sound does not travel in vacuum. Activity:- Suspend an electric bell in an air tight bell jar. Connect the bell jar to a vacuum pump. If the switch is pressed, we can hear the sound of the bell. If air is pumped out through the vacuum pump, we cannot hear the sound of the bell. This shows that sound needs a medium to travel and sound cannot travel in vacuum. Cork Bell jar Electric bell
  • 7. “ ” :4) Sound waves are longitudinal waves -Activity :- Stretch a slinky and push and Sound propagates in a medium as a series of compressions (C) and rarefactions (R). In these waves the particles move back and forth parallel to the direction of propagation of the disturbance. Such waves are called longitudinal waves. There is another kind of waves called transverse waves. In these waves the particles oscillate up and down perpendicular to the propagation of the direction of disturbancepull it alternately at one end. If you mark a dot on the slinky, the dot moves back and forth parallel to the direction of the propagation of the disturbance.
  • 8. 5) Characteristics of a sound wave :-  Sound wave can be described by its frequency, amplitude and speed.  Sound can be graphically represented as a wave. There is changes in the density and pressure as sound moves in a medium.  Compressions are the regions of high pressure and density where the particles are crowded and are represented by the upper portion of the curve called crest.  Rarefactions are the regions of low pressure and density where the particles are spread out and are represented by the lower portion of the curve called trough.  The distance between two consecutive compressions (crests) or two consecutive troughs is called wave length. It is represented by the symbol . (Greek letter lamda). Its SI unit is metre (m). compression rarefaction Crest Trough λλ PressureorDensity λ
  • 9. i) Frequency of sound wave :-
  • 10. The time taken for the change in the density of the medium from a maximum value to a minimum value and again to the maximum value is the time period of the sound wave. Or The time taken for one complete oscillation in the density of the medium is called the time period of the sound wave. It is represented by the letter T. The SI unit is second (s). Frequency and time are represented as follows :- ٧ for one oscillation 1 1 T = ---- or ٧ = ---- ٧ T
  • 11. iii) Amplitude of sound wave :- The magnitude of the maximum disturbance in the medium on either side of the mean value is the amplitude of the sound wave. Or The amplitude of sound wave is the height of the crest or tough. It is represented by the letter A. The SI unit is the same as that of density or pressure. Wavedisturbance Wavelength and Amplitude The wavelength is the distance between the "crests" of two waves that are next to each other. The amplitude is how high the crests are.
  • 12. iv) Pitch and loudness of sound :- The pitch of sound (shrillness or flatness) depends on the frequency of vibration. If the frequency is high, the sound has high pitch and if the frequency is low, the sound has low pitch. Wavelength, Frequency, and Pitch Since the sounds are travelling at about the same speed, the one with the shorter wavelength will go by more frequently; it has a higher frequency, or pitch. In other words, it sounds higher.
  • 13. The loudness of sound depends upon the amplitude of vibration. If the amplitude is bigger, the sound is loud and if the amplitude is smaller, the sound is soft. Amplitude is Loudness The size of a wave (how much it is "piled up" at the high points) is its amplitude. For sound waves, the bigger the amplitude, the louder the sound.
  • 14. v) Speed of sound :- The speed of sound is different in different media. The speed of sound is more in solids, less in liquids and least in gases. The speed of sound also depends on the temperature of the medium. If the temperature of the medium is more, the speed of sound is more. Speed of sound in different media at 250C. Relationship between Speed (v), frequency (٧) and wave length (λ) Speed = wave length x frequency v = λ x ٧
  • 15. Like light, sound gets reflected at the surface of a solid or liquid and follows the laws of reflection. i) The angle of incidence is equal to the angle of reflection. ii) The incident ray, the reflected ray and normal at the point of incidence all lie in the same plane. Activity :- Take two pipes of the same length and arrange them on a table near a wall or metal plate. Keep a clock near the open end of one pipe and try to hear the sound of the clock through the other pipe by adjusting the position of the pipe. Now measure the angles of incidence and reflection. Then lift the second pipe and try to hear the sound. It will be seen that the angle of incidence is equal to the angle of reflection. The incident ray, the reflected ray and normal all lie in the same plane.
  • 16. 7a)Echo:- If we shout or clap near a reflecting surface like tall building or a mountain, we hear the same sound again. This sound which we hear is called echo. It is caused due to the reflection of sound. To hear an echo clearly, the time interval between the original sound and the echo must be at least 0.1 s. Since the speed of sound in air is 344 m/s, the distance travelled by sound in 0.I s = 344 m/s x 0.1 s = 34.4 m So to hear an echo clearly, the minimum distance of the reflecting surface should be half this distance, that is 17.2 m. b) Reverberation :- Echoes may be heard more than once due to repeated or multiple reflections of sound from several reflecting surfaces. This causes persistence of sound called reverberation. In big halls or auditoriums to reduce reverberation, the roofs and walls are covered by sound absorbing materials like compressed fibre boards, rough plaster or draperies.
  • 17. sounds from the human body through a stethoscope. The soun i) Megaphones, horns, musical instruments like trumpets, shehnais etc. are deigned to send sound by multiple reflection in a particular direction without spreading in all directions. ii) Doctors listen to d of heartbeat reaches the doctor’s ears by multiple reflection. iii) Generally the ceilings of cinema halls and auditoriums are curved so that sound after multiple reflection reaches all parts of the hall. Sometimes a curved sound board is placed behind the stage so that sound after multiple reflection spreads evenly across the hall.
  • 18. 8) Range of Hearing :-
  • 19. i) Ultrasonic sound is used to clean objects like electronic components. The components to be cleaned are kept in a cleaning solution and ultrasonic waves are sent into the solution. Due to the high frequency, the dirt particles get detached from the components. ii) Ultrasonic sound is used to detect cracks in metal blocks. Ultrasonic waves are sent through the metal blocks and if there are cracks, the waves are reflected back and the cracks can be detected. iii) Ultrasonic sound is used in ultra sound scanners for getting images of internal organs of the human body. iv) Ultrasonic sound is used to break small stones formed in the kidneys into fine grains so that they are removed through the urine.
  • 20. Sonar stands for Sound Navigation And Ranging. It is a device which uses ultrasonic waves to measure distance, direction and speed of underwater objects. Sonar has a transmitter and a detector installed in ships. The transmitter produces ultrasonic sound waves which travel through the water and after striking the object in the sea bed is reflected back to the detector. The distance of the object can be calculated by knowing the speed of sound in water and the time taken between the transmission and reception of ultrasound. If the time taken for the transmission and reception of ultra sound is t and the distance travelled is 2d by the ultra sound, then 2d = v x t or d = v x t 2 10) SONAR:-
  • 21. 11) Structure of the human ear :- The outer ear called pinna collects the sound waves. The sound waves passes through the ear canal to a thin membrane called eardrum. The eardrum vibrates. The vibrations are amplified by the three bones of the middle ear called hammer, anvil and stirrup. The middle ear then transmits the sound waves to the inner ear. In the inner ear the sound waves are converted into electrical signals by the cochlea and sent to the brain through the auditory nerves. The brain then interprets the signals as sound. Pinna Hammer Anvil Stirrup Cochlea