Arcsin, Arccos, Arctan Paul Nettleton
Derivatives of Inverse trigonometric functions
Deriving Derivative of Arcsin sin²y  +  cos²y    =   1 y = arcsinx sin y = x Pythagorean Idendity Find the Derivative by Implicit Differentiation cos y  = 1 = Substitute  Substitute “x” for “sin y”
Deriving Derivative of Arccos sin²y  +  cos²y    =   1 y = arccosx cos y = x Pythagorean Idendity Find the Derivative by Implicit Differentiation -sin y  = 1 Substitute “x” for “cos y” = _ sin y = sin y Substitute
Deriving Derivative of Arctan y = arctan x tan y = x Find the Derivative by Implicit Differentiation sec ² y  = 1 A = sec ² y  1 Substitute A = 1 + tan²y 1 Substitute “x” for “tan y” 1 + tan²y   =  sec²y Pythagorean Identity
Integrals of Inverse Trigonometric Functions According to the Fundamental Theorem of Calculus
Try Some Problems!   d   dx = Click to view Answers Source: http://www.themathpage.com/acalc/inverse-trig.htm#arcsin d   dx arcsin  x ²  =   d   dx x ² arcsin  x  =
Harder Problems d   dx 3 arccos( x 2  + 0.5) 4 arctan3 x 4 d   dx Click to view Answers Source: http://www.intmath.com/Differentiation-transcendental/3_Derivative-arcsin-arccos-arctan.php

Arcsin, Arccos, Arctan

  • 1.
    Arcsin, Arccos, ArctanPaul Nettleton
  • 2.
    Derivatives of Inversetrigonometric functions
  • 3.
    Deriving Derivative ofArcsin sin²y + cos²y   =   1 y = arcsinx sin y = x Pythagorean Idendity Find the Derivative by Implicit Differentiation cos y = 1 = Substitute Substitute “x” for “sin y”
  • 4.
    Deriving Derivative ofArccos sin²y + cos²y   =   1 y = arccosx cos y = x Pythagorean Idendity Find the Derivative by Implicit Differentiation -sin y = 1 Substitute “x” for “cos y” = _ sin y = sin y Substitute
  • 5.
    Deriving Derivative ofArctan y = arctan x tan y = x Find the Derivative by Implicit Differentiation sec ² y = 1 A = sec ² y 1 Substitute A = 1 + tan²y 1 Substitute “x” for “tan y” 1 + tan²y  = sec²y Pythagorean Identity
  • 6.
    Integrals of InverseTrigonometric Functions According to the Fundamental Theorem of Calculus
  • 7.
    Try Some Problems!  d   dx = Click to view Answers Source: http://www.themathpage.com/acalc/inverse-trig.htm#arcsin d   dx arcsin x ² =   d   dx x ² arcsin x =
  • 8.
    Harder Problems d  dx 3 arccos( x 2 + 0.5) 4 arctan3 x 4 d   dx Click to view Answers Source: http://www.intmath.com/Differentiation-transcendental/3_Derivative-arcsin-arccos-arctan.php