SlideShare a Scribd company logo
1 of 24
RICE UNIVERISTY ENGINEERS WITHOUT BORDERS
Appendix D : Calculations
Hydraulic, Structural, and Electrical
Project Leaders: Edgar Silva and Rachel Sterling
9/14/2014
Given Values
Value Origins
General
Total Population (people) 1,200 Census from community
Growth Rate 7% UN Nicaraguan growth rate with safety factor of 5
Location Of Tank
(Elevation, M)
825
Given by ENACAL, determined using GPS
Location Of Pump
(Elevation, M)
724
Given by ENACAL, determined using GPS
Hydraulics
Gallons Per Person
(Gallons/Day)
24 Provided by handbook from engineer at ENACAL
Needed Tank Capacity
(Days)
1 Community request
Pump Functioning Hours 5.5 - 9.5
From pressure test completed on assessment trip, only accounting
for time that PSI at this elevation is >10
(min pressure for pump is < 3 psi)
Number of tanks
(22,000L each)
Max 8 This number is capped at 8 because it was determined to be
Structural
Soil Type Clay Determined by assessment trip
Psi Strength of Concrete 3000 Determined by mix ratios
Psi Strength of Steel 60000 Assuming grade 60 steel is used
Mass of pump (lbs) 201 From pump spec sheet
Mass of filled tank (kg) 22000 Determined by volume of tank
* More values given in structural section
Electrical
Power Supply
Single
Phase
This is determined from the phase of the Nicaraguan electrical grid
Structural Calculations
Soil Bearing Capacity Calculations
To calculate the ultimate bearing capacity of the soil, we used the following equation, the
Terzaghi Bearing Capacity equation. The highest pressures will be experienced by the slabs
holding the 22000 liter water tanks.
π‘ž_𝑒𝑙𝑑 = (𝑐)(𝑁𝑐)(𝑠𝑐) + (Ι€)(𝐷)(π‘π‘ž)(π‘ π‘ž) + (0.5)(𝐡)(Ι€)(𝑁𝑔)(𝑠ɀ)
The following chart contains important values:
Cohesive Strength of Soil (c) 239.4 kPa
Unit Weight of Soil (Ι€) 8.568 kN/m3
Depth of Foundation (D) 0 m
Width of Foundation (B) 4 m
Safety Factor 3
Angle Of Internal Friction 17 degrees
Bearing Capacity Factor (cohesion) Nc 12.3
Bearing Capacity Factor (surcharge and friction) Nq 4.8
Bearing Capacity Factor (self weight and friction) NΙ€ 1.7
Shape Factor (Sc) 1.3
Shape Factor (Sq) 1
Shape Factor (SΙ€) 0.8
The cohesive strength of soil was determined by using a pocket penetrometer at the
surface and 6 inches below the surface. A value of 239.4 kPa (2.5 tons per square foot) was
measured at the surface. A value of 430.9 kPa (4.5 tons per square foot) was measured 6 inches
below the surface. From these measurements we know the soil strengthens as depth increases.
For our calculations we will be on the safe side and use the weakest measurement of 239.4 kPa.
The unit weight of the soil was determined by taking a 600 ml sample of soil in a bottle,
and measuring its mass.
The depth and width of foundation were determined by our design criteria. The slabs
need to be at least 4 meters wide to accommodate the water tanks. For simplicity of construction
the slabs will just lay on the surface of the ground.
The safety factor was a value recommended to us by our mentor.
The internal angle of friction and bearing capacities were determined by identifying the
type of soil at our construction site. By performing the ribbon test, the soil was identified as high
plasticity clay soil. According to Swiss Standard SN 670 010b, this soil has an angle of friction
between 17 and 31 degrees. We will use an angle of 17 degrees in our calculations to assume
worst case soil conditions.
From Terzaghi’s tables, an angle of 17 degrees correspond to Nc = 12.3, Nq = 4.8, and
NΙ€ = 1.7.
Shape factors were derived from Terzaghi’s tables by assuming a square foundation. A
square foundation was used for simplicity of construction.
𝑄_𝑒𝑙𝑑 = (239.4)(12.3)(1.3)+ (8.568)(0)(4.8)(1)+ 0.5(4)(8.568)(1.7)(0.8)
= 3851.3π‘˜π‘ƒπ‘Ž
π‘†π‘Žπ‘“π‘’ π΅π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” πΆπ‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦ = 𝑄𝑠 =
𝑄𝑒𝑙𝑑
π‘†π‘Žπ‘“π‘’π‘‘π‘¦ πΉπ‘Žπ‘π‘‘π‘œπ‘Ÿ
=
3851.3
3
= 1283.8 π‘˜π‘ƒπ‘Ž
π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ πΏπ‘œπ‘Žπ‘‘ π‘ π‘’π‘π‘π‘œπ‘Ÿπ‘‘π‘’π‘‘ 𝑏𝑦 π‘†π‘™π‘Žπ‘ =
1000(𝑄𝑠)(𝐡2
)
𝑔
=
1000(1283.8)(42
)
9.81
= 2093814 π‘˜π‘”
The mass of the 22000 liter tank is 22000 kg. Therefore, the soil is more than strong enough to
support the tank.
Pump Station Cross-Section Calculations
a. Design slab thickness:
The thickness of the slab will be controlled by the shear forces it needs to resist.
From our previous calculations, we know the soil is more than strong enough to support our
structures. However, the soil is expansive, and will expand and contract based on precipitation in
the area. The the slab will trap moisture in the soil below it, and that soil will remain at a
relatively constant moisture content, while the soil at the edges of the slab will quickly lose
moisture in the dry season and shrink, and will quickly absorb moisture in the wet season and
expand.
This leads to two critical conditions for the slab, called dishing and doming, or also called edge
list condition and center lift condition. Dishing occurs in the wet season when the slab is only
supported by the expanded soil on the edges. Doming occurs in the dry season when the slab is
only supported by the still moist soil under the slab.
For our calculations, we will treat the slab as a wide beam. Additionally, we will assume worse
case soil expansion and contraction. We will assume the slab dimensions of 5.80 x 2.60 due to
the amount of spacing needed for the pump and valves.
Overhead view of forces:
Doming force diagram:
Dishing force distribution:
Table of Constraints
Dimensions of Slab 5.80 x 2.60 meters
Mass of pump 91.17 kg
Dimensions of pump platform 1.00 x 0.40 x 0.50 meters
Density of concrete and CMU blocks 2400 kg/m3
Strength of concrete, f’c 13.8 MPa
Shear Strength Safety Factor 0.75
Height of CMU wall 2.40 meters
Width of CMU wall 0.15 meters
Acceleration due to gravity (g) 9.81 m/s2
i. Doming slab thickness calculation:
πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž 𝑖𝑛 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘π‘’π‘Ÿ π‘šπ‘’π‘‘π‘’π‘Ÿ π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’π‘‘ =
√ 𝑓′ 𝑐2
6
(1000000)
The slab will be designed to have no vertical web reinforcement. By ACI code, the design shear
strength of concrete without web reinforcement is
(𝐷𝑒𝑠𝑖𝑔𝑛 π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘ π‘ ) = (0.5)(π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)(π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)
The maximum shear will occur in the center of the slab, where the soil supports the slab.
(0.5)( π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)( πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)( π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
= π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘
+ π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™
π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’
= (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑔)
π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = (2.6)(.15)(2.4)(2400)(9.81) = 22037 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘
= (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)/2
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ =
(2.6)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(2400)(9.81)(5.8)
2
= 177522(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™
= 2(π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)/2
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ =
2(. 15)(2.4)(2400)(9.81)(5.8)
2
= 49160 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
(0.5)(0.75)(
√13.8
2
6
)(1000000)(2.6)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
= 22037 + 177522(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)+ 49160
Height of slab = .167 meters
ii. Dishing slab thickness calculation:
The maximum shear will occur at the left and right of the slab, where it is supported by the soil.
Calculations will find shear at the left support.
(0.5)( π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)( πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)( π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
= π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘šπ‘ π‘π‘™π‘Žπ‘‘π‘“π‘œπ‘Ÿπ‘š + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘
+ π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ + π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’
βˆ’ π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’
πΉπ‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘šπ‘ π‘π‘™π‘Žπ‘‘π‘“π‘œπ‘Ÿπ‘š
= ( π‘π‘’π‘šπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘)(𝑔)
+ (π‘£π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘π‘’π‘šπ‘ π‘π‘™π‘Žπ‘‘π‘“π‘œπ‘Ÿπ‘š)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔)
πΉπ‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘šπ‘ π‘π‘™π‘Žπ‘‘π‘“π‘œπ‘Ÿπ‘š = (91.17)(9.81)+ (1)(0.4)(0.5)(2400)(9.81)
= 5603 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’
= (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑔)
π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = (2.6)(.15)(2.4)(2400)(9.81) = 22037 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘
= (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (2.6)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(2400)(9.81)(5.8)
= 355044(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™
= 2(π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ = 2(. 15)(2.4)(2400)(9.81)(5.8) = 98320 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ =
π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘œπ‘€π‘›π‘€π‘Žπ‘Ÿπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’
2
π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ =
5603 + (2)22037 + 98320 + 355044(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
2
π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 73999 + 177522(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
(0.5)(0.75)(
√13.82
6
)(1000000)(2.6)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
= 5603 + 355044(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)+ 98320 + 22037 βˆ’ 73999
βˆ’ 177522(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
Height of slab = .123 meters
iii. Final slab thickness
Bowling requires a thicker slab, so that is our controlling case for shear resistance. Therefore, the
slab must be at least .167 meters thick. For ease of construction, the slab will be designed as 0.18
meters thick
b. Design moment calculation:
The slab is relatively thin, so bending moments in the slab should be considered for the dishing
and bowling case. These moments will be used to calculate the needed steel reinforcement. To
calculate the design moment, we need to determine what part of the slab will experience the most
moment. We will assume the slab dimensions of 5.80 x 2.60 x 0.18 meters as given, due to the
amount of spacing needed for the pump and valves. The previous figures and table of constraints
will be used.
i. doming moment calculation
In the doming case, the slab acts like a cantilever, so maximum moment will be at the center of
the slab.
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) +
(π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) + (π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’)
From doming shear calculations
π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = 22037 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ = 49160 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = 177522(0.18) = 31954 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (22037)(2.9)+ (49160)(
2.9
2
) + 31954(
2.9
2
)
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 181523 π‘›π‘’π‘€π‘‘π‘œπ‘› π‘šπ‘’π‘‘π‘’π‘Ÿπ‘ 
𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ βˆ— π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 181523 βˆ— 1.2 = 217827 𝑁 βˆ— π‘š
ii. dishing moment calculation
In the dishing case, the slab acts like a simply supported beam, so maximum moment will be at
the center of the slab.
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = ( π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘)( π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) +
(π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ π‘“π‘œπ‘Ÿπ‘π‘’)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) + ( π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’)( π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) βˆ’
(π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’)
From dishing shear calculations
π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = 22037 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ =
98320
2
= 49160 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = 355044(0.18)/2 = 31954 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 73999 + 177522(.18) = 105953 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (22037)(2.9)+ (49160)(
2.9
2
) + 31954(
2.9
2
) βˆ’ 105953(2.9)
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = βˆ’125741 π‘›π‘’π‘€π‘‘π‘œπ‘› π‘šπ‘’π‘‘π‘’π‘Ÿπ‘ 
𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ βˆ— π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 125741 βˆ— 1.2 = 150889 𝑁 βˆ— π‘š
c. Rebar design calculations
For rebar design, Whitney Stress Block theory will be used. We need to solve for the area of
steel to be used. Tensile stresses will be at the top of the slab during doming, and tensile stresses
will be at the bottom of the slab during dishing. A concrete skirt will extend into the ground
around the perimeter of the slab, to prevent the erosion of soil under the slab. It is submerged in
the soil, so its weight has been neglected in moment calculations, but it will provide a
compressive surface for the doming case. We will assume the bars are placed 5 cm from the
faces of the slab
Design Inputs
Concrete Design Compressive Stress (f'c) 13.8 MPa
Yield Stress of steel (fy) 420 MPa
Base (b) 0.18 meter
Doming Rebar Design Moment 217827 N-m
Dishing Rebar Design Moment 150889 N-m
Safety Factor (phi) 0.9
Depth (d) 0.13 meter
Width 2.60 meter
Modulus of elasticity of steel (Es) 200 GPa
a to c ratio (Ξ²) 0.85
Dishing force diagram
Doming force diagram
Doming force cross section
𝛽𝑐 = π‘Ž
Dishing Force Equilibrium:
π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ = 𝑠𝑑𝑒𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑙𝑒 π‘“π‘œπ‘Ÿπ‘π‘’
(𝑓′
𝑐)(𝛽𝑐1)(π‘€π‘–π‘‘π‘‘β„Ž) = (𝐴𝑠)(𝑓𝑦)
(13800000)(0.85βˆ— 𝑐1)(2.6) = (𝐴𝑠)(420000000)
(30498000)(𝑐1) = (𝐴𝑠)(420000000)
Doming Force Equilibrium:
π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ = 𝑠𝑑𝑒𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑙𝑒 π‘“π‘œπ‘Ÿπ‘π‘’
(𝑓′
𝑐)(𝛽𝑐2)(π‘€π‘–π‘‘π‘‘β„Ž) = (𝐴𝑠)(𝑓𝑦)
(13800000)(0.85 βˆ— 𝑐2)(2 βˆ— .15) = (𝐴𝑠)(420000000)
(3519000)( 𝑐2) = (𝐴𝑠)(420000000)
Dishing Moment Equilibrium:
( 𝑓′
𝑐)( 𝛽𝑐1)( π‘€π‘–π‘‘π‘‘β„Ž) (𝑑 βˆ’
𝛽𝑐1
2
) =
π‘‘π‘–π‘ β„Ž π‘šπ‘œπ‘šπ‘’π‘›π‘‘
π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
(13800000)(0.85βˆ— 𝑐1)(2.6)(. 13 βˆ’
0.85 βˆ— 𝑐1
2
) =
150889
0.9
(30498000)(𝑐1)(.13 βˆ’ .425(𝑐1)) = 167654
Doming Moment Equilibrium:
( 𝑓′
𝑐)( 𝛽𝑐2)( π‘€π‘–π‘‘π‘‘β„Ž)(𝑑 βˆ’
𝛽𝑐2
2
) =
π‘‘π‘œπ‘šπ‘’ π‘šπ‘œπ‘šπ‘’π‘›π‘‘
π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
(13800000)(0.85βˆ— 𝑐2)(2βˆ— .15)(. 63 βˆ’
0.85 βˆ— 𝑐2
2
) =
217827
0.9
(3519000)(𝑐2)(.63 βˆ’ .425(𝑐2)) = 242030
Using the Dishing Moment Equation, c1=.0507 m
Using the Dishing Force Equation, As = .0037 m2
The moment capacity in the doming case must be checked for this area of steel.
Using the Doming Force Equation, c2 = .440 m
The compressive block remains within the concrete skirt, so the assumptions made in the force
balance equation are correct.
Using the Doming Moment Equation, 685382 n*m>242030 n*m
The moment capacity exceeds the expected moment during doming.
Therefore, the design is good and As = .0037 m2
π‘‡π‘œπ‘‘π‘Žπ‘™ 𝐷𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 =
𝐴𝑠
πΆπ‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’
=
. 0037
. 18 βˆ— 2.6
= 0.79%
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 𝑛𝑒𝑒𝑑𝑒𝑑 π‘Žπ‘™π‘œπ‘›π‘” π‘ β„Žπ‘œπ‘Ÿπ‘‘ 𝑠𝑖𝑑𝑒 = .0037 π‘š2
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 𝑛𝑒𝑒𝑑𝑒𝑑 π‘Žπ‘™π‘œπ‘›π‘” π‘™π‘œπ‘›π‘” 𝑠𝑖𝑑𝑒 = .0037 βˆ—
5.8
2.6
= .083 π‘š2
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ = 0.000129032 π‘š2
π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘ β„Žπ‘œπ‘Ÿπ‘‘ 𝑠𝑖𝑑𝑒 =
.0037
.000129032
= 29
π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘™π‘œπ‘›π‘” 𝑠𝑖𝑑𝑒 =
.0083
.000129032
= 65
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ = 0.0002 π‘š2
π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘ β„Žπ‘œπ‘Ÿπ‘‘ 𝑠𝑖𝑑𝑒 =
.0037
.0002
= 19
π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘™π‘œπ‘›π‘” 𝑠𝑖𝑑𝑒 =
.0083
.0002
= 42
Calculations such as this can be easily repeated for other rebar sizes. Selection of rebar will
depend on local prices of steel. Drawings will be for #4 rebar, due to its known price in
Nicaragua. Rebar will be equally spaced, with 10 cm or greater clearance from the edges. The
density of steel of 2.05% is greater than the recommended value of 0.1% of steel needed to
prevent cracking from ACI committee 360, so this design is good.
Pump Station Construction Notes
a. Concrete skirt
The purpose of the concrete skirt is to prevent the slab from being undermined by erosion. The
subterranean concrete skirt will be poured before the slab is poured and the slab rebar is placed.
Ensure that the rebar that is inside the CMU walls is vertically placed in the concrete skirt and
sticking out of the ground and to the proper measurements. This rebar will help secure the skirt
and the CMU walls.
b. Pump platform
Ensure that rebar is sticking up in the middle of the slab before pouring. Also ensure that this
rebar sticks out at least 0.45 meters from the surface of the slab. The pump will be placed on a
raised concrete platform, a 1.00x0.50x0.50 meter block of concrete. This platform will be poured
separately from the underlying slab, so it needs to be secured to the slab through the rebar. This
rebar will secure the platform, and therefore the pump, to the slab, and the rebar will minimize
cracking so that the pump remains level.
c. Thrust block
The thrust block is a block of concrete placed around the pipes in front of the discharge end of
the pump so that the pipes are protected from hydraulic forces. The thrust block adds mass to the
pipes, so for a given force they are deflected a shorter distance. This reduction in deflections
reduces the stress on the pipes and reduces the risk of the pipes breaking. It is poured after the
slab is poured and after the pipes are set.
d. Top of wall slope
After the wall is complete, ensure that the top of the wall has a slope. This can be achieved by
mixing concrete and placing it on the top of the CMU wall. Make sure the 0.2 meter high section
is on the side of the facility facing uphill and that the top of the wall slope is in the same
direction as the surrounding terrain. This ensures that rain runs off of the roof and away from the
building and not back towards the foundation.
e. CMU wall and roof interface
Ensure that the rebar that is placed in the CMU walls penetrates through the top of the wall and
the sloped concrete layer. This allows the welders to weld metal beams directly onto the
structure. These beams go across the roof, which provides an anchor point for the sheet metal
roof.
Storage Facility Concrete Cross Sections
a. Design slab thickness:
The thickness of the slab will be controlled by the shear forces it needs to resist.
From our previous calculations, we know the soil is more than strong enough to support our
structures. However, the soil is expansive, and will expand and contract based on precipitation in
the area. The slab will trap moisture in the soil below it, and that soil will remain at a relatively
constant moisture content, while the soil at the edges of the slab will quickly lose moisture in the
dry season and shrink, and will quickly absorb moisture in the wet season and expand.
This leads to two critical conditions for the slab, called dishing and doming, or also called edge
list condition and center lift condition. Dishing occurs in the wet season when the slab is only
supported by the expanded soil on the edges. Doming occurs in the dry season when the slab is
only supported by the still moist soil under the slab.
For our calculations, we will treat the slab as a wide beam. Additionally, we will assume worse
case soil expansion and contraction. We will assume the slab dimensions of 3.15 x 3.15 due to
the amount of spacing needed for the water tank.
Overhead view of forces:
Doming force diagram:
Dishing force diagram:
Table of Constraints
Dimensions of Slab 3.15 x 3.15 meters
Mass of water tank 22000 kg
Strength of concrete, f’c 13.8 MPa
Shear Strength Safety Factor 0.75
Acceleration due to gravity (g) 9.81 m/s2
i. Doming slab thickness calculation:
πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž 𝑖𝑛 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘π‘’π‘Ÿ π‘šπ‘’π‘‘π‘’π‘Ÿ π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’π‘‘ =
√ 𝑓′ 𝑐2
6
(1000000)
The slab will be designed to have no vertical web reinforcement. By ACI code, the design shear
strength of concrete without web reinforcement is
(𝐷𝑒𝑠𝑖𝑔𝑛 π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘ π‘ ) = (0.5)(π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)(π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)
The maximum shear will occur in the center of the slab, where the soil supports the slab.
(0.5)( π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)( πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)( π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
= π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘
= (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)/2
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ =
(3.15)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(2400)(9.81)(3.15)
2
= 116808(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = (π‘šπ‘Žπ‘ π‘  π‘œπ‘“ π‘‘π‘Žπ‘›π‘˜)(𝑔)/2
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ =
(22000)(9.81)
2
= 107910 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
(0.5)(0.75)(
√13.8
2
6
)(1000000)(3.15)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
= 116808(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) + 107910
Height of slab = .176 meters
ii. Dishing slab thickness calculation:
The maximum shear will occur at the left and right of the slab, where it is supported by the soil.
Calculations will find shear at the left support.
(0.5)( π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)( πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)( π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
= π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜
βˆ’ π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘
= (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (3.15)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(2400)(9.81)(3.15)
= 233615(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = (π‘šπ‘Žπ‘ π‘  π‘œπ‘“ π‘‘π‘Žπ‘›π‘˜)(𝑔)
π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = (22000)(9.81) = 215820 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ =
π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘œπ‘€π‘›π‘€π‘Žπ‘Ÿπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’
2
π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ =
233615(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) + 215820
2
π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 107910 + 116808(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
(0.5)(0.75)(
√13.8
2
6
)(1000000)(3.15)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
= 233615(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) + 215820 βˆ’ 107910βˆ’ 116808(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
Height of slab = .176 meters
iii. Final slab thickness
Both cases result in the same thickness slab. Therefore, the slab must be at least .176 meters
thick. For ease of construction, the slab will be designed as 0.18 meters thick
b. Design moment calculation:
The slab is relatively thin, so bending moments in the slab should be considered for the dishing
and bowling case. These moments will be used to calculate the needed steel reinforcement. To
calculate the design moment, we need to determine what part of the slab will experience the most
moment. We will assume the slab dimensions of 3.15 x 3.15 x 0.18 meters as given, due to the
amount of spacing needed for the pump and valves. The previous figures and table of constraints
will be used.
i. doming moment calculation
In the doming case, the slab acts like a cantilever, so maximum moment will be at the center of
the slab.
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜)(π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) +
(π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’)
From doming shear calculations
π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = 107910 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = 116808(0.18) = 21025 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (107910)(0.6366) + (21025)(
1.575
2
)
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 85253 π‘›π‘’π‘€π‘‘π‘œπ‘› π‘šπ‘’π‘‘π‘’π‘Ÿπ‘ 
𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ βˆ— π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 85253 βˆ— 1.2 = 102303 𝑁 βˆ— π‘š
ii. dishing moment calculation
In the dishing case, the slab acts like a simply supported beam, so maximum moment will be at
the center of the slab.
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = ( π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘–π‘”β„Žπ‘‘ β„Žπ‘Žπ‘™π‘“ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜)( π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) +
( π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘)( π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) βˆ’ (π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’)
From dishing shear calculations
π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘–π‘”β„Žπ‘‘ β„Žπ‘Žπ‘™π‘“ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ =
215820
2
= 107910 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘ =
233615(0.18)
2
= 21025 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 107910 + 116808(0.18) = 128935 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (107910)(0.6366) + (21025)(
1.575
2
) βˆ’ 128935(1.575)
𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = βˆ’117820 π‘›π‘’π‘€π‘‘π‘œπ‘› π‘šπ‘’π‘‘π‘’π‘Ÿπ‘ 
𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ βˆ— π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 117820 βˆ— 1.2 = 141384 𝑁 βˆ— π‘š
c. Rebar design calculations
For rebar design, Whitney Stress Block theory will be used. We need to solve for the area of
steel to be used. Tensile stresses will be at the top of the slab during doming, and tensile stresses
will be at the bottom of the slab during dishing. Due to the narrow slab and the existence of
positive and negative moments, 2 rows of steel will be used. We will assume the bars are placed
5 cm from the faces of the slab
Design Inputs
Concrete Design Compressive Stress (f'c) 13.8 MPa
Yield Stress of steel (fy) 420 MPa
Base (b) 0.18 meter
Dishing Rebar Design Moment 141384 N-m
Doming Rebar Design Moment 102303 N-m
Safety Factor (phi) 0.9
Depth (d) 0.13 meter
Width 3.15 meter
Modulus of elasticity of steel (Es) 200 GPa
a to c ratio (Ξ²) 0.85
Dishing force diagram Doming force diagram
𝛽𝑐 = π‘Ž
Dishing force equilibrium:
π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ + 𝑠𝑑𝑒𝑒𝑙 π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ = 𝑠𝑑𝑒𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑙𝑒 π‘“π‘œπ‘Ÿπ‘π‘’
(𝑓′
𝑐)(𝛽𝑐1)(π‘€π‘–π‘‘π‘‘β„Ž) + (π΄π‘ π‘‡π‘œπ‘)(𝐸𝑠)(.003)(𝑐1 βˆ’ .05)/𝑐1 = (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(𝑓𝑦)
(13800000)(0.85 βˆ— 𝑐1)(3.15) + (π΄π‘ π‘‡π‘œπ‘)(200000000000)(.003)(𝑐1 βˆ’ .05)/𝑐1
= (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(420000000)
(36949500)(𝑐1)+ (π΄π‘ π‘‡π‘œπ‘)(600000000)(𝑐1 βˆ’ .05)/𝑐1 = (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(420000000)
Doming force equilibrium:
π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ + 𝑠𝑑𝑒𝑒𝑙 π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ = 𝑠𝑑𝑒𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑙𝑒 π‘“π‘œπ‘Ÿπ‘π‘’
(𝑓′
𝑐)(𝛽𝑐2)(π‘€π‘–π‘‘π‘‘β„Ž) + (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(𝐸𝑠)(.003)(𝑐2βˆ’ .05)/𝑐2 = (π΄π‘ π‘‡π‘œπ‘)(𝑓𝑦)
(13800000)(0.85βˆ— 𝑐2)(3.15)+ (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(200000000000)(.003)(𝑐2 βˆ’ .05)/𝑐2
= (π΄π‘ π‘‡π‘œπ‘)(420000000)
(36949500)(𝑐2)+ (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(600000000)(𝑐2 βˆ’ .05)/𝑐2 = (π΄π‘ π‘‡π‘œπ‘)(420000000)
Dishing Moment Equilibrium:
( 𝑓′
𝑐)( 𝛽𝑐1)( π‘€π‘–π‘‘π‘‘β„Ž)(𝑑 βˆ’
𝛽𝑐1
2
) + (π΄π‘ π‘‡π‘œπ‘)(𝐸𝑠)(.003)(𝑐1 βˆ’ .05)(.05)/𝑐1 =
π‘‘π‘–π‘ β„Ž π‘šπ‘œπ‘šπ‘’π‘›π‘‘
π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
(13800000)(0.85βˆ— 𝑐1)(3.15)(. 13 βˆ’
0.85 βˆ— 𝑐1
2
) + (π΄π‘ π‘‡π‘œπ‘)(200000000000)(.003)(𝑐1
βˆ’ .05)(.08)/𝑐1 =
141384
0.9
(36949500)(𝑐1)(.13 βˆ’ .425(𝑐1))+ (π΄π‘ π‘‡π‘œπ‘)(48000000)(𝑐1βˆ’ .05)/𝑐1 = 157093
Doming Moment Equilibrium:
( 𝑓′
𝑐)( 𝛽𝑐2)( π‘€π‘–π‘‘π‘‘β„Ž)(𝑑 βˆ’
𝛽𝑐2
2
) + (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(𝐸𝑠)(.003)(𝑐2 βˆ’ .05)(.08)/𝑐2
=
π‘‘π‘œπ‘šπ‘’ π‘šπ‘œπ‘šπ‘’π‘›π‘‘
π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
(13800000)(0.85 βˆ— 𝑐2)(3.15)(. 13 βˆ’
0.85 βˆ— 𝑐2
2
) + (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(200000000000)(.003)(𝑐2
βˆ’ .05)(.05)/𝑐2 =
102303
0.9
(36949500)(𝑐2)(.13 βˆ’ .425(𝑐2)) + (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(48000000)(𝑐2 βˆ’ .05)/𝑐2 = 113670
With four equations and four unknowns, c1, c2, AsTop, and AsBottom, these values can be
determined. Using Matlab:
AsTop = .0020 m2
AsBottom = .0032 m2
π‘‡π‘œπ‘‘π‘Žπ‘™ 𝐷𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 =
π΄π‘ π‘‡π‘œπ‘ + π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š
πΆπ‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’
=
. 0020 + .0032
. 18 βˆ— 3.15
= 0.917%
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 𝑛𝑒𝑒𝑑𝑒𝑑 π‘Žπ‘™π‘œπ‘›π‘” π‘‘π‘œπ‘ π‘œπ‘“ π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 = .0020 π‘š2
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 𝑛𝑒𝑒𝑑𝑒𝑑 π‘Žπ‘™π‘œπ‘›π‘” π‘π‘œπ‘‘π‘‘π‘œπ‘š π‘œπ‘“ π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 = .0032 π‘š2
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ = 0.000129032 π‘š2
π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘‘π‘œπ‘ π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 =
.0020
.000129032
= 16
π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘π‘œπ‘‘π‘‘π‘œπ‘š π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 =
.0032
.000129032
= 25
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ = 0.0002 π‘š2
π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘‘π‘œπ‘ π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 =
.0020
.0002
= 10
π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘π‘œπ‘‘π‘‘π‘œπ‘š π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 =
.0032
.0002
= 16
Calculations such as this can be easily repeated for other rebar sizes. Selection of rebar will
depend on local prices of steel. Drawings will be for #4 rebar, due to its known price in
Nicaragua. Rebar will be equally spaced, with 10 cm or greater clearance from the edges. The
density of steel of 0.917% is greater than the recommended value of 0.1% of steel needed to
prevent cracking from ACI committee 360, so this design is good.
d. Landslide Risk Analysis
This storage facility will be placed on a sloped hill. The construction area will be flattened prior
to construction, but a mass of soil will sit uphill of the facility. In heavy rains some of the hillside
may flow downhill and impact the walls of the storage facility.
These calculations determine the resistance of the walls to a mass of fluid soil pushing against it.
Specifically these calculations will determine the maximum height of flowing soil that the wall
can resist. If soil is determined to be flowing near this height, then the wall must be reinforced
and braced at the expected centroid of the fluid force.
Calculation Inputs
Density of Soil 9270 N/m^3
Yield Stress of Steel (fy) 420 MPa
Width of Wall 5.6 meter
Height of Wall 2.4 meter
Thickness of Wall 0.15 meter
Depth of rebar in wall 0.075 meter
i. Moment Strength of the CMU wall
Cross section of wall:
Number of rebar = 12 #4 rebar
π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 = 2.36 𝑖𝑛2
= .00152 π‘š2
Using Whitney Stress Block theory
π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘“π‘œπ‘Ÿπ‘π‘’ 𝑖𝑛 𝑠𝑑𝑒𝑒𝑙 βˆ— π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ = π‘šπ‘œπ‘šπ‘’π‘›π‘‘
(𝑓𝑦)(π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙)(𝑑 βˆ’
π‘Ž
2
) = π‘šπ‘œπ‘šπ‘’π‘›π‘‘
π‘Ž =
(𝑓𝑦)(π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙)
(0.85)(𝑓’𝑐)(π‘€π‘–π‘‘π‘‘β„Ž)
(𝑓𝑦)(𝐴𝑠)(𝑑 βˆ’
(𝑓𝑦)(π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙)
(1.7)(𝑓’𝑐)(π‘€π‘–π‘‘π‘‘β„Ž)
) = π‘šπ‘œπ‘šπ‘’π‘›π‘‘
(420000000)(.00152)(.075βˆ’
(420000000)(.00152)
(1.7)(21000000)(5.6)
) = π‘€π‘œπ‘šπ‘’π‘›π‘‘
π‘€π‘œπ‘šπ‘’π‘›π‘‘ = 45844 𝑁 βˆ— π‘š
ii. Height of fluid soil needed to break the wall
Assuming the soil is perfectly fluid, then as it accumulates up against a wall segment it will exert
a hydrostatic pressure against the wall. This pressure then exerts a moment on the fixed end of
the wall in the ground.
Force diagram:
πΉπ‘œπ‘Ÿπ‘π‘’ = (π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’) βˆ— (π‘Žπ‘Ÿπ‘’π‘Ž)
πΉπ‘œπ‘Ÿπ‘π‘’ =
(𝑒𝑛𝑖𝑑 π‘€π‘’π‘–π‘”β„Žπ‘‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘)
2
βˆ— (β„Žπ‘’π‘–π‘”β„Žπ‘‘)(π‘Šπ‘–π‘‘π‘‘β„Ž)
π‘€π‘œπ‘šπ‘’π‘›π‘‘ = πΉπ‘œπ‘Ÿπ‘π‘’ βˆ— π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’
π‘€π‘œπ‘šπ‘’π‘›π‘‘ =
(𝑒𝑛𝑖𝑑 π‘€π‘’π‘–π‘”β„Žπ‘‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘)
2
βˆ— (β„Žπ‘’π‘–π‘”β„Žπ‘‘)(π‘Šπ‘–π‘‘π‘‘β„Ž) βˆ— (
β„Žπ‘’π‘–π‘”β„Žπ‘‘
3
)
45844 =
(9270)(β„Ž)
2
βˆ— (β„Ž)(5.6)βˆ—
β„Ž
3
β„Ž = 1.74 π‘šπ‘’π‘‘π‘’π‘Ÿπ‘  π‘œπ‘“ 𝑓𝑙𝑒𝑖𝑑 π‘ π‘œπ‘–π‘™
π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘ π‘œπ‘“ π‘“π‘œπ‘Ÿπ‘π‘’ = 1.74/3 = 0.58 π‘šπ‘’π‘‘π‘’π‘Ÿπ‘ 
Storage Facility Construction Notes
a. CMU wall vertical rebar
Unlike the pump station rebar, there will be 2 pieces of rebar in each indicated cell. These walls
are longer and taller than the pump station so the extra rebar is to provide greater strength.
b. CMU wall horizontal rebar
At specific heights horizontal rebar will be placed in the wall. This horizontal rebar prevents the
wall from bending around a vertical axis. The CMU blocks must have notches cut into them so
that the rebar can fit. Also, concrete must be poured around the rebar to secure it to the CMU
wall.
c. CMU wall gaps
The wall is designed to have periodic vertical gaps where CMU blocks are not mortared together.
A long continuous wall will randomly crack due to shrinkage, moisture, and thermal effects.
Random cracks could compromise the structural strength of the wall and should be avoided. The
designed gaps break the wall up into shorter segments that are less likely to randomly crack.
Also, these gaps act like controlled cracks so we know where the weaknesses are located and we
know where to place reinforcement.
d. Landslide risk
The walls as designed can withstand a landslide of perfectly fluid soil that is 1.74 meters tall. If
soil accumulates past this height then additional reinforcement of the walls will be needed. This
can be accomplished by adding steel reinforcement or steel bracing on the inside of the structure.
It must be attached to a point on the wall that is 0.6 meters or higher off the ground to be
effective because this is the height where the centroid of the landslide force will occur.

More Related Content

What's hot

Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundationLatif Hyder Wadho
Β 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soilLatif Hyder Wadho
Β 
3d consolidation test
3d consolidation test3d consolidation test
3d consolidation testPankaj Dhangare
Β 
Bearing Capacity of Shallow Foundation
Bearing Capacity of Shallow FoundationBearing Capacity of Shallow Foundation
Bearing Capacity of Shallow FoundationLatif Hyder Wadho
Β 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missSHAMJITH KM
Β 
Chapter 2 free vibration of single degree of freedom
Chapter 2 free vibration of single degree of freedomChapter 2 free vibration of single degree of freedom
Chapter 2 free vibration of single degree of freedomRafi sulaiman
Β 
Consolidation test of soil
Consolidation test of soilConsolidation test of soil
Consolidation test of soilAshfaq Ahmad
Β 
Transportation Engineering
Transportation EngineeringTransportation Engineering
Transportation EngineeringLove Sharma
Β 
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Make Mannan
Β 
case study on plat load test
case study on plat load testcase study on plat load test
case study on plat load testAbhishek Mangukiya
Β 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test pptsayan sarkar
Β 
241 footing &amp; piling bearing capacities
241 footing &amp; piling bearing capacities241 footing &amp; piling bearing capacities
241 footing &amp; piling bearing capacitiesMohammad Barqawi
Β 
Plate load test and its interpretations
Plate load test and its interpretationsPlate load test and its interpretations
Plate load test and its interpretationsSatyartha Saxena
Β 
Examples on stress distribution
Examples on stress distributionExamples on stress distribution
Examples on stress distributionMalika khalil
Β 
Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard ...
Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard ...Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard ...
Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard ...IJERA Editor
Β 
Static cone penetration test-basics
Static cone penetration test-basicsStatic cone penetration test-basics
Static cone penetration test-basicsdiscorajan
Β 
Earth retaining 2
Earth retaining 2Earth retaining 2
Earth retaining 2MarlizaAshiqin
Β 
Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...
Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...
Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...Make Mannan
Β 
Omthesis 30-4-2016
Omthesis 30-4-2016Omthesis 30-4-2016
Omthesis 30-4-2016Anup Halder
Β 
Bearing capacity of soil
Bearing capacity of soilBearing capacity of soil
Bearing capacity of soilPraveen S.K
Β 

What's hot (20)

Settlement of shallow foundation
Settlement of shallow foundationSettlement of shallow foundation
Settlement of shallow foundation
Β 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
Β 
3d consolidation test
3d consolidation test3d consolidation test
3d consolidation test
Β 
Bearing Capacity of Shallow Foundation
Bearing Capacity of Shallow FoundationBearing Capacity of Shallow Foundation
Bearing Capacity of Shallow Foundation
Β 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana miss
Β 
Chapter 2 free vibration of single degree of freedom
Chapter 2 free vibration of single degree of freedomChapter 2 free vibration of single degree of freedom
Chapter 2 free vibration of single degree of freedom
Β 
Consolidation test of soil
Consolidation test of soilConsolidation test of soil
Consolidation test of soil
Β 
Transportation Engineering
Transportation EngineeringTransportation Engineering
Transportation Engineering
Β 
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Numerical Question on Terzaghi Bearing Capacity Theory, Meyerhof Bearing Capa...
Β 
case study on plat load test
case study on plat load testcase study on plat load test
case study on plat load test
Β 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test ppt
Β 
241 footing &amp; piling bearing capacities
241 footing &amp; piling bearing capacities241 footing &amp; piling bearing capacities
241 footing &amp; piling bearing capacities
Β 
Plate load test and its interpretations
Plate load test and its interpretationsPlate load test and its interpretations
Plate load test and its interpretations
Β 
Examples on stress distribution
Examples on stress distributionExamples on stress distribution
Examples on stress distribution
Β 
Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard ...
Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard ...Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard ...
Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard ...
Β 
Static cone penetration test-basics
Static cone penetration test-basicsStatic cone penetration test-basics
Static cone penetration test-basics
Β 
Earth retaining 2
Earth retaining 2Earth retaining 2
Earth retaining 2
Β 
Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...
Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...
Bearing capacity theory is code ,vesic ,hansen, meyerhof, skemptons( usefulse...
Β 
Omthesis 30-4-2016
Omthesis 30-4-2016Omthesis 30-4-2016
Omthesis 30-4-2016
Β 
Bearing capacity of soil
Bearing capacity of soilBearing capacity of soil
Bearing capacity of soil
Β 

Viewers also liked

Yogesh Anurath Payal
Yogesh Anurath PayalYogesh Anurath Payal
Yogesh Anurath PayalYogesh Payal
Β 
Distribution of Nairobi Stock Exchange 20 Share Index Returns: 1998-2011
Distribution of Nairobi Stock Exchange 20 Share Index Returns: 1998-2011Distribution of Nairobi Stock Exchange 20 Share Index Returns: 1998-2011
Distribution of Nairobi Stock Exchange 20 Share Index Returns: 1998-2011Waqas Tariq
Β 
Ontology Based Approach for Classifying Biomedical Text Abstracts
Ontology Based Approach for Classifying Biomedical Text AbstractsOntology Based Approach for Classifying Biomedical Text Abstracts
Ontology Based Approach for Classifying Biomedical Text AbstractsWaqas Tariq
Β 
Π³Ρ€ΡƒΠΏΠΏΠ° β„–2
Π³Ρ€ΡƒΠΏΠΏΠ° β„–2Π³Ρ€ΡƒΠΏΠΏΠ° β„–2
Π³Ρ€ΡƒΠΏΠΏΠ° β„–2Kroshkaenot
Β 
MECHANICAL ENG-ahmed bahgatC.V
MECHANICAL ENG-ahmed bahgatC.VMECHANICAL ENG-ahmed bahgatC.V
MECHANICAL ENG-ahmed bahgatC.Vahmed bahgat
Β 
2. Mutation
2. Mutation2. Mutation
2. Mutationrossbiology
Β 
CURRICULUM VITAE
CURRICULUM VITAECURRICULUM VITAE
CURRICULUM VITAEGemma Giles
Β 
Mit Personalisierung die Kundenerwartungen ΓΌbertreffen und den Customer Life...
 Mit Personalisierung die Kundenerwartungen ΓΌbertreffen und den Customer Life... Mit Personalisierung die Kundenerwartungen ΓΌbertreffen und den Customer Life...
Mit Personalisierung die Kundenerwartungen ΓΌbertreffen und den Customer Life...Nosto
Β 
Optimieren Sie Ihren Shopware-Shop mit Personalisierung und automatisiertem M...
Optimieren Sie Ihren Shopware-Shop mit Personalisierung und automatisiertem M...Optimieren Sie Ihren Shopware-Shop mit Personalisierung und automatisiertem M...
Optimieren Sie Ihren Shopware-Shop mit Personalisierung und automatisiertem M...Nosto
Β 
The Garden Grocery - Food Safety at the Farmers' Market
The Garden Grocery - Food Safety at the Farmers' MarketThe Garden Grocery - Food Safety at the Farmers' Market
The Garden Grocery - Food Safety at the Farmers' MarketAmy Peterson
Β 
Be Part of the Party to Celebrate the International Year of Pulses: Dry Beans...
Be Part of the Party to Celebrate the International Year of Pulses: Dry Beans...Be Part of the Party to Celebrate the International Year of Pulses: Dry Beans...
Be Part of the Party to Celebrate the International Year of Pulses: Dry Beans...Alice Henneman
Β 
Photosynthesis
Photosynthesis Photosynthesis
Photosynthesis smith2118
Β 

Viewers also liked (14)

Yogesh Anurath Payal
Yogesh Anurath PayalYogesh Anurath Payal
Yogesh Anurath Payal
Β 
Distribution of Nairobi Stock Exchange 20 Share Index Returns: 1998-2011
Distribution of Nairobi Stock Exchange 20 Share Index Returns: 1998-2011Distribution of Nairobi Stock Exchange 20 Share Index Returns: 1998-2011
Distribution of Nairobi Stock Exchange 20 Share Index Returns: 1998-2011
Β 
Ontology Based Approach for Classifying Biomedical Text Abstracts
Ontology Based Approach for Classifying Biomedical Text AbstractsOntology Based Approach for Classifying Biomedical Text Abstracts
Ontology Based Approach for Classifying Biomedical Text Abstracts
Β 
Diapo 7
Diapo 7Diapo 7
Diapo 7
Β 
Π³Ρ€ΡƒΠΏΠΏΠ° β„–2
Π³Ρ€ΡƒΠΏΠΏΠ° β„–2Π³Ρ€ΡƒΠΏΠΏΠ° β„–2
Π³Ρ€ΡƒΠΏΠΏΠ° β„–2
Β 
MECHANICAL ENG-ahmed bahgatC.V
MECHANICAL ENG-ahmed bahgatC.VMECHANICAL ENG-ahmed bahgatC.V
MECHANICAL ENG-ahmed bahgatC.V
Β 
2. Mutation
2. Mutation2. Mutation
2. Mutation
Β 
CURRICULUM VITAE
CURRICULUM VITAECURRICULUM VITAE
CURRICULUM VITAE
Β 
Doc1
Doc1Doc1
Doc1
Β 
Mit Personalisierung die Kundenerwartungen ΓΌbertreffen und den Customer Life...
 Mit Personalisierung die Kundenerwartungen ΓΌbertreffen und den Customer Life... Mit Personalisierung die Kundenerwartungen ΓΌbertreffen und den Customer Life...
Mit Personalisierung die Kundenerwartungen ΓΌbertreffen und den Customer Life...
Β 
Optimieren Sie Ihren Shopware-Shop mit Personalisierung und automatisiertem M...
Optimieren Sie Ihren Shopware-Shop mit Personalisierung und automatisiertem M...Optimieren Sie Ihren Shopware-Shop mit Personalisierung und automatisiertem M...
Optimieren Sie Ihren Shopware-Shop mit Personalisierung und automatisiertem M...
Β 
The Garden Grocery - Food Safety at the Farmers' Market
The Garden Grocery - Food Safety at the Farmers' MarketThe Garden Grocery - Food Safety at the Farmers' Market
The Garden Grocery - Food Safety at the Farmers' Market
Β 
Be Part of the Party to Celebrate the International Year of Pulses: Dry Beans...
Be Part of the Party to Celebrate the International Year of Pulses: Dry Beans...Be Part of the Party to Celebrate the International Year of Pulses: Dry Beans...
Be Part of the Party to Celebrate the International Year of Pulses: Dry Beans...
Β 
Photosynthesis
Photosynthesis Photosynthesis
Photosynthesis
Β 

Similar to Appendix B_ Calculations_ STRUCTURES PORTION (1-17-2015)

unit-4 design drawing of steel stru.pptx
unit-4 design drawing of steel stru.pptxunit-4 design drawing of steel stru.pptx
unit-4 design drawing of steel stru.pptxva234143347
Β 
Post graduate exam in hydraulic 2018.docx
Post graduate exam in hydraulic   2018.docxPost graduate exam in hydraulic   2018.docx
Post graduate exam in hydraulic 2018.docxDr. Ezzat Elsayed Gomaa
Β 
Foundationeng deep-foundations_ps
Foundationeng deep-foundations_psFoundationeng deep-foundations_ps
Foundationeng deep-foundations_psΔ°simsiz Kahraman
Β 
CIVE 801 - Course Project Report (Teal)
CIVE 801 - Course Project Report (Teal)CIVE 801 - Course Project Report (Teal)
CIVE 801 - Course Project Report (Teal)Cyle Teal
Β 
Parte 1 acero segundo parcial
Parte 1 acero segundo parcialParte 1 acero segundo parcial
Parte 1 acero segundo parcialJosEspinoza64
Β 
Presentation
PresentationPresentation
PresentationAli Abuzant
Β 
CVEN 440_540 Classnotes (6) --- Static analysis of pile foundation.pptx
CVEN 440_540 Classnotes (6) --- Static analysis of pile foundation.pptxCVEN 440_540 Classnotes (6) --- Static analysis of pile foundation.pptx
CVEN 440_540 Classnotes (6) --- Static analysis of pile foundation.pptxmoloholo90
Β 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxsubhashini214160
Β 
Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01Ramil Artates
Β 
Ccip eadeca tema 15_losas de cimentaciΓ³n
Ccip eadeca tema 15_losas de cimentaciΓ³nCcip eadeca tema 15_losas de cimentaciΓ³n
Ccip eadeca tema 15_losas de cimentaciΓ³nmiguel lopez chilca
Β 
Rectangular tank example_latest
Rectangular tank example_latestRectangular tank example_latest
Rectangular tank example_latestVedachalam Mani
Β 
CIVE 416 report(final)
CIVE 416 report(final)CIVE 416 report(final)
CIVE 416 report(final)Monique F M
Β 
Examen 2 fundaciones
Examen 2 fundacionesExamen 2 fundaciones
Examen 2 fundacionesAndres9586
Β 
2008 - NOV.pdf
2008 - NOV.pdf2008 - NOV.pdf
2008 - NOV.pdfEdmarTabinas1
Β 
01 01 chapgere[1]
01 01 chapgere[1]01 01 chapgere[1]
01 01 chapgere[1]Charles Jumbo
Β 
Analysis of Stone Column
Analysis of Stone ColumnAnalysis of Stone Column
Analysis of Stone ColumnSuhas Mohideen
Β 

Similar to Appendix B_ Calculations_ STRUCTURES PORTION (1-17-2015) (20)

unit-4 design drawing of steel stru.pptx
unit-4 design drawing of steel stru.pptxunit-4 design drawing of steel stru.pptx
unit-4 design drawing of steel stru.pptx
Β 
Post graduate exam in hydraulic 2018.docx
Post graduate exam in hydraulic   2018.docxPost graduate exam in hydraulic   2018.docx
Post graduate exam in hydraulic 2018.docx
Β 
Foundationeng deep-foundations_ps
Foundationeng deep-foundations_psFoundationeng deep-foundations_ps
Foundationeng deep-foundations_ps
Β 
Post graduate exam in hydraulics
Post graduate exam in hydraulicsPost graduate exam in hydraulics
Post graduate exam in hydraulics
Β 
CIVE 801 - Course Project Report (Teal)
CIVE 801 - Course Project Report (Teal)CIVE 801 - Course Project Report (Teal)
CIVE 801 - Course Project Report (Teal)
Β 
Unit-3-Design of shallow foundation.pdf
Unit-3-Design of shallow foundation.pdfUnit-3-Design of shallow foundation.pdf
Unit-3-Design of shallow foundation.pdf
Β 
Parte 1 acero segundo parcial
Parte 1 acero segundo parcialParte 1 acero segundo parcial
Parte 1 acero segundo parcial
Β 
Presentation
PresentationPresentation
Presentation
Β 
CVEN 440_540 Classnotes (6) --- Static analysis of pile foundation.pptx
CVEN 440_540 Classnotes (6) --- Static analysis of pile foundation.pptxCVEN 440_540 Classnotes (6) --- Static analysis of pile foundation.pptx
CVEN 440_540 Classnotes (6) --- Static analysis of pile foundation.pptx
Β 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
Β 
Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01
Β 
6th Semester Civil Engineering (2013-December) Question Papers
6th Semester Civil Engineering (2013-December) Question Papers6th Semester Civil Engineering (2013-December) Question Papers
6th Semester Civil Engineering (2013-December) Question Papers
Β 
Ccip eadeca tema 15_losas de cimentaciΓ³n
Ccip eadeca tema 15_losas de cimentaciΓ³nCcip eadeca tema 15_losas de cimentaciΓ³n
Ccip eadeca tema 15_losas de cimentaciΓ³n
Β 
Rectangular tank example_latest
Rectangular tank example_latestRectangular tank example_latest
Rectangular tank example_latest
Β 
CIVE 416 report(final)
CIVE 416 report(final)CIVE 416 report(final)
CIVE 416 report(final)
Β 
Examen 2 fundaciones
Examen 2 fundacionesExamen 2 fundaciones
Examen 2 fundaciones
Β 
2008 - NOV.pdf
2008 - NOV.pdf2008 - NOV.pdf
2008 - NOV.pdf
Β 
01 01 chapgere[1]
01 01 chapgere[1]01 01 chapgere[1]
01 01 chapgere[1]
Β 
Analysis of Stone Column
Analysis of Stone ColumnAnalysis of Stone Column
Analysis of Stone Column
Β 
Civil-Paper-II.pdf
Civil-Paper-II.pdfCivil-Paper-II.pdf
Civil-Paper-II.pdf
Β 

Appendix B_ Calculations_ STRUCTURES PORTION (1-17-2015)

  • 1. RICE UNIVERISTY ENGINEERS WITHOUT BORDERS Appendix D : Calculations Hydraulic, Structural, and Electrical Project Leaders: Edgar Silva and Rachel Sterling 9/14/2014
  • 2. Given Values Value Origins General Total Population (people) 1,200 Census from community Growth Rate 7% UN Nicaraguan growth rate with safety factor of 5 Location Of Tank (Elevation, M) 825 Given by ENACAL, determined using GPS Location Of Pump (Elevation, M) 724 Given by ENACAL, determined using GPS Hydraulics Gallons Per Person (Gallons/Day) 24 Provided by handbook from engineer at ENACAL Needed Tank Capacity (Days) 1 Community request Pump Functioning Hours 5.5 - 9.5 From pressure test completed on assessment trip, only accounting for time that PSI at this elevation is >10 (min pressure for pump is < 3 psi) Number of tanks (22,000L each) Max 8 This number is capped at 8 because it was determined to be Structural Soil Type Clay Determined by assessment trip Psi Strength of Concrete 3000 Determined by mix ratios Psi Strength of Steel 60000 Assuming grade 60 steel is used Mass of pump (lbs) 201 From pump spec sheet Mass of filled tank (kg) 22000 Determined by volume of tank * More values given in structural section Electrical Power Supply Single Phase This is determined from the phase of the Nicaraguan electrical grid
  • 3. Structural Calculations Soil Bearing Capacity Calculations To calculate the ultimate bearing capacity of the soil, we used the following equation, the Terzaghi Bearing Capacity equation. The highest pressures will be experienced by the slabs holding the 22000 liter water tanks. π‘ž_𝑒𝑙𝑑 = (𝑐)(𝑁𝑐)(𝑠𝑐) + (Ι€)(𝐷)(π‘π‘ž)(π‘ π‘ž) + (0.5)(𝐡)(Ι€)(𝑁𝑔)(𝑠ɀ) The following chart contains important values: Cohesive Strength of Soil (c) 239.4 kPa Unit Weight of Soil (Ι€) 8.568 kN/m3 Depth of Foundation (D) 0 m Width of Foundation (B) 4 m Safety Factor 3 Angle Of Internal Friction 17 degrees Bearing Capacity Factor (cohesion) Nc 12.3 Bearing Capacity Factor (surcharge and friction) Nq 4.8 Bearing Capacity Factor (self weight and friction) NΙ€ 1.7 Shape Factor (Sc) 1.3 Shape Factor (Sq) 1 Shape Factor (SΙ€) 0.8 The cohesive strength of soil was determined by using a pocket penetrometer at the surface and 6 inches below the surface. A value of 239.4 kPa (2.5 tons per square foot) was measured at the surface. A value of 430.9 kPa (4.5 tons per square foot) was measured 6 inches below the surface. From these measurements we know the soil strengthens as depth increases. For our calculations we will be on the safe side and use the weakest measurement of 239.4 kPa. The unit weight of the soil was determined by taking a 600 ml sample of soil in a bottle, and measuring its mass. The depth and width of foundation were determined by our design criteria. The slabs need to be at least 4 meters wide to accommodate the water tanks. For simplicity of construction the slabs will just lay on the surface of the ground. The safety factor was a value recommended to us by our mentor. The internal angle of friction and bearing capacities were determined by identifying the type of soil at our construction site. By performing the ribbon test, the soil was identified as high plasticity clay soil. According to Swiss Standard SN 670 010b, this soil has an angle of friction between 17 and 31 degrees. We will use an angle of 17 degrees in our calculations to assume worst case soil conditions. From Terzaghi’s tables, an angle of 17 degrees correspond to Nc = 12.3, Nq = 4.8, and NΙ€ = 1.7.
  • 4. Shape factors were derived from Terzaghi’s tables by assuming a square foundation. A square foundation was used for simplicity of construction. 𝑄_𝑒𝑙𝑑 = (239.4)(12.3)(1.3)+ (8.568)(0)(4.8)(1)+ 0.5(4)(8.568)(1.7)(0.8) = 3851.3π‘˜π‘ƒπ‘Ž π‘†π‘Žπ‘“π‘’ π΅π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” πΆπ‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦ = 𝑄𝑠 = 𝑄𝑒𝑙𝑑 π‘†π‘Žπ‘“π‘’π‘‘π‘¦ πΉπ‘Žπ‘π‘‘π‘œπ‘Ÿ = 3851.3 3 = 1283.8 π‘˜π‘ƒπ‘Ž π‘‡β„Žπ‘’π‘œπ‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘™ πΏπ‘œπ‘Žπ‘‘ π‘ π‘’π‘π‘π‘œπ‘Ÿπ‘‘π‘’π‘‘ 𝑏𝑦 π‘†π‘™π‘Žπ‘ = 1000(𝑄𝑠)(𝐡2 ) 𝑔 = 1000(1283.8)(42 ) 9.81 = 2093814 π‘˜π‘” The mass of the 22000 liter tank is 22000 kg. Therefore, the soil is more than strong enough to support the tank.
  • 5. Pump Station Cross-Section Calculations a. Design slab thickness: The thickness of the slab will be controlled by the shear forces it needs to resist. From our previous calculations, we know the soil is more than strong enough to support our structures. However, the soil is expansive, and will expand and contract based on precipitation in the area. The the slab will trap moisture in the soil below it, and that soil will remain at a relatively constant moisture content, while the soil at the edges of the slab will quickly lose moisture in the dry season and shrink, and will quickly absorb moisture in the wet season and expand. This leads to two critical conditions for the slab, called dishing and doming, or also called edge list condition and center lift condition. Dishing occurs in the wet season when the slab is only supported by the expanded soil on the edges. Doming occurs in the dry season when the slab is only supported by the still moist soil under the slab. For our calculations, we will treat the slab as a wide beam. Additionally, we will assume worse case soil expansion and contraction. We will assume the slab dimensions of 5.80 x 2.60 due to the amount of spacing needed for the pump and valves. Overhead view of forces:
  • 6. Doming force diagram: Dishing force distribution: Table of Constraints Dimensions of Slab 5.80 x 2.60 meters Mass of pump 91.17 kg Dimensions of pump platform 1.00 x 0.40 x 0.50 meters Density of concrete and CMU blocks 2400 kg/m3 Strength of concrete, f’c 13.8 MPa Shear Strength Safety Factor 0.75 Height of CMU wall 2.40 meters Width of CMU wall 0.15 meters Acceleration due to gravity (g) 9.81 m/s2
  • 7. i. Doming slab thickness calculation: πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž 𝑖𝑛 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘π‘’π‘Ÿ π‘šπ‘’π‘‘π‘’π‘Ÿ π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’π‘‘ = √ 𝑓′ 𝑐2 6 (1000000) The slab will be designed to have no vertical web reinforcement. By ACI code, the design shear strength of concrete without web reinforcement is (𝐷𝑒𝑠𝑖𝑔𝑛 π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘ π‘ ) = (0.5)(π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)(π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž) The maximum shear will occur in the center of the slab, where the soil supports the slab. (0.5)( π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)( πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)( π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) = π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑔) π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = (2.6)(.15)(2.4)(2400)(9.81) = 22037 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)/2 π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (2.6)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(2400)(9.81)(5.8) 2 = 177522(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ = 2(π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)/2 π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ = 2(. 15)(2.4)(2400)(9.81)(5.8) 2 = 49160 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  (0.5)(0.75)( √13.8 2 6 )(1000000)(2.6)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) = 22037 + 177522(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)+ 49160 Height of slab = .167 meters ii. Dishing slab thickness calculation: The maximum shear will occur at the left and right of the slab, where it is supported by the soil. Calculations will find shear at the left support.
  • 8. (0.5)( π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)( πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)( π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) = π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘šπ‘ π‘π‘™π‘Žπ‘‘π‘“π‘œπ‘Ÿπ‘š + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ + π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ βˆ’ π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ πΉπ‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘šπ‘ π‘π‘™π‘Žπ‘‘π‘“π‘œπ‘Ÿπ‘š = ( π‘π‘’π‘šπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘)(𝑔) + (π‘£π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘π‘’π‘šπ‘ π‘π‘™π‘Žπ‘‘π‘“π‘œπ‘Ÿπ‘š)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔) πΉπ‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘šπ‘ π‘π‘™π‘Žπ‘‘π‘“π‘œπ‘Ÿπ‘š = (91.17)(9.81)+ (1)(0.4)(0.5)(2400)(9.81) = 5603 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑔) π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = (2.6)(.15)(2.4)(2400)(9.81) = 22037 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘) π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (2.6)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(2400)(9.81)(5.8) = 355044(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ = 2(π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘€π‘Žπ‘™π‘™)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘) π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ = 2(. 15)(2.4)(2400)(9.81)(5.8) = 98320 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘œπ‘€π‘›π‘€π‘Žπ‘Ÿπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ 2 π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 5603 + (2)22037 + 98320 + 355044(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) 2 π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 73999 + 177522(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) (0.5)(0.75)( √13.82 6 )(1000000)(2.6)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) = 5603 + 355044(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)+ 98320 + 22037 βˆ’ 73999 βˆ’ 177522(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) Height of slab = .123 meters iii. Final slab thickness Bowling requires a thicker slab, so that is our controlling case for shear resistance. Therefore, the slab must be at least .167 meters thick. For ease of construction, the slab will be designed as 0.18 meters thick
  • 9. b. Design moment calculation: The slab is relatively thin, so bending moments in the slab should be considered for the dishing and bowling case. These moments will be used to calculate the needed steel reinforcement. To calculate the design moment, we need to determine what part of the slab will experience the most moment. We will assume the slab dimensions of 5.80 x 2.60 x 0.18 meters as given, due to the amount of spacing needed for the pump and valves. The previous figures and table of constraints will be used. i. doming moment calculation In the doming case, the slab acts like a cantilever, so maximum moment will be at the center of the slab. 𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) + (π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) + (π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) From doming shear calculations π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = 22037 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ = 49160 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = 177522(0.18) = 31954 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (22037)(2.9)+ (49160)( 2.9 2 ) + 31954( 2.9 2 ) 𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 181523 π‘›π‘’π‘€π‘‘π‘œπ‘› π‘šπ‘’π‘‘π‘’π‘Ÿπ‘  𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ βˆ— π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ 𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 181523 βˆ— 1.2 = 217827 𝑁 βˆ— π‘š ii. dishing moment calculation In the dishing case, the slab acts like a simply supported beam, so maximum moment will be at the center of the slab. 𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = ( π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘)( π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) + (π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ π‘“π‘œπ‘Ÿπ‘π‘’)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) + ( π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’)( π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) βˆ’ (π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) From dishing shear calculations π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘€π‘Žπ‘™π‘™ π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ = 22037 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘π‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘€π‘Žπ‘™π‘™ = 98320 2 = 49160 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = 355044(0.18)/2 = 31954 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘ 
  • 10. π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 73999 + 177522(.18) = 105953 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (22037)(2.9)+ (49160)( 2.9 2 ) + 31954( 2.9 2 ) βˆ’ 105953(2.9) 𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = βˆ’125741 π‘›π‘’π‘€π‘‘π‘œπ‘› π‘šπ‘’π‘‘π‘’π‘Ÿπ‘  𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ βˆ— π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ 𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 125741 βˆ— 1.2 = 150889 𝑁 βˆ— π‘š c. Rebar design calculations For rebar design, Whitney Stress Block theory will be used. We need to solve for the area of steel to be used. Tensile stresses will be at the top of the slab during doming, and tensile stresses will be at the bottom of the slab during dishing. A concrete skirt will extend into the ground around the perimeter of the slab, to prevent the erosion of soil under the slab. It is submerged in the soil, so its weight has been neglected in moment calculations, but it will provide a compressive surface for the doming case. We will assume the bars are placed 5 cm from the faces of the slab Design Inputs Concrete Design Compressive Stress (f'c) 13.8 MPa Yield Stress of steel (fy) 420 MPa Base (b) 0.18 meter Doming Rebar Design Moment 217827 N-m Dishing Rebar Design Moment 150889 N-m Safety Factor (phi) 0.9 Depth (d) 0.13 meter Width 2.60 meter Modulus of elasticity of steel (Es) 200 GPa a to c ratio (Ξ²) 0.85 Dishing force diagram
  • 11. Doming force diagram Doming force cross section 𝛽𝑐 = π‘Ž Dishing Force Equilibrium: π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ = 𝑠𝑑𝑒𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑙𝑒 π‘“π‘œπ‘Ÿπ‘π‘’ (𝑓′ 𝑐)(𝛽𝑐1)(π‘€π‘–π‘‘π‘‘β„Ž) = (𝐴𝑠)(𝑓𝑦) (13800000)(0.85βˆ— 𝑐1)(2.6) = (𝐴𝑠)(420000000) (30498000)(𝑐1) = (𝐴𝑠)(420000000)
  • 12. Doming Force Equilibrium: π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ = 𝑠𝑑𝑒𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑙𝑒 π‘“π‘œπ‘Ÿπ‘π‘’ (𝑓′ 𝑐)(𝛽𝑐2)(π‘€π‘–π‘‘π‘‘β„Ž) = (𝐴𝑠)(𝑓𝑦) (13800000)(0.85 βˆ— 𝑐2)(2 βˆ— .15) = (𝐴𝑠)(420000000) (3519000)( 𝑐2) = (𝐴𝑠)(420000000) Dishing Moment Equilibrium: ( 𝑓′ 𝑐)( 𝛽𝑐1)( π‘€π‘–π‘‘π‘‘β„Ž) (𝑑 βˆ’ 𝛽𝑐1 2 ) = π‘‘π‘–π‘ β„Ž π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ (13800000)(0.85βˆ— 𝑐1)(2.6)(. 13 βˆ’ 0.85 βˆ— 𝑐1 2 ) = 150889 0.9 (30498000)(𝑐1)(.13 βˆ’ .425(𝑐1)) = 167654 Doming Moment Equilibrium: ( 𝑓′ 𝑐)( 𝛽𝑐2)( π‘€π‘–π‘‘π‘‘β„Ž)(𝑑 βˆ’ 𝛽𝑐2 2 ) = π‘‘π‘œπ‘šπ‘’ π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ (13800000)(0.85βˆ— 𝑐2)(2βˆ— .15)(. 63 βˆ’ 0.85 βˆ— 𝑐2 2 ) = 217827 0.9 (3519000)(𝑐2)(.63 βˆ’ .425(𝑐2)) = 242030 Using the Dishing Moment Equation, c1=.0507 m Using the Dishing Force Equation, As = .0037 m2 The moment capacity in the doming case must be checked for this area of steel. Using the Doming Force Equation, c2 = .440 m The compressive block remains within the concrete skirt, so the assumptions made in the force balance equation are correct. Using the Doming Moment Equation, 685382 n*m>242030 n*m The moment capacity exceeds the expected moment during doming. Therefore, the design is good and As = .0037 m2 π‘‡π‘œπ‘‘π‘Žπ‘™ 𝐷𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 = 𝐴𝑠 πΆπ‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ = . 0037 . 18 βˆ— 2.6 = 0.79% π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 𝑛𝑒𝑒𝑑𝑒𝑑 π‘Žπ‘™π‘œπ‘›π‘” π‘ β„Žπ‘œπ‘Ÿπ‘‘ 𝑠𝑖𝑑𝑒 = .0037 π‘š2 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 𝑛𝑒𝑒𝑑𝑒𝑑 π‘Žπ‘™π‘œπ‘›π‘” π‘™π‘œπ‘›π‘” 𝑠𝑖𝑑𝑒 = .0037 βˆ— 5.8 2.6 = .083 π‘š2 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ = 0.000129032 π‘š2 π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘ β„Žπ‘œπ‘Ÿπ‘‘ 𝑠𝑖𝑑𝑒 = .0037 .000129032 = 29 π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘™π‘œπ‘›π‘” 𝑠𝑖𝑑𝑒 = .0083 .000129032 = 65
  • 13. π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ = 0.0002 π‘š2 π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘ β„Žπ‘œπ‘Ÿπ‘‘ 𝑠𝑖𝑑𝑒 = .0037 .0002 = 19 π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘™π‘œπ‘›π‘” 𝑠𝑖𝑑𝑒 = .0083 .0002 = 42 Calculations such as this can be easily repeated for other rebar sizes. Selection of rebar will depend on local prices of steel. Drawings will be for #4 rebar, due to its known price in Nicaragua. Rebar will be equally spaced, with 10 cm or greater clearance from the edges. The density of steel of 2.05% is greater than the recommended value of 0.1% of steel needed to prevent cracking from ACI committee 360, so this design is good.
  • 14. Pump Station Construction Notes a. Concrete skirt The purpose of the concrete skirt is to prevent the slab from being undermined by erosion. The subterranean concrete skirt will be poured before the slab is poured and the slab rebar is placed. Ensure that the rebar that is inside the CMU walls is vertically placed in the concrete skirt and sticking out of the ground and to the proper measurements. This rebar will help secure the skirt and the CMU walls. b. Pump platform Ensure that rebar is sticking up in the middle of the slab before pouring. Also ensure that this rebar sticks out at least 0.45 meters from the surface of the slab. The pump will be placed on a raised concrete platform, a 1.00x0.50x0.50 meter block of concrete. This platform will be poured separately from the underlying slab, so it needs to be secured to the slab through the rebar. This rebar will secure the platform, and therefore the pump, to the slab, and the rebar will minimize cracking so that the pump remains level. c. Thrust block The thrust block is a block of concrete placed around the pipes in front of the discharge end of the pump so that the pipes are protected from hydraulic forces. The thrust block adds mass to the pipes, so for a given force they are deflected a shorter distance. This reduction in deflections reduces the stress on the pipes and reduces the risk of the pipes breaking. It is poured after the slab is poured and after the pipes are set. d. Top of wall slope After the wall is complete, ensure that the top of the wall has a slope. This can be achieved by mixing concrete and placing it on the top of the CMU wall. Make sure the 0.2 meter high section is on the side of the facility facing uphill and that the top of the wall slope is in the same direction as the surrounding terrain. This ensures that rain runs off of the roof and away from the building and not back towards the foundation. e. CMU wall and roof interface Ensure that the rebar that is placed in the CMU walls penetrates through the top of the wall and the sloped concrete layer. This allows the welders to weld metal beams directly onto the structure. These beams go across the roof, which provides an anchor point for the sheet metal roof.
  • 15. Storage Facility Concrete Cross Sections a. Design slab thickness: The thickness of the slab will be controlled by the shear forces it needs to resist. From our previous calculations, we know the soil is more than strong enough to support our structures. However, the soil is expansive, and will expand and contract based on precipitation in the area. The slab will trap moisture in the soil below it, and that soil will remain at a relatively constant moisture content, while the soil at the edges of the slab will quickly lose moisture in the dry season and shrink, and will quickly absorb moisture in the wet season and expand. This leads to two critical conditions for the slab, called dishing and doming, or also called edge list condition and center lift condition. Dishing occurs in the wet season when the slab is only supported by the expanded soil on the edges. Doming occurs in the dry season when the slab is only supported by the still moist soil under the slab. For our calculations, we will treat the slab as a wide beam. Additionally, we will assume worse case soil expansion and contraction. We will assume the slab dimensions of 3.15 x 3.15 due to the amount of spacing needed for the water tank. Overhead view of forces:
  • 16. Doming force diagram: Dishing force diagram: Table of Constraints Dimensions of Slab 3.15 x 3.15 meters Mass of water tank 22000 kg Strength of concrete, f’c 13.8 MPa Shear Strength Safety Factor 0.75 Acceleration due to gravity (g) 9.81 m/s2
  • 17. i. Doming slab thickness calculation: πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž 𝑖𝑛 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘π‘’π‘Ÿ π‘šπ‘’π‘‘π‘’π‘Ÿ π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’π‘‘ = √ 𝑓′ 𝑐2 6 (1000000) The slab will be designed to have no vertical web reinforcement. By ACI code, the design shear strength of concrete without web reinforcement is (𝐷𝑒𝑠𝑖𝑔𝑛 π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘ π‘ ) = (0.5)(π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)(π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž) The maximum shear will occur in the center of the slab, where the soil supports the slab. (0.5)( π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)( πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)( π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) = π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)/2 π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (3.15)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(2400)(9.81)(3.15) 2 = 116808(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = (π‘šπ‘Žπ‘ π‘  π‘œπ‘“ π‘‘π‘Žπ‘›π‘˜)(𝑔)/2 π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = (22000)(9.81) 2 = 107910 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  (0.5)(0.75)( √13.8 2 6 )(1000000)(3.15)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) = 116808(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) + 107910 Height of slab = .176 meters ii. Dishing slab thickness calculation: The maximum shear will occur at the left and right of the slab, where it is supported by the soil. Calculations will find shear at the left support. (0.5)( π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ)( πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž)( π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) = π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ + π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ βˆ’ π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’)(𝑔)(π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘ π‘™π‘Žπ‘) π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = (3.15)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)(2400)(9.81)(3.15) = 233615(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘)
  • 18. π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = (π‘šπ‘Žπ‘ π‘  π‘œπ‘“ π‘‘π‘Žπ‘›π‘˜)(𝑔) π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘’π‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = (22000)(9.81) = 215820 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘œπ‘€π‘›π‘€π‘Žπ‘Ÿπ‘‘ π‘“π‘œπ‘Ÿπ‘π‘’ 2 π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 233615(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) + 215820 2 π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 107910 + 116808(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) (0.5)(0.75)( √13.8 2 6 )(1000000)(3.15)(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) = 233615(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) + 215820 βˆ’ 107910βˆ’ 116808(β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘) Height of slab = .176 meters iii. Final slab thickness Both cases result in the same thickness slab. Therefore, the slab must be at least .176 meters thick. For ease of construction, the slab will be designed as 0.18 meters thick b. Design moment calculation: The slab is relatively thin, so bending moments in the slab should be considered for the dishing and bowling case. These moments will be used to calculate the needed steel reinforcement. To calculate the design moment, we need to determine what part of the slab will experience the most moment. We will assume the slab dimensions of 3.15 x 3.15 x 0.18 meters as given, due to the amount of spacing needed for the pump and valves. The previous figures and table of constraints will be used. i. doming moment calculation In the doming case, the slab acts like a cantilever, so maximum moment will be at the center of the slab. 𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜)(π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) + (π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) From doming shear calculations π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = 107910 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘ = 116808(0.18) = 21025 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (107910)(0.6366) + (21025)( 1.575 2 ) 𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 85253 π‘›π‘’π‘€π‘‘π‘œπ‘› π‘šπ‘’π‘‘π‘’π‘Ÿπ‘ 
  • 19. 𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ βˆ— π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ 𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 85253 βˆ— 1.2 = 102303 𝑁 βˆ— π‘š ii. dishing moment calculation In the dishing case, the slab acts like a simply supported beam, so maximum moment will be at the center of the slab. 𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = ( π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘–π‘”β„Žπ‘‘ β„Žπ‘Žπ‘™π‘“ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜)( π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) + ( π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘ π‘™π‘Žπ‘ π‘€π‘’π‘–π‘”β„Žπ‘‘)( π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) βˆ’ (π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’)(π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’) From dishing shear calculations π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘–π‘”β„Žπ‘‘ β„Žπ‘Žπ‘™π‘“ π‘œπ‘“ π‘€π‘Žπ‘‘π‘’π‘Ÿ π‘‘π‘Žπ‘›π‘˜ = 215820 2 = 107910 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘“π‘œπ‘Ÿπ‘π‘’ π‘“π‘Ÿπ‘œπ‘š π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ π‘ π‘™π‘Žπ‘ = 233615(0.18) 2 = 21025 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  π‘…π‘–π‘”β„Žπ‘‘ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’ = 107910 + 116808(0.18) = 128935 π‘›π‘’π‘€π‘‘π‘œπ‘›π‘  𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = (107910)(0.6366) + (21025)( 1.575 2 ) βˆ’ 128935(1.575) 𝐡𝑒𝑛𝑑𝑖𝑛𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = βˆ’117820 π‘›π‘’π‘€π‘‘π‘œπ‘› π‘šπ‘’π‘‘π‘’π‘Ÿπ‘  𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ βˆ— π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ 𝐷𝑒𝑠𝑖𝑔𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ = 117820 βˆ— 1.2 = 141384 𝑁 βˆ— π‘š c. Rebar design calculations For rebar design, Whitney Stress Block theory will be used. We need to solve for the area of steel to be used. Tensile stresses will be at the top of the slab during doming, and tensile stresses will be at the bottom of the slab during dishing. Due to the narrow slab and the existence of positive and negative moments, 2 rows of steel will be used. We will assume the bars are placed 5 cm from the faces of the slab Design Inputs Concrete Design Compressive Stress (f'c) 13.8 MPa Yield Stress of steel (fy) 420 MPa Base (b) 0.18 meter Dishing Rebar Design Moment 141384 N-m Doming Rebar Design Moment 102303 N-m Safety Factor (phi) 0.9 Depth (d) 0.13 meter Width 3.15 meter Modulus of elasticity of steel (Es) 200 GPa a to c ratio (Ξ²) 0.85
  • 20. Dishing force diagram Doming force diagram 𝛽𝑐 = π‘Ž Dishing force equilibrium: π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ + 𝑠𝑑𝑒𝑒𝑙 π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ = 𝑠𝑑𝑒𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑙𝑒 π‘“π‘œπ‘Ÿπ‘π‘’ (𝑓′ 𝑐)(𝛽𝑐1)(π‘€π‘–π‘‘π‘‘β„Ž) + (π΄π‘ π‘‡π‘œπ‘)(𝐸𝑠)(.003)(𝑐1 βˆ’ .05)/𝑐1 = (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(𝑓𝑦) (13800000)(0.85 βˆ— 𝑐1)(3.15) + (π΄π‘ π‘‡π‘œπ‘)(200000000000)(.003)(𝑐1 βˆ’ .05)/𝑐1 = (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(420000000) (36949500)(𝑐1)+ (π΄π‘ π‘‡π‘œπ‘)(600000000)(𝑐1 βˆ’ .05)/𝑐1 = (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(420000000) Doming force equilibrium: π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ + 𝑠𝑑𝑒𝑒𝑙 π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘£π‘’ π‘“π‘œπ‘Ÿπ‘π‘’ = 𝑠𝑑𝑒𝑒𝑙 𝑑𝑒𝑛𝑠𝑖𝑙𝑒 π‘“π‘œπ‘Ÿπ‘π‘’ (𝑓′ 𝑐)(𝛽𝑐2)(π‘€π‘–π‘‘π‘‘β„Ž) + (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(𝐸𝑠)(.003)(𝑐2βˆ’ .05)/𝑐2 = (π΄π‘ π‘‡π‘œπ‘)(𝑓𝑦) (13800000)(0.85βˆ— 𝑐2)(3.15)+ (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(200000000000)(.003)(𝑐2 βˆ’ .05)/𝑐2 = (π΄π‘ π‘‡π‘œπ‘)(420000000) (36949500)(𝑐2)+ (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(600000000)(𝑐2 βˆ’ .05)/𝑐2 = (π΄π‘ π‘‡π‘œπ‘)(420000000) Dishing Moment Equilibrium: ( 𝑓′ 𝑐)( 𝛽𝑐1)( π‘€π‘–π‘‘π‘‘β„Ž)(𝑑 βˆ’ 𝛽𝑐1 2 ) + (π΄π‘ π‘‡π‘œπ‘)(𝐸𝑠)(.003)(𝑐1 βˆ’ .05)(.05)/𝑐1 = π‘‘π‘–π‘ β„Ž π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ (13800000)(0.85βˆ— 𝑐1)(3.15)(. 13 βˆ’ 0.85 βˆ— 𝑐1 2 ) + (π΄π‘ π‘‡π‘œπ‘)(200000000000)(.003)(𝑐1 βˆ’ .05)(.08)/𝑐1 = 141384 0.9 (36949500)(𝑐1)(.13 βˆ’ .425(𝑐1))+ (π΄π‘ π‘‡π‘œπ‘)(48000000)(𝑐1βˆ’ .05)/𝑐1 = 157093 Doming Moment Equilibrium: ( 𝑓′ 𝑐)( 𝛽𝑐2)( π‘€π‘–π‘‘π‘‘β„Ž)(𝑑 βˆ’ 𝛽𝑐2 2 ) + (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(𝐸𝑠)(.003)(𝑐2 βˆ’ .05)(.08)/𝑐2 = π‘‘π‘œπ‘šπ‘’ π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘ π‘Žπ‘“π‘’π‘‘π‘¦ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ
  • 21. (13800000)(0.85 βˆ— 𝑐2)(3.15)(. 13 βˆ’ 0.85 βˆ— 𝑐2 2 ) + (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(200000000000)(.003)(𝑐2 βˆ’ .05)(.05)/𝑐2 = 102303 0.9 (36949500)(𝑐2)(.13 βˆ’ .425(𝑐2)) + (π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š)(48000000)(𝑐2 βˆ’ .05)/𝑐2 = 113670 With four equations and four unknowns, c1, c2, AsTop, and AsBottom, these values can be determined. Using Matlab: AsTop = .0020 m2 AsBottom = .0032 m2 π‘‡π‘œπ‘‘π‘Žπ‘™ 𝐷𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 = π΄π‘ π‘‡π‘œπ‘ + π΄π‘ π΅π‘œπ‘‘π‘‘π‘œπ‘š πΆπ‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ = . 0020 + .0032 . 18 βˆ— 3.15 = 0.917% π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 𝑛𝑒𝑒𝑑𝑒𝑑 π‘Žπ‘™π‘œπ‘›π‘” π‘‘π‘œπ‘ π‘œπ‘“ π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 = .0020 π‘š2 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 𝑛𝑒𝑒𝑑𝑒𝑑 π‘Žπ‘™π‘œπ‘›π‘” π‘π‘œπ‘‘π‘‘π‘œπ‘š π‘œπ‘“ π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 = .0032 π‘š2 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ = 0.000129032 π‘š2 π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘‘π‘œπ‘ π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 = .0020 .000129032 = 16 π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #4 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘π‘œπ‘‘π‘‘π‘œπ‘š π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 = .0032 .000129032 = 25 π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ = 0.0002 π‘š2 π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘‘π‘œπ‘ π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 = .0020 .0002 = 10 π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ #5 π‘Ÿπ‘’π‘π‘Žπ‘Ÿ π‘π‘œπ‘‘π‘‘π‘œπ‘š π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠 = .0032 .0002 = 16 Calculations such as this can be easily repeated for other rebar sizes. Selection of rebar will depend on local prices of steel. Drawings will be for #4 rebar, due to its known price in Nicaragua. Rebar will be equally spaced, with 10 cm or greater clearance from the edges. The density of steel of 0.917% is greater than the recommended value of 0.1% of steel needed to prevent cracking from ACI committee 360, so this design is good.
  • 22. d. Landslide Risk Analysis This storage facility will be placed on a sloped hill. The construction area will be flattened prior to construction, but a mass of soil will sit uphill of the facility. In heavy rains some of the hillside may flow downhill and impact the walls of the storage facility. These calculations determine the resistance of the walls to a mass of fluid soil pushing against it. Specifically these calculations will determine the maximum height of flowing soil that the wall can resist. If soil is determined to be flowing near this height, then the wall must be reinforced and braced at the expected centroid of the fluid force. Calculation Inputs Density of Soil 9270 N/m^3 Yield Stress of Steel (fy) 420 MPa Width of Wall 5.6 meter Height of Wall 2.4 meter Thickness of Wall 0.15 meter Depth of rebar in wall 0.075 meter i. Moment Strength of the CMU wall Cross section of wall: Number of rebar = 12 #4 rebar π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 = 2.36 𝑖𝑛2 = .00152 π‘š2 Using Whitney Stress Block theory π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘“π‘œπ‘Ÿπ‘π‘’ 𝑖𝑛 𝑠𝑑𝑒𝑒𝑙 βˆ— π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ = π‘šπ‘œπ‘šπ‘’π‘›π‘‘ (𝑓𝑦)(π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙)(𝑑 βˆ’ π‘Ž 2 ) = π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘Ž = (𝑓𝑦)(π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙) (0.85)(𝑓’𝑐)(π‘€π‘–π‘‘π‘‘β„Ž) (𝑓𝑦)(𝐴𝑠)(𝑑 βˆ’ (𝑓𝑦)(π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙) (1.7)(𝑓’𝑐)(π‘€π‘–π‘‘π‘‘β„Ž) ) = π‘šπ‘œπ‘šπ‘’π‘›π‘‘ (420000000)(.00152)(.075βˆ’ (420000000)(.00152) (1.7)(21000000)(5.6) ) = π‘€π‘œπ‘šπ‘’π‘›π‘‘ π‘€π‘œπ‘šπ‘’π‘›π‘‘ = 45844 𝑁 βˆ— π‘š
  • 23. ii. Height of fluid soil needed to break the wall Assuming the soil is perfectly fluid, then as it accumulates up against a wall segment it will exert a hydrostatic pressure against the wall. This pressure then exerts a moment on the fixed end of the wall in the ground. Force diagram: πΉπ‘œπ‘Ÿπ‘π‘’ = (π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’) βˆ— (π‘Žπ‘Ÿπ‘’π‘Ž) πΉπ‘œπ‘Ÿπ‘π‘’ = (𝑒𝑛𝑖𝑑 π‘€π‘’π‘–π‘”β„Žπ‘‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘) 2 βˆ— (β„Žπ‘’π‘–π‘”β„Žπ‘‘)(π‘Šπ‘–π‘‘π‘‘β„Ž) π‘€π‘œπ‘šπ‘’π‘›π‘‘ = πΉπ‘œπ‘Ÿπ‘π‘’ βˆ— π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘€π‘œπ‘šπ‘’π‘›π‘‘ = (𝑒𝑛𝑖𝑑 π‘€π‘’π‘–π‘”β„Žπ‘‘)(β„Žπ‘’π‘–π‘”β„Žπ‘‘) 2 βˆ— (β„Žπ‘’π‘–π‘”β„Žπ‘‘)(π‘Šπ‘–π‘‘π‘‘β„Ž) βˆ— ( β„Žπ‘’π‘–π‘”β„Žπ‘‘ 3 ) 45844 = (9270)(β„Ž) 2 βˆ— (β„Ž)(5.6)βˆ— β„Ž 3 β„Ž = 1.74 π‘šπ‘’π‘‘π‘’π‘Ÿπ‘  π‘œπ‘“ 𝑓𝑙𝑒𝑖𝑑 π‘ π‘œπ‘–π‘™ π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘ π‘œπ‘“ π‘“π‘œπ‘Ÿπ‘π‘’ = 1.74/3 = 0.58 π‘šπ‘’π‘‘π‘’π‘Ÿπ‘ 
  • 24. Storage Facility Construction Notes a. CMU wall vertical rebar Unlike the pump station rebar, there will be 2 pieces of rebar in each indicated cell. These walls are longer and taller than the pump station so the extra rebar is to provide greater strength. b. CMU wall horizontal rebar At specific heights horizontal rebar will be placed in the wall. This horizontal rebar prevents the wall from bending around a vertical axis. The CMU blocks must have notches cut into them so that the rebar can fit. Also, concrete must be poured around the rebar to secure it to the CMU wall. c. CMU wall gaps The wall is designed to have periodic vertical gaps where CMU blocks are not mortared together. A long continuous wall will randomly crack due to shrinkage, moisture, and thermal effects. Random cracks could compromise the structural strength of the wall and should be avoided. The designed gaps break the wall up into shorter segments that are less likely to randomly crack. Also, these gaps act like controlled cracks so we know where the weaknesses are located and we know where to place reinforcement. d. Landslide risk The walls as designed can withstand a landslide of perfectly fluid soil that is 1.74 meters tall. If soil accumulates past this height then additional reinforcement of the walls will be needed. This can be accomplished by adding steel reinforcement or steel bracing on the inside of the structure. It must be attached to a point on the wall that is 0.6 meters or higher off the ground to be effective because this is the height where the centroid of the landslide force will occur.