SlideShare a Scribd company logo
An autoignition performance
comparison of chemical
kinetics models for n-heptane
Kyle Niemeyer
Oregon State University
WSSCI Spring 2016 Meeting
21 March 2016
Contact: Kyle.Niemeyer@oregonstate.edu
Motivation
2
Motivation
1. Establish performance of various published models
for n-heptane
2
Motivation
1. Establish performance of various published models
for n-heptane
➡ PRF, TRF, & TRF+ethanol mixtures
2
Motivation
1. Establish performance of various published models
for n-heptane
➡ PRF, TRF, & TRF+ethanol mixtures
2. Enable more robust performance testing of models
2
Motivation
1. Establish performance of various published models
for n-heptane
➡ PRF, TRF, & TRF+ethanol mixtures
2. Enable more robust performance testing of models
➡ Open-source validation software, and publish full
set of experimental data used
2
Motivation
1. Establish performance of various published models
for n-heptane
➡ PRF, TRF, & TRF+ethanol mixtures
2. Enable more robust performance testing of models
➡ Open-source validation software, and publish full
set of experimental data used
3. Encourage openness in combustion/chemical
kinetics research
2
Similar work
3
Similar work
• Sheen & Tsang (2014)1: comparison of n-heptane
models
• Only three experimental ignition datasets
• Four models considered; LLNL model also here
• Olm et al. (2014 & 2015): comprehensive
performance comparison of models for hydrogen2
and syngas3 combustion
3
Models
4
Models
4
Name Coverage # Species # Reactions Ar? Reference
Tsurushima-2009 PRF 33 48 4
ERC-2013 PRF 73 454 5
Ogura-2007 PRF+EtOH 634 3724 ✓ 6
Saisirirat-2011 PRF+EtOH 1046 8576 7
CNRS-2009 TRF 536 2987 ✓ 8
Dalian-2013 TRF 56 191 9
Andrae-2013 TRF 138 641 ✓ 10
LLNL-2012 TRF 1388 10479 ✓ 11
Princeton-2009 TRF+EtOH 469 1267 ✓ 12
Cancino-2011 TRF+EtOH 1130 9158 ✓ 13
Tsinghua-2014 TRF+EtOH 91 411 ✓ 14
CRECK-2014 TRF+EtOH 317 12353 ✓ 15
Aachen-2015 TRF+EtOH 339 1693 ✓ 16
Experimental data
5
Experimental data
5
Study P (atm) T (K) ϕ
Vermeer et al.17 1.4–4.1 1270–1580 1.0
Burcat et al.18 2.0–11.8 1137–1661 0.5–2.0
Ciezki & Adomeit19 3.16–41.5 660–1350 0.5–3.0
Fieweger et al.20 39.5 700–1200 1.0
Colket & Spadaccini21 4.1–7.8 1229–1427 0.5
Horning et al.22 1.15–5.71 1329–1547 0.5–2.0
Gauthier et al.23 2–60 800–1400 1.0
Smith et al.24 1, 2 1150–1700 0.5–2.0
Herzler et al.25 49.3 720–1130 0.1–0.4
Sakai et al.26 2 1319–1567 1.0
Shen et al.27 10.5–53.6 786–1396 0.25–1.0
Hartmann et al.28 39.5 692–1275 0.5, 1.0
Vandersickel et al.29 19.7–64.2 700–1100 0.5–1.0
Karwat et al.30 9 660–707 1.0
6
Approach
7
Approach
• Similar approach to that of Olm et al.2,3
:
7
Approach
• Similar approach to that of Olm et al.2,3
:
• Obtained experimental data and encoded into modified
ReSpecTh31
XML format
7
Approach
• Similar approach to that of Olm et al.2,3
:
• Obtained experimental data and encoded into modified
ReSpecTh31
XML format
• eval_kinetic_models32
software parsed XML files and
set up Cantera-based33
autoignition simulations
7
Approach
• Similar approach to that of Olm et al.2,3
:
• Obtained experimental data and encoded into modified
ReSpecTh31
XML format
• eval_kinetic_models32
software parsed XML files and
set up Cantera-based33
autoignition simulations
• Model performance with dataset evaluated using error
function





and absolute deviation function
7
Ei =
1
Ni
NiX
j=1
log ⌧exp
ij log ⌧sim
ij
(log ⌧exp
ij )
!2
Di =
1
Ni
NiX
j=1
log ⌧exp
ij log ⌧sim
ij
(log ⌧exp
ij )
The details: uncertainty
Dataset standard
deviation σi:
• Spline fit of
experimental data2,3
• σi = standard deviation
of difference between
data and fit
• Minimum allowable: 10%
8
The details: ignition modeling
9
The details: ignition modeling
• Most shock tube experiments: modeled as
adiabatic constant volume reactor
9
The details: ignition modeling
• Most shock tube experiments: modeled as
adiabatic constant volume reactor
• Cases with preignition pressure increase: reported
dP/dt employed using





9
P(t) = P0 +
Z tend
0
✓
dP
dt
◆
dt
v(t) = v0
⇢0
⇢(t) s0
The details: ignition modeling
• Most shock tube experiments: modeled as
adiabatic constant volume reactor
• Cases with preignition pressure increase: reported
dP/dt employed using





9
P(t) = P0 +
Z tend
0
✓
dP
dt
◆
dt
v(t) = v0
⇢0
⇢(t) s0
then volume history applied as reactor wall
velocity
The details: ReSpecTh
10
# n-heptane ignition delay from Colket and Spadaccini 2001
# P (atm), T (K), Ignition Delay (µs)
# Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584
7.72 ,1393 ,85
7.78 ,1299 ,345
7.04 ,1235 ,631
6.38 ,1299 ,348
7.53 ,1372 ,134
6.08 ,1236 ,678
7.35 ,1340 ,148
6.63 ,1328 ,211
6.94 ,1395 ,89
CSV file21
The details: ReSpecTh
10
Obtaining experimental data:
# n-heptane ignition delay from Colket and Spadaccini 2001
# P (atm), T (K), Ignition Delay (µs)
# Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584
7.72 ,1393 ,85
7.78 ,1299 ,345
7.04 ,1235 ,631
6.38 ,1299 ,348
7.53 ,1372 ,134
6.08 ,1236 ,678
7.35 ,1340 ,148
6.63 ,1328 ,211
6.94 ,1395 ,89
CSV file21
The details: ReSpecTh
10
Obtaining experimental data:
PDF table18
# n-heptane ignition delay from Colket and Spadaccini 2001
# P (atm), T (K), Ignition Delay (µs)
# Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584
7.72 ,1393 ,85
7.78 ,1299 ,345
7.04 ,1235 ,631
6.38 ,1299 ,348
7.53 ,1372 ,134
6.08 ,1236 ,678
7.35 ,1340 ,148
6.63 ,1328 ,211
6.94 ,1395 ,89
CSV file21
The details: ReSpecTh
10
Obtaining experimental data:
PDF table18
Aps
mild ignition Ts=1040 K
I I I I
t [ms3
I Fig. 2. Pressure-time histories for a s~oichio-
~- metric benzene-air mixture.
region the dependence of the ignition delay
time upon temperature can be expressed ap-
proximately by straight lines in the Arrhenius
plot. The corresponding global activation ener-
gies decrease with increasing pressure.
For Ps around 13.5 bar the dependence be-
comes strongly nonlinear in a temperature
range between 950 and 700 K. In this interme-
diate temperature region a decrease in ignition
delay time is observed with decreasing temper-
atures. This leads to an S-shaped curve with a
maximum and a minimum. Between both ex-
termal values the dependence possesses a neg-
ative temperature coefficient. The position of
this transition region shifts to higher tempera-
tures with increasing pressures Ps- In the low-
temperature region--below approximately 700
K--the dependence of the ignition delay time
upon temperature can again be expressed by a
linear dependence. Because the measuring time
of the shock tube is limited, the delay times
could be determined only above 660 K, so that
only a short part of the low-temperature region
could be investigated in our experiments. The
influence of pressure on the ignition delay is
most pronounced in the transition region,
smallest for low temperatures and of varying
degree in the high-temperature region, where
with increasing temperature this dependence
becomes smaller.
"1~z
[ms]
101
100
1o-1
162
,, 3.2bar ,,./--~-~.~ /.-'~
o 6.s ,, ./  '---J.//
O I£3 " / ' / n []  ..~-/
30 ,,,, .o
,~_ D,,- x i<  3 bar 1 Comoufofion
~o/"°E~/" × ~+.---+-.---L_._.+_.~..~" ~ X13 " ,, [ , " ,
t/~ / /" !.ine of /+0 " j el'. a[.
/.z~ ~/ ./ pressure variation
,/~// T=9/,0 K (Fig.11) T
/ 1200 1000 800 [K]
I I I i I I I I I l I
0:8 1.o 1.2 114 loooK
T
Fig. 3. Ignition delay times.
Figure19
# n-heptane ignition delay from Colket and Spadaccini 2001
# P (atm), T (K), Ignition Delay (µs)
# Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584
7.72 ,1393 ,85
7.78 ,1299 ,345
7.04 ,1235 ,631
6.38 ,1299 ,348
7.53 ,1372 ,134
6.08 ,1236 ,678
7.35 ,1340 ,148
6.63 ,1328 ,211
6.94 ,1395 ,89
CSV file21
The details: ReSpecTh
10
Obtaining experimental data:
PDF table18
Aps
mild ignition Ts=1040 K
I I I I
t [ms3
I Fig. 2. Pressure-time histories for a s~oichio-
~- metric benzene-air mixture.
region the dependence of the ignition delay
time upon temperature can be expressed ap-
proximately by straight lines in the Arrhenius
plot. The corresponding global activation ener-
gies decrease with increasing pressure.
For Ps around 13.5 bar the dependence be-
comes strongly nonlinear in a temperature
range between 950 and 700 K. In this interme-
diate temperature region a decrease in ignition
delay time is observed with decreasing temper-
atures. This leads to an S-shaped curve with a
maximum and a minimum. Between both ex-
termal values the dependence possesses a neg-
ative temperature coefficient. The position of
this transition region shifts to higher tempera-
tures with increasing pressures Ps- In the low-
temperature region--below approximately 700
K--the dependence of the ignition delay time
upon temperature can again be expressed by a
linear dependence. Because the measuring time
of the shock tube is limited, the delay times
could be determined only above 660 K, so that
only a short part of the low-temperature region
could be investigated in our experiments. The
influence of pressure on the ignition delay is
most pronounced in the transition region,
smallest for low temperatures and of varying
degree in the high-temperature region, where
with increasing temperature this dependence
becomes smaller.
"1~z
[ms]
101
100
1o-1
162
,, 3.2bar ,,./--~-~.~ /.-'~
o 6.s ,, ./  '---J.//
O I£3 " / ' / n []  ..~-/
30 ,,,, .o
,~_ D,,- x i<  3 bar 1 Comoufofion
~o/"°E~/" × ~+.---+-.---L_._.+_.~..~" ~ X13 " ,, [ , " ,
t/~ / /" !.ine of /+0 " j el'. a[.
/.z~ ~/ ./ pressure variation
,/~// T=9/,0 K (Fig.11) T
/ 1200 1000 800 [K]
I I I i I I I I I l I
0:8 1.o 1.2 114 loooK
T
Fig. 3. Ignition delay times.
Figure19
# n-heptane ignition delay from Colket and Spadaccini 2001
# P (atm), T (K), Ignition Delay (µs)
# Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584
7.72 ,1393 ,85
7.78 ,1299 ,345
7.04 ,1235 ,631
6.38 ,1299 ,348
7.53 ,1372 ,134
6.08 ,1236 ,678
7.35 ,1340 ,148
6.63 ,1328 ,211
6.94 ,1395 ,89
CSV file21 Email plea
The details: ReSpecTh
11
<commonProperties>
<property name="initial composition">
<component><speciesLink preferredKey="nC7H16" InChI="1S/C7H16/c1-3-5-7-6-4-2/h3-7H2,1-2H3"/>
<amount units="mole fraction">0.010</amount>
</component>
<component><speciesLink preferredKey="O2" InChI="1S/O2/c1-2"/>
<amount units="mole fraction">0.110</amount>
</component>
<component><speciesLink preferredKey="Ar" InChI="1S/Ar"/>
<amount units="mole fraction">0.880</amount>
</component>
</property>
</commonProperties>
<dataGroup id="dg1" label="ignition delay">
<dataGroupLink dataGroupID="" dataPointID=""/>
<property id="x1" label="T" name="temperature" units="K" description="Temperature behind reflected shock wave"/>
<property id="x2" label="P" name="pressure" units="atm" description="Pressure behind reflected shock wave"/>
<property id="x3" label="tau" name="ignition delay" units="us" description="Ignition delay time"/>
<dataPoint><x2>4.6600e+00</x2><x1>1.2600e+03</x1><x3>3.2300e+02</x3></dataPoint>
<dataPoint><x2>5.1700e+00</x2><x1>1.4100e+03</x1><x3>7.0000e+01</x3></dataPoint>
<dataPoint><x2>4.5200e+00</x2><x1>1.3230e+03</x1><x3>1.7000e+02</x3></dataPoint>
<dataPoint><x2>2.0300e+00</x2><x1>1.2680e+03</x1><x3>6.4700e+02</x3></dataPoint>
<dataPoint><x2>3.1500e+00</x2><x1>1.3410e+03</x1><x3>1.5500e+02</x3></dataPoint>
<dataPoint><x2>3.0800e+00</x2><x1>1.6020e+03</x1><x3>2.5000e+01</x3></dataPoint>
<dataPoint><x2>9.2300e+00</x2><x1>1.3610e+03</x1><x3>8.7000e+01</x3></dataPoint>
<dataPoint><x2>8.3400e+00</x2><x1>1.2860e+03</x1><x3>2.0000e+02</x3></dataPoint>
<dataPoint><x2>1.1810e+01</x2><x1>1.5650e+03</x1><x3>1.0000e+00</x3></dataPoint>
</dataGroup>
<ignitionType target="p" type="d/dt max" />
ReSpecTh XML
Model performance
12
13
Error function
14
Absolute deviation
15
Analysis of Aachen-2015
16
Analysis of Aachen-2015
*Outliers not displayed
17
Aachen-2015 absolute deviation
Discussion
18
Discussion
• Best performing models: Cancino-2011,
Tsurushima-2009, ERC-2013, Dalian-2013, &
Aachen-2015
18
Discussion
• Best performing models: Cancino-2011,
Tsurushima-2009, ERC-2013, Dalian-2013, &
Aachen-2015
• Tsurushima-2009, ERC-2013, & Dalian-2013: reduced
models, with optimized rate parameters based on
experimental data.
18
Discussion
• Best performing models: Cancino-2011,
Tsurushima-2009, ERC-2013, Dalian-2013, &
Aachen-2015
• Tsurushima-2009, ERC-2013, & Dalian-2013: reduced
models, with optimized rate parameters based on
experimental data.
• Aachen-2015: calibrated using uncertainty
quantification technique
18
Discussion
• Best performing models: Cancino-2011,
Tsurushima-2009, ERC-2013, Dalian-2013, &
Aachen-2015
• Tsurushima-2009, ERC-2013, & Dalian-2013: reduced
models, with optimized rate parameters based on
experimental data.
• Aachen-2015: calibrated using uncertainty
quantification technique
• Room for improvement in all models
18
Future work
19
Future work
• This work is first step towards comparison of
models for ignition of PRFs, TRFs, and TRF+EtOH
mixtures.
19
Future work
• This work is first step towards comparison of
models for ignition of PRFs, TRFs, and TRF+EtOH
mixtures.
• Explore alternate means to estimate
experimental variability
19
Future work
• This work is first step towards comparison of
models for ignition of PRFs, TRFs, and TRF+EtOH
mixtures.
• Explore alternate means to estimate
experimental variability
• All experimental data in XML format and
automatic analysis software
eval_kinetic_models will be released openly.
19
Thank you! Questions?
20
Acknowledgements: Dr. Bryan Weber; OSU School of Mechanical,
Industrial, and Manufacturing Engineering
Thank you! Questions?
20
?
Acknowledgements: Dr. Bryan Weber; OSU School of Mechanical,
Industrial, and Manufacturing Engineering
Thank you! Questions?
20
?
Acknowledgements: Dr. Bryan Weber; OSU School of Mechanical,
Industrial, and Manufacturing Engineering
References (1)
1. Sheen DA, Tsang W. A comparison of literature models for the oxidation of normal heptane. Combust Flame 2014;161:1984–92. doi:10.1016/j.combustflame.
2014.01.014.
2. Olm C, Zsély IG, Varga T, Curran HJ, Turányi T. Comparison of the performance of several recent syngas combustion mechanisms. Combust Flame
2015;162:1793–812. doi:10.1016/j.combustflame.2014.12.001
3. Olm C, Zsély IG, Pálvölgyi R, Varga T, Nagy T, Curran HJ, et al. Comparison of the performance of several recent hydrogen combustion mechanisms.
Combust Flame 2014;161:2219–34. doi:10.1016/j.combustflame.2014.03.006
4. Tsurushima T. A new skeletal PRF kinetic model for HCCI combustion. Proc Combust Inst 2009;32:2835–41. doi:10.1016/j.proci.2008.06.018.
5. Wang H, Yao M, Reitz RD. Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations.
Energy Fuels 2013;27:7843–53. doi:10.1021/ef401992e
6. Ogura T, Sakai Y, Miyoshi A, Koshi M, Dagaut P. Modeling of the Oxidation of Primary Reference Fuel in the Presence of Oxygenated Octane Improvers:
Ethyl Tert-Butyl Ether and Ethanol. Energy Fuels 2007;21:3233–9. doi:10.1021/ef700321e
7. Saisirirat P, Togbe C, Togbe C, Chanchaona S, Foucher F, Foucher F, et al. Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n-
heptane and ethanol/n-heptane blends. Proc Combust Inst 2011;33:3007–14. doi:10.1016/j.proci.2010.07.016
8. Anderlohr JM, Bounaceur R, Da Cruz AP, Battin-Leclerc F. Modeling of autoignition and NO sensitization for the oxidation of IC engine surrogate fuels.
Combust Flame 2009;156:505–21. doi:10.1016/j.combustflame.2008.09.009
9. Liu Y-D, Jia M, Xie M-Z, Pang B. Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel with Application to Gasoline Surrogate
Fuels for Computational Fluid Dynamics Engine Simulation. Energy Fuels 2013;27:4899–909. doi:10.1021/ef4009955
10. Andrae JCG. Comprehensive chemical kinetic modeling of toluene reference fuels oxidation. Fuel 2013;107:740–8. doi:10.1016/j.fuel.2013.01.070
11. Mehl M, Sitz WJ, Westbrook CK, Curran HJ, LLNL gasoline surrogate v1.0, https://combustion.llnl.gov/mechanisms/surrogates/gasoline-surrogate,
Accessed: 2016-01-13 (March 2012).
12. Haas FM, Chaos M, Chaos M, Dryer FL, Dryer FL. Low and intermediate temperature oxidation of ethanol and ethanol–PRF blends: An experimental and
modeling study. Combust Flame 2009;156:2346–50. doi:10.1016/j.combustflame.2009.08.012
13. Cancino LR, Fikri M, Oliveira AAM, Schulz C, Schulz C. Ignition delay times of ethanol-containing multi-component gasoline surrogates: Shock-tube
experiments and detailed modeling. Fuel 2011;90:1238–44. doi:10.1016/j.fuel.2010.11.003
14. Zhong B-J, Zheng D. A chemical mechanism for ignition and oxidation of multi-component gasoline surrogate fuels. Fuel 2014;128:458–66. doi:10.1016/
j.fuel.2014.03.044
15. CRECK Modeling Group, Primary Reference Fuels (PRF) + PAH + alcohols + ethers (version 1412), http://www.chem.polimi.it/CRECKModeling, accessed:
2016-01-11 (December 2014).
16. Cai L, Pitsch H. Optimized chemical mechanism for combustion of gasoline surrogate fuels. Combust Flame 2015;162:1623–37. doi:10.1016/j.combustflame.
2014.11.018
21
References (2)
17. Vermeer DJ, Meyer JW, Oppenheim AK. Auto-ignition of hydrocarbons behind reflected shock waves. Combust Flame 1972;18:327–36. doi:10.1016/
S0010-2180(72)80183-4
18. Burcat A, Farmer RF, Matula RA. Shock initiated ignition in heptane-oxygen-argon mixtures. 13th Int. Symp. Shock Tubes Waves, 1981, 826–33.
19. Ciezki HK, Adomeit G. Shock-tube investigation of self-ignition of n-heptane–air mixtures under engine relevant conditions. Combust Flame
1993;93:421–33. doi:10.1016/0010-2180(93)90142-P
20. Fieweger K, Blumenthal R, Adomeit G. Self-ignition of SI engine model fuels: a shock tube investigation at high pressure. Combust Flame
1997;109:599–619. doi:10.1016/S0010-2180(97)00049-7
21. Colket MB, Spadaccini LJ. Scramjet fuels autoignition study. J. Propul. Power 17 (2) (2001) 315–323. doi:10.2514/2.5744
22. Horning DC, Davidson DF, Hanson RK. Study of the High-Temperature Autoignition of n-Alkane/O2/Ar Mixtures. J Propul Power 2002;18:363–71.
23. Gauthier BM, Davidson DF, Hanson RK. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures. Combust
Flame 2004;139:300–11. doi:10.1016/j.combustflame.2004.08.015
24. Smith JM, Simmie JM, Curran HJ. Autoignition of heptanes; experiments and modeling. Int J Chem Kinet 2005;37:728–36. doi:10.1002/kin.20120
25. Herzler J, Jerig L, Roth P. Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures. Proc
Combust Inst 2005;30:1147–53. doi:10.1016/j.proci.2004.07.008
26. Sakai Y, Ozawa H, Ogura T, Miyoshi A, Koshi M, Pitz WJ. Effects of Toluene Addition to Primary Reference Fuel at High Temperature. Warrendale, PA:
SAE International; 2007. doi:10.4271/2007-01-4104
27. Shen H-PS, Steinberg J, Vanderover J, Oehlschlaeger MA. A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-
Tetradecane at Elevated Pressures. Energy Fuels 2009;23:2482–9. doi:10.1021/ef8011036
28. Hartmann M, Gushterova I, Gushterova I, Fikri M, Schulz C, Schulz C, et al. Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures:
High-pressure shock-tube experiments and kinetics modeling. Combust Flame 2011;158:172–8. doi:10.1016/j.combustflame.2010.08.005
29. Vandersickel A, Hartmann M, Vogel K, Wright YM, Fikri M, Starke R, et al. The autoignition of practical fuels at HCCI conditions: High-pressure
shock tube experiments and phenomenological modeling. Fuel 2012;93:492–501. doi:10.1016/j.fuel.2011.10.062
30. Karwat DMA, Wagnon SW, Wooldridge MS, Westbrook CK. Low-temperature speciation and chemical kinetic studies of n-heptane. Combust Flame
2013;160:2693–706. doi:10.1016/j.combustflame.2013.06.029
31. Varga T, ReSpecTh kinetics data format specification, Documentation version v1.0, http://respecth.hu/ (Mar. 2015).
32. Niemeyer KE. eval_kinetic_models, GitHub. https://github.com/kyleniemeyer/eval_kinetic_models
33. Goodwin DG, Moffat HK, Speth RL. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes.
http://www.cantera.org, version 2.2.0 (2015).
22

More Related Content

What's hot

New chm 151_unit_10_power_points
New chm 151_unit_10_power_pointsNew chm 151_unit_10_power_points
New chm 151_unit_10_power_pointscaneman1
 
Physics ib ia
Physics ib iaPhysics ib ia
Physics ib ia
Writers Per Hour
 
screen for expl prop in high pressure vessel_Whitmore Knorr_2007
screen for expl  prop  in high pressure vessel_Whitmore Knorr_2007screen for expl  prop  in high pressure vessel_Whitmore Knorr_2007
screen for expl prop in high pressure vessel_Whitmore Knorr_2007Sara Kotnik
 
Walker Preliminary Exam
Walker Preliminary ExamWalker Preliminary Exam
Walker Preliminary ExamSteven Brandon
 
Gases Worked Examples
Gases Worked ExamplesGases Worked Examples
Gases Worked Examples
Vicki Mizner
 
Impact of Fouling on VCR System
Impact of Fouling on VCR SystemImpact of Fouling on VCR System
Impact of Fouling on VCR System
Shashank Pandey
 
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
UK Carbon Capture and Storage Research Centre
 
Thermo Final Project
Thermo Final ProjectThermo Final Project
Thermo Final ProjectPeter Flood
 
Flue gas analisys in industry-Practical guide for Emission and Process Measur...
Flue gas analisys in industry-Practical guide for Emission and Process Measur...Flue gas analisys in industry-Practical guide for Emission and Process Measur...
Flue gas analisys in industry-Practical guide for Emission and Process Measur...
Testo Azerbaijan
 
Thermodynamics t2
Thermodynamics t2Thermodynamics t2
Thermodynamics t2
zirui lau
 
Marcet boiler
Marcet boiler Marcet boiler
Marcet boiler
sarkawtn
 
Beikircher solar energy 1996 2
Beikircher solar energy 1996 2Beikircher solar energy 1996 2
Beikircher solar energy 1996 2
luthfiyyahadelia
 
Temperature's effect on gas pressure
Temperature's effect on gas pressureTemperature's effect on gas pressure
Temperature's effect on gas pressure
Angela Stott
 
Thermodynamics Hw#3
Thermodynamics Hw#3Thermodynamics Hw#3
Thermodynamics Hw#3
littlepine13
 
Thermodynamics chapter 2
Thermodynamics chapter 2Thermodynamics chapter 2
Thermodynamics chapter 2
zirui lau
 
Em208 203 assignment_1_with_solution
Em208 203 assignment_1_with_solutionEm208 203 assignment_1_with_solution
Em208 203 assignment_1_with_solution
Sporsho
 
Stack_Velocity_Project-2
Stack_Velocity_Project-2Stack_Velocity_Project-2
Stack_Velocity_Project-2Spencer Owen
 
1917 5792-1-pb
1917 5792-1-pb1917 5792-1-pb
1917 5792-1-pb
Bhaskar Giri
 
60. june pnnl sister pin test plan hanson
60. june  pnnl sister pin test plan hanson60. june  pnnl sister pin test plan hanson
60. june pnnl sister pin test plan hanson
leann_mays
 

What's hot (20)

New chm 151_unit_10_power_points
New chm 151_unit_10_power_pointsNew chm 151_unit_10_power_points
New chm 151_unit_10_power_points
 
Physics ib ia
Physics ib iaPhysics ib ia
Physics ib ia
 
screen for expl prop in high pressure vessel_Whitmore Knorr_2007
screen for expl  prop  in high pressure vessel_Whitmore Knorr_2007screen for expl  prop  in high pressure vessel_Whitmore Knorr_2007
screen for expl prop in high pressure vessel_Whitmore Knorr_2007
 
Walker Preliminary Exam
Walker Preliminary ExamWalker Preliminary Exam
Walker Preliminary Exam
 
Gases Worked Examples
Gases Worked ExamplesGases Worked Examples
Gases Worked Examples
 
Impact of Fouling on VCR System
Impact of Fouling on VCR SystemImpact of Fouling on VCR System
Impact of Fouling on VCR System
 
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
 
Thermo Final Project
Thermo Final ProjectThermo Final Project
Thermo Final Project
 
Flue gas analisys in industry-Practical guide for Emission and Process Measur...
Flue gas analisys in industry-Practical guide for Emission and Process Measur...Flue gas analisys in industry-Practical guide for Emission and Process Measur...
Flue gas analisys in industry-Practical guide for Emission and Process Measur...
 
Thermodynamics t2
Thermodynamics t2Thermodynamics t2
Thermodynamics t2
 
Marcet boiler
Marcet boiler Marcet boiler
Marcet boiler
 
Beikircher solar energy 1996 2
Beikircher solar energy 1996 2Beikircher solar energy 1996 2
Beikircher solar energy 1996 2
 
Temperature's effect on gas pressure
Temperature's effect on gas pressureTemperature's effect on gas pressure
Temperature's effect on gas pressure
 
Thermodynamics Hw#3
Thermodynamics Hw#3Thermodynamics Hw#3
Thermodynamics Hw#3
 
Thermodynamics chapter 2
Thermodynamics chapter 2Thermodynamics chapter 2
Thermodynamics chapter 2
 
Em208 203 assignment_1_with_solution
Em208 203 assignment_1_with_solutionEm208 203 assignment_1_with_solution
Em208 203 assignment_1_with_solution
 
Stack_Velocity_Project-2
Stack_Velocity_Project-2Stack_Velocity_Project-2
Stack_Velocity_Project-2
 
1917 5792-1-pb
1917 5792-1-pb1917 5792-1-pb
1917 5792-1-pb
 
60. june pnnl sister pin test plan hanson
60. june  pnnl sister pin test plan hanson60. june  pnnl sister pin test plan hanson
60. june pnnl sister pin test plan hanson
 
marcet boiler
marcet boilermarcet boiler
marcet boiler
 

Similar to An autoignition performance comparison of chemical kinetics models for n-heptane

CRH Testing
CRH TestingCRH Testing
CRH Testing
Sigma HSE
 
Espectroscopia fotoacustica
Espectroscopia fotoacusticaEspectroscopia fotoacustica
Espectroscopia fotoacustica
emiliano carranza
 
Gas permeater
Gas permeaterGas permeater
Gas permeater
Bassam El Ghoul
 
Gas Chromatography
Gas ChromatographyGas Chromatography
Gas Chromatography
Rahul Krishnan
 
Master Thesis Total Oxidation Over Cu Based Catalysts
Master Thesis  Total Oxidation Over Cu Based CatalystsMaster Thesis  Total Oxidation Over Cu Based Catalysts
Master Thesis Total Oxidation Over Cu Based Catalysts
albotamor
 
B037309012
B037309012B037309012
B037309012
theijes
 
Regression Modelling of Thermal Degradation Kinetics, of Concentrated, Aqueou...
Regression Modelling of Thermal Degradation Kinetics, of Concentrated, Aqueou...Regression Modelling of Thermal Degradation Kinetics, of Concentrated, Aqueou...
Regression Modelling of Thermal Degradation Kinetics, of Concentrated, Aqueou...
Shaukat Mazari
 
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA HEAVY CRUDE OIL B...
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA  HEAVY CRUDE OIL B...STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA  HEAVY CRUDE OIL B...
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA HEAVY CRUDE OIL B...
IJSIT Editor
 
Lab report no 2 pemdulum phyisc 212
Lab report no 2 pemdulum phyisc 212Lab report no 2 pemdulum phyisc 212
Lab report no 2 pemdulum phyisc 212
Rodney Peru
 
An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Pred...
An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Pred...An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Pred...
An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Pred...
IOSRJAC
 
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
ijiert bestjournal
 
Acetone gas sensors based on graphene zn fe2o4 composite prepared
Acetone gas sensors based on graphene zn fe2o4 composite preparedAcetone gas sensors based on graphene zn fe2o4 composite prepared
Acetone gas sensors based on graphene zn fe2o4 composite prepared
Uğur Acar
 
Varying Effects of Temperature and Path-length on Ozone Absorption Cross-section
Varying Effects of Temperature and Path-length on Ozone Absorption Cross-sectionVarying Effects of Temperature and Path-length on Ozone Absorption Cross-section
Varying Effects of Temperature and Path-length on Ozone Absorption Cross-section
TELKOMNIKA JOURNAL
 
Removal of polluting gasses from the exhaust of combustion engines using mon ...
Removal of polluting gasses from the exhaust of combustion engines using mon ...Removal of polluting gasses from the exhaust of combustion engines using mon ...
Removal of polluting gasses from the exhaust of combustion engines using mon ...
Darren Magee
 
Performance Enhanced Activated Spherical Carbon Adsorbents for CO2 Capture - ...
Performance Enhanced Activated Spherical Carbon Adsorbents for CO2 Capture - ...Performance Enhanced Activated Spherical Carbon Adsorbents for CO2 Capture - ...
Performance Enhanced Activated Spherical Carbon Adsorbents for CO2 Capture - ...
UK Carbon Capture and Storage Research Centre
 
Liquid Nitrogen Cooling in an Electronic Equipment under low pressure
Liquid Nitrogen Cooling in an Electronic Equipment under low pressureLiquid Nitrogen Cooling in an Electronic Equipment under low pressure
Liquid Nitrogen Cooling in an Electronic Equipment under low pressure
UsamaArifKhanNiazi
 

Similar to An autoignition performance comparison of chemical kinetics models for n-heptane (20)

CRH Testing
CRH TestingCRH Testing
CRH Testing
 
Mahesh g ame
Mahesh g ameMahesh g ame
Mahesh g ame
 
Espectroscopia fotoacustica
Espectroscopia fotoacusticaEspectroscopia fotoacustica
Espectroscopia fotoacustica
 
Gas permeater
Gas permeaterGas permeater
Gas permeater
 
Gas Chromatography
Gas ChromatographyGas Chromatography
Gas Chromatography
 
01 GTP-13-1334
01 GTP-13-133401 GTP-13-1334
01 GTP-13-1334
 
Master Thesis Total Oxidation Over Cu Based Catalysts
Master Thesis  Total Oxidation Over Cu Based CatalystsMaster Thesis  Total Oxidation Over Cu Based Catalysts
Master Thesis Total Oxidation Over Cu Based Catalysts
 
B037309012
B037309012B037309012
B037309012
 
Regression Modelling of Thermal Degradation Kinetics, of Concentrated, Aqueou...
Regression Modelling of Thermal Degradation Kinetics, of Concentrated, Aqueou...Regression Modelling of Thermal Degradation Kinetics, of Concentrated, Aqueou...
Regression Modelling of Thermal Degradation Kinetics, of Concentrated, Aqueou...
 
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA HEAVY CRUDE OIL B...
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA  HEAVY CRUDE OIL B...STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA  HEAVY CRUDE OIL B...
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA HEAVY CRUDE OIL B...
 
MU3C Presentation
MU3C PresentationMU3C Presentation
MU3C Presentation
 
Lab report no 2 pemdulum phyisc 212
Lab report no 2 pemdulum phyisc 212Lab report no 2 pemdulum phyisc 212
Lab report no 2 pemdulum phyisc 212
 
An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Pred...
An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Pred...An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Pred...
An Offshore Natural Gas Transmission Pipeline Model and Analysis for the Pred...
 
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
 
Acetone gas sensors based on graphene zn fe2o4 composite prepared
Acetone gas sensors based on graphene zn fe2o4 composite preparedAcetone gas sensors based on graphene zn fe2o4 composite prepared
Acetone gas sensors based on graphene zn fe2o4 composite prepared
 
harrison
harrisonharrison
harrison
 
Varying Effects of Temperature and Path-length on Ozone Absorption Cross-section
Varying Effects of Temperature and Path-length on Ozone Absorption Cross-sectionVarying Effects of Temperature and Path-length on Ozone Absorption Cross-section
Varying Effects of Temperature and Path-length on Ozone Absorption Cross-section
 
Removal of polluting gasses from the exhaust of combustion engines using mon ...
Removal of polluting gasses from the exhaust of combustion engines using mon ...Removal of polluting gasses from the exhaust of combustion engines using mon ...
Removal of polluting gasses from the exhaust of combustion engines using mon ...
 
Performance Enhanced Activated Spherical Carbon Adsorbents for CO2 Capture - ...
Performance Enhanced Activated Spherical Carbon Adsorbents for CO2 Capture - ...Performance Enhanced Activated Spherical Carbon Adsorbents for CO2 Capture - ...
Performance Enhanced Activated Spherical Carbon Adsorbents for CO2 Capture - ...
 
Liquid Nitrogen Cooling in an Electronic Equipment under low pressure
Liquid Nitrogen Cooling in an Electronic Equipment under low pressureLiquid Nitrogen Cooling in an Electronic Equipment under low pressure
Liquid Nitrogen Cooling in an Electronic Equipment under low pressure
 

Recently uploaded

CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 

Recently uploaded (20)

CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 

An autoignition performance comparison of chemical kinetics models for n-heptane

  • 1. An autoignition performance comparison of chemical kinetics models for n-heptane Kyle Niemeyer Oregon State University WSSCI Spring 2016 Meeting 21 March 2016 Contact: Kyle.Niemeyer@oregonstate.edu
  • 3. Motivation 1. Establish performance of various published models for n-heptane 2
  • 4. Motivation 1. Establish performance of various published models for n-heptane ➡ PRF, TRF, & TRF+ethanol mixtures 2
  • 5. Motivation 1. Establish performance of various published models for n-heptane ➡ PRF, TRF, & TRF+ethanol mixtures 2. Enable more robust performance testing of models 2
  • 6. Motivation 1. Establish performance of various published models for n-heptane ➡ PRF, TRF, & TRF+ethanol mixtures 2. Enable more robust performance testing of models ➡ Open-source validation software, and publish full set of experimental data used 2
  • 7. Motivation 1. Establish performance of various published models for n-heptane ➡ PRF, TRF, & TRF+ethanol mixtures 2. Enable more robust performance testing of models ➡ Open-source validation software, and publish full set of experimental data used 3. Encourage openness in combustion/chemical kinetics research 2
  • 9. Similar work • Sheen & Tsang (2014)1: comparison of n-heptane models • Only three experimental ignition datasets • Four models considered; LLNL model also here • Olm et al. (2014 & 2015): comprehensive performance comparison of models for hydrogen2 and syngas3 combustion 3
  • 11. Models 4 Name Coverage # Species # Reactions Ar? Reference Tsurushima-2009 PRF 33 48 4 ERC-2013 PRF 73 454 5 Ogura-2007 PRF+EtOH 634 3724 ✓ 6 Saisirirat-2011 PRF+EtOH 1046 8576 7 CNRS-2009 TRF 536 2987 ✓ 8 Dalian-2013 TRF 56 191 9 Andrae-2013 TRF 138 641 ✓ 10 LLNL-2012 TRF 1388 10479 ✓ 11 Princeton-2009 TRF+EtOH 469 1267 ✓ 12 Cancino-2011 TRF+EtOH 1130 9158 ✓ 13 Tsinghua-2014 TRF+EtOH 91 411 ✓ 14 CRECK-2014 TRF+EtOH 317 12353 ✓ 15 Aachen-2015 TRF+EtOH 339 1693 ✓ 16
  • 13. Experimental data 5 Study P (atm) T (K) ϕ Vermeer et al.17 1.4–4.1 1270–1580 1.0 Burcat et al.18 2.0–11.8 1137–1661 0.5–2.0 Ciezki & Adomeit19 3.16–41.5 660–1350 0.5–3.0 Fieweger et al.20 39.5 700–1200 1.0 Colket & Spadaccini21 4.1–7.8 1229–1427 0.5 Horning et al.22 1.15–5.71 1329–1547 0.5–2.0 Gauthier et al.23 2–60 800–1400 1.0 Smith et al.24 1, 2 1150–1700 0.5–2.0 Herzler et al.25 49.3 720–1130 0.1–0.4 Sakai et al.26 2 1319–1567 1.0 Shen et al.27 10.5–53.6 786–1396 0.25–1.0 Hartmann et al.28 39.5 692–1275 0.5, 1.0 Vandersickel et al.29 19.7–64.2 700–1100 0.5–1.0 Karwat et al.30 9 660–707 1.0
  • 14. 6
  • 16. Approach • Similar approach to that of Olm et al.2,3 : 7
  • 17. Approach • Similar approach to that of Olm et al.2,3 : • Obtained experimental data and encoded into modified ReSpecTh31 XML format 7
  • 18. Approach • Similar approach to that of Olm et al.2,3 : • Obtained experimental data and encoded into modified ReSpecTh31 XML format • eval_kinetic_models32 software parsed XML files and set up Cantera-based33 autoignition simulations 7
  • 19. Approach • Similar approach to that of Olm et al.2,3 : • Obtained experimental data and encoded into modified ReSpecTh31 XML format • eval_kinetic_models32 software parsed XML files and set up Cantera-based33 autoignition simulations • Model performance with dataset evaluated using error function
 
 
 and absolute deviation function 7 Ei = 1 Ni NiX j=1 log ⌧exp ij log ⌧sim ij (log ⌧exp ij ) !2 Di = 1 Ni NiX j=1 log ⌧exp ij log ⌧sim ij (log ⌧exp ij )
  • 20. The details: uncertainty Dataset standard deviation σi: • Spline fit of experimental data2,3 • σi = standard deviation of difference between data and fit • Minimum allowable: 10% 8
  • 21. The details: ignition modeling 9
  • 22. The details: ignition modeling • Most shock tube experiments: modeled as adiabatic constant volume reactor 9
  • 23. The details: ignition modeling • Most shock tube experiments: modeled as adiabatic constant volume reactor • Cases with preignition pressure increase: reported dP/dt employed using
 
 
 9 P(t) = P0 + Z tend 0 ✓ dP dt ◆ dt v(t) = v0 ⇢0 ⇢(t) s0
  • 24. The details: ignition modeling • Most shock tube experiments: modeled as adiabatic constant volume reactor • Cases with preignition pressure increase: reported dP/dt employed using
 
 
 9 P(t) = P0 + Z tend 0 ✓ dP dt ◆ dt v(t) = v0 ⇢0 ⇢(t) s0 then volume history applied as reactor wall velocity
  • 25. The details: ReSpecTh 10 # n-heptane ignition delay from Colket and Spadaccini 2001 # P (atm), T (K), Ignition Delay (µs) # Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584 7.72 ,1393 ,85 7.78 ,1299 ,345 7.04 ,1235 ,631 6.38 ,1299 ,348 7.53 ,1372 ,134 6.08 ,1236 ,678 7.35 ,1340 ,148 6.63 ,1328 ,211 6.94 ,1395 ,89 CSV file21
  • 26. The details: ReSpecTh 10 Obtaining experimental data: # n-heptane ignition delay from Colket and Spadaccini 2001 # P (atm), T (K), Ignition Delay (µs) # Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584 7.72 ,1393 ,85 7.78 ,1299 ,345 7.04 ,1235 ,631 6.38 ,1299 ,348 7.53 ,1372 ,134 6.08 ,1236 ,678 7.35 ,1340 ,148 6.63 ,1328 ,211 6.94 ,1395 ,89 CSV file21
  • 27. The details: ReSpecTh 10 Obtaining experimental data: PDF table18 # n-heptane ignition delay from Colket and Spadaccini 2001 # P (atm), T (K), Ignition Delay (µs) # Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584 7.72 ,1393 ,85 7.78 ,1299 ,345 7.04 ,1235 ,631 6.38 ,1299 ,348 7.53 ,1372 ,134 6.08 ,1236 ,678 7.35 ,1340 ,148 6.63 ,1328 ,211 6.94 ,1395 ,89 CSV file21
  • 28. The details: ReSpecTh 10 Obtaining experimental data: PDF table18 Aps mild ignition Ts=1040 K I I I I t [ms3 I Fig. 2. Pressure-time histories for a s~oichio- ~- metric benzene-air mixture. region the dependence of the ignition delay time upon temperature can be expressed ap- proximately by straight lines in the Arrhenius plot. The corresponding global activation ener- gies decrease with increasing pressure. For Ps around 13.5 bar the dependence be- comes strongly nonlinear in a temperature range between 950 and 700 K. In this interme- diate temperature region a decrease in ignition delay time is observed with decreasing temper- atures. This leads to an S-shaped curve with a maximum and a minimum. Between both ex- termal values the dependence possesses a neg- ative temperature coefficient. The position of this transition region shifts to higher tempera- tures with increasing pressures Ps- In the low- temperature region--below approximately 700 K--the dependence of the ignition delay time upon temperature can again be expressed by a linear dependence. Because the measuring time of the shock tube is limited, the delay times could be determined only above 660 K, so that only a short part of the low-temperature region could be investigated in our experiments. The influence of pressure on the ignition delay is most pronounced in the transition region, smallest for low temperatures and of varying degree in the high-temperature region, where with increasing temperature this dependence becomes smaller. "1~z [ms] 101 100 1o-1 162 ,, 3.2bar ,,./--~-~.~ /.-'~ o 6.s ,, ./ '---J.// O I£3 " / ' / n [] ..~-/ 30 ,,,, .o ,~_ D,,- x i< 3 bar 1 Comoufofion ~o/"°E~/" × ~+.---+-.---L_._.+_.~..~" ~ X13 " ,, [ , " , t/~ / /" !.ine of /+0 " j el'. a[. /.z~ ~/ ./ pressure variation ,/~// T=9/,0 K (Fig.11) T / 1200 1000 800 [K] I I I i I I I I I l I 0:8 1.o 1.2 114 loooK T Fig. 3. Ignition delay times. Figure19 # n-heptane ignition delay from Colket and Spadaccini 2001 # P (atm), T (K), Ignition Delay (µs) # Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584 7.72 ,1393 ,85 7.78 ,1299 ,345 7.04 ,1235 ,631 6.38 ,1299 ,348 7.53 ,1372 ,134 6.08 ,1236 ,678 7.35 ,1340 ,148 6.63 ,1328 ,211 6.94 ,1395 ,89 CSV file21
  • 29. The details: ReSpecTh 10 Obtaining experimental data: PDF table18 Aps mild ignition Ts=1040 K I I I I t [ms3 I Fig. 2. Pressure-time histories for a s~oichio- ~- metric benzene-air mixture. region the dependence of the ignition delay time upon temperature can be expressed ap- proximately by straight lines in the Arrhenius plot. The corresponding global activation ener- gies decrease with increasing pressure. For Ps around 13.5 bar the dependence be- comes strongly nonlinear in a temperature range between 950 and 700 K. In this interme- diate temperature region a decrease in ignition delay time is observed with decreasing temper- atures. This leads to an S-shaped curve with a maximum and a minimum. Between both ex- termal values the dependence possesses a neg- ative temperature coefficient. The position of this transition region shifts to higher tempera- tures with increasing pressures Ps- In the low- temperature region--below approximately 700 K--the dependence of the ignition delay time upon temperature can again be expressed by a linear dependence. Because the measuring time of the shock tube is limited, the delay times could be determined only above 660 K, so that only a short part of the low-temperature region could be investigated in our experiments. The influence of pressure on the ignition delay is most pronounced in the transition region, smallest for low temperatures and of varying degree in the high-temperature region, where with increasing temperature this dependence becomes smaller. "1~z [ms] 101 100 1o-1 162 ,, 3.2bar ,,./--~-~.~ /.-'~ o 6.s ,, ./ '---J.// O I£3 " / ' / n [] ..~-/ 30 ,,,, .o ,~_ D,,- x i< 3 bar 1 Comoufofion ~o/"°E~/" × ~+.---+-.---L_._.+_.~..~" ~ X13 " ,, [ , " , t/~ / /" !.ine of /+0 " j el'. a[. /.z~ ~/ ./ pressure variation ,/~// T=9/,0 K (Fig.11) T / 1200 1000 800 [K] I I I i I I I I I l I 0:8 1.o 1.2 114 loooK T Fig. 3. Ignition delay times. Figure19 # n-heptane ignition delay from Colket and Spadaccini 2001 # P (atm), T (K), Ignition Delay (µs) # Mole Fraction nC7H16 O2 Ar : 0.00192 0.04224 0.95584 7.72 ,1393 ,85 7.78 ,1299 ,345 7.04 ,1235 ,631 6.38 ,1299 ,348 7.53 ,1372 ,134 6.08 ,1236 ,678 7.35 ,1340 ,148 6.63 ,1328 ,211 6.94 ,1395 ,89 CSV file21 Email plea
  • 30. The details: ReSpecTh 11 <commonProperties> <property name="initial composition"> <component><speciesLink preferredKey="nC7H16" InChI="1S/C7H16/c1-3-5-7-6-4-2/h3-7H2,1-2H3"/> <amount units="mole fraction">0.010</amount> </component> <component><speciesLink preferredKey="O2" InChI="1S/O2/c1-2"/> <amount units="mole fraction">0.110</amount> </component> <component><speciesLink preferredKey="Ar" InChI="1S/Ar"/> <amount units="mole fraction">0.880</amount> </component> </property> </commonProperties> <dataGroup id="dg1" label="ignition delay"> <dataGroupLink dataGroupID="" dataPointID=""/> <property id="x1" label="T" name="temperature" units="K" description="Temperature behind reflected shock wave"/> <property id="x2" label="P" name="pressure" units="atm" description="Pressure behind reflected shock wave"/> <property id="x3" label="tau" name="ignition delay" units="us" description="Ignition delay time"/> <dataPoint><x2>4.6600e+00</x2><x1>1.2600e+03</x1><x3>3.2300e+02</x3></dataPoint> <dataPoint><x2>5.1700e+00</x2><x1>1.4100e+03</x1><x3>7.0000e+01</x3></dataPoint> <dataPoint><x2>4.5200e+00</x2><x1>1.3230e+03</x1><x3>1.7000e+02</x3></dataPoint> <dataPoint><x2>2.0300e+00</x2><x1>1.2680e+03</x1><x3>6.4700e+02</x3></dataPoint> <dataPoint><x2>3.1500e+00</x2><x1>1.3410e+03</x1><x3>1.5500e+02</x3></dataPoint> <dataPoint><x2>3.0800e+00</x2><x1>1.6020e+03</x1><x3>2.5000e+01</x3></dataPoint> <dataPoint><x2>9.2300e+00</x2><x1>1.3610e+03</x1><x3>8.7000e+01</x3></dataPoint> <dataPoint><x2>8.3400e+00</x2><x1>1.2860e+03</x1><x3>2.0000e+02</x3></dataPoint> <dataPoint><x2>1.1810e+01</x2><x1>1.5650e+03</x1><x3>1.0000e+00</x3></dataPoint> </dataGroup> <ignitionType target="p" type="d/dt max" /> ReSpecTh XML
  • 38. Discussion • Best performing models: Cancino-2011, Tsurushima-2009, ERC-2013, Dalian-2013, & Aachen-2015 18
  • 39. Discussion • Best performing models: Cancino-2011, Tsurushima-2009, ERC-2013, Dalian-2013, & Aachen-2015 • Tsurushima-2009, ERC-2013, & Dalian-2013: reduced models, with optimized rate parameters based on experimental data. 18
  • 40. Discussion • Best performing models: Cancino-2011, Tsurushima-2009, ERC-2013, Dalian-2013, & Aachen-2015 • Tsurushima-2009, ERC-2013, & Dalian-2013: reduced models, with optimized rate parameters based on experimental data. • Aachen-2015: calibrated using uncertainty quantification technique 18
  • 41. Discussion • Best performing models: Cancino-2011, Tsurushima-2009, ERC-2013, Dalian-2013, & Aachen-2015 • Tsurushima-2009, ERC-2013, & Dalian-2013: reduced models, with optimized rate parameters based on experimental data. • Aachen-2015: calibrated using uncertainty quantification technique • Room for improvement in all models 18
  • 43. Future work • This work is first step towards comparison of models for ignition of PRFs, TRFs, and TRF+EtOH mixtures. 19
  • 44. Future work • This work is first step towards comparison of models for ignition of PRFs, TRFs, and TRF+EtOH mixtures. • Explore alternate means to estimate experimental variability 19
  • 45. Future work • This work is first step towards comparison of models for ignition of PRFs, TRFs, and TRF+EtOH mixtures. • Explore alternate means to estimate experimental variability • All experimental data in XML format and automatic analysis software eval_kinetic_models will be released openly. 19
  • 46. Thank you! Questions? 20 Acknowledgements: Dr. Bryan Weber; OSU School of Mechanical, Industrial, and Manufacturing Engineering
  • 47. Thank you! Questions? 20 ? Acknowledgements: Dr. Bryan Weber; OSU School of Mechanical, Industrial, and Manufacturing Engineering
  • 48. Thank you! Questions? 20 ? Acknowledgements: Dr. Bryan Weber; OSU School of Mechanical, Industrial, and Manufacturing Engineering
  • 49. References (1) 1. Sheen DA, Tsang W. A comparison of literature models for the oxidation of normal heptane. Combust Flame 2014;161:1984–92. doi:10.1016/j.combustflame. 2014.01.014. 2. Olm C, Zsély IG, Varga T, Curran HJ, Turányi T. Comparison of the performance of several recent syngas combustion mechanisms. Combust Flame 2015;162:1793–812. doi:10.1016/j.combustflame.2014.12.001 3. Olm C, Zsély IG, Pálvölgyi R, Varga T, Nagy T, Curran HJ, et al. Comparison of the performance of several recent hydrogen combustion mechanisms. Combust Flame 2014;161:2219–34. doi:10.1016/j.combustflame.2014.03.006 4. Tsurushima T. A new skeletal PRF kinetic model for HCCI combustion. Proc Combust Inst 2009;32:2835–41. doi:10.1016/j.proci.2008.06.018. 5. Wang H, Yao M, Reitz RD. Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations. Energy Fuels 2013;27:7843–53. doi:10.1021/ef401992e 6. Ogura T, Sakai Y, Miyoshi A, Koshi M, Dagaut P. Modeling of the Oxidation of Primary Reference Fuel in the Presence of Oxygenated Octane Improvers: Ethyl Tert-Butyl Ether and Ethanol. Energy Fuels 2007;21:3233–9. doi:10.1021/ef700321e 7. Saisirirat P, Togbe C, Togbe C, Chanchaona S, Foucher F, Foucher F, et al. Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n- heptane and ethanol/n-heptane blends. Proc Combust Inst 2011;33:3007–14. doi:10.1016/j.proci.2010.07.016 8. Anderlohr JM, Bounaceur R, Da Cruz AP, Battin-Leclerc F. Modeling of autoignition and NO sensitization for the oxidation of IC engine surrogate fuels. Combust Flame 2009;156:505–21. doi:10.1016/j.combustflame.2008.09.009 9. Liu Y-D, Jia M, Xie M-Z, Pang B. Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel with Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation. Energy Fuels 2013;27:4899–909. doi:10.1021/ef4009955 10. Andrae JCG. Comprehensive chemical kinetic modeling of toluene reference fuels oxidation. Fuel 2013;107:740–8. doi:10.1016/j.fuel.2013.01.070 11. Mehl M, Sitz WJ, Westbrook CK, Curran HJ, LLNL gasoline surrogate v1.0, https://combustion.llnl.gov/mechanisms/surrogates/gasoline-surrogate, Accessed: 2016-01-13 (March 2012). 12. Haas FM, Chaos M, Chaos M, Dryer FL, Dryer FL. Low and intermediate temperature oxidation of ethanol and ethanol–PRF blends: An experimental and modeling study. Combust Flame 2009;156:2346–50. doi:10.1016/j.combustflame.2009.08.012 13. Cancino LR, Fikri M, Oliveira AAM, Schulz C, Schulz C. Ignition delay times of ethanol-containing multi-component gasoline surrogates: Shock-tube experiments and detailed modeling. Fuel 2011;90:1238–44. doi:10.1016/j.fuel.2010.11.003 14. Zhong B-J, Zheng D. A chemical mechanism for ignition and oxidation of multi-component gasoline surrogate fuels. Fuel 2014;128:458–66. doi:10.1016/ j.fuel.2014.03.044 15. CRECK Modeling Group, Primary Reference Fuels (PRF) + PAH + alcohols + ethers (version 1412), http://www.chem.polimi.it/CRECKModeling, accessed: 2016-01-11 (December 2014). 16. Cai L, Pitsch H. Optimized chemical mechanism for combustion of gasoline surrogate fuels. Combust Flame 2015;162:1623–37. doi:10.1016/j.combustflame. 2014.11.018 21
  • 50. References (2) 17. Vermeer DJ, Meyer JW, Oppenheim AK. Auto-ignition of hydrocarbons behind reflected shock waves. Combust Flame 1972;18:327–36. doi:10.1016/ S0010-2180(72)80183-4 18. Burcat A, Farmer RF, Matula RA. Shock initiated ignition in heptane-oxygen-argon mixtures. 13th Int. Symp. Shock Tubes Waves, 1981, 826–33. 19. Ciezki HK, Adomeit G. Shock-tube investigation of self-ignition of n-heptane–air mixtures under engine relevant conditions. Combust Flame 1993;93:421–33. doi:10.1016/0010-2180(93)90142-P 20. Fieweger K, Blumenthal R, Adomeit G. Self-ignition of SI engine model fuels: a shock tube investigation at high pressure. Combust Flame 1997;109:599–619. doi:10.1016/S0010-2180(97)00049-7 21. Colket MB, Spadaccini LJ. Scramjet fuels autoignition study. J. Propul. Power 17 (2) (2001) 315–323. doi:10.2514/2.5744 22. Horning DC, Davidson DF, Hanson RK. Study of the High-Temperature Autoignition of n-Alkane/O2/Ar Mixtures. J Propul Power 2002;18:363–71. 23. Gauthier BM, Davidson DF, Hanson RK. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures. Combust Flame 2004;139:300–11. doi:10.1016/j.combustflame.2004.08.015 24. Smith JM, Simmie JM, Curran HJ. Autoignition of heptanes; experiments and modeling. Int J Chem Kinet 2005;37:728–36. doi:10.1002/kin.20120 25. Herzler J, Jerig L, Roth P. Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures. Proc Combust Inst 2005;30:1147–53. doi:10.1016/j.proci.2004.07.008 26. Sakai Y, Ozawa H, Ogura T, Miyoshi A, Koshi M, Pitz WJ. Effects of Toluene Addition to Primary Reference Fuel at High Temperature. Warrendale, PA: SAE International; 2007. doi:10.4271/2007-01-4104 27. Shen H-PS, Steinberg J, Vanderover J, Oehlschlaeger MA. A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n- Tetradecane at Elevated Pressures. Energy Fuels 2009;23:2482–9. doi:10.1021/ef8011036 28. Hartmann M, Gushterova I, Gushterova I, Fikri M, Schulz C, Schulz C, et al. Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling. Combust Flame 2011;158:172–8. doi:10.1016/j.combustflame.2010.08.005 29. Vandersickel A, Hartmann M, Vogel K, Wright YM, Fikri M, Starke R, et al. The autoignition of practical fuels at HCCI conditions: High-pressure shock tube experiments and phenomenological modeling. Fuel 2012;93:492–501. doi:10.1016/j.fuel.2011.10.062 30. Karwat DMA, Wagnon SW, Wooldridge MS, Westbrook CK. Low-temperature speciation and chemical kinetic studies of n-heptane. Combust Flame 2013;160:2693–706. doi:10.1016/j.combustflame.2013.06.029 31. Varga T, ReSpecTh kinetics data format specification, Documentation version v1.0, http://respecth.hu/ (Mar. 2015). 32. Niemeyer KE. eval_kinetic_models, GitHub. https://github.com/kyleniemeyer/eval_kinetic_models 33. Goodwin DG, Moffat HK, Speth RL. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://www.cantera.org, version 2.2.0 (2015). 22