SlideShare a Scribd company logo
1 of 72
Download to read offline
 
  
INTERNSHIP  REPORT  2016  
Project	
  theme	
  
AMARAVATI	
  SMART	
  CITY	
  
	
  
	
  
Under	
  the	
  guidance	
  of	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Mr.Michel	
  Van	
  akcere	
  
Company:	
  
Maki	
  and	
  associates,	
  
Architecture	
  and	
  planning,	
  Tokyo.	
  
Address	
  
Hillside	
  West-­‐‑C,	
  13-­‐‑4	
  Hachiyama-­‐‑cho,	
  Shibuya,	
  Tokyo,	
  Japan	
  150-­‐‑0035	
  
TEL:+81-­‐‑3-­‐‑3780-­‐‑3880	
  FAX:+81-­‐‑3-­‐‑3780-­‐‑3881	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Name:	
  Shyam	
  sunder	
  sirimalla	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Student	
  ID:	
  81524584	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Keio	
  university,	
  SFC	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Graduate	
  school	
  of	
  Media	
  and	
  Governance,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  EG,	
  M2,	
  2016.	
  
	
  
 
2  
TABLE  OF  CONTENTS  
AMARAVATI	
  SMART	
  CITY  ..................................................................................  1  
What  is  smart  city?  .........................................................................................  5  
DEFINITION:  ..........................................................................................................  5  
Smart  Cities  in  India  ...............................................................................................  5  
SOLUTIONS  OF  SMART  CITIES  ...............................................................................  6  
URBAN  MOBILITY  ......................................................................................................  6  
WASTE  MANAGEMENT  ................................................................................................  6  
ENERGY  MANAGEMENT  ..............................................................................................  6  
WATER  MANAGEMENT  ...............................................................................................  6  
E-­  GOVERNANCE  AND  CITIZEN  SEVICES  .....................................................................  7  
OTHERS  ....................................................................................................................  7  
Technology  and  trends  ...........................................................................................  7  
BUDGET  ..................................................................................................................  7  
URBAN  MOBILITY  ..........................................................................................  8  
smart  parking  .........................................................................................................  8  
Definition  ................................................................................................................  8  
Does  Smart  parking  helps  to  Minimize  the  usage  of  cars?  ....................................  8  
Smart  Parking  case  study  :Town  of  Cottesloe,  Perth  –  Australia  .....................................  9  
Bicycle  sharing  .....................................................................................................  11  
Netherlands  .............................................................................................................  12  
India  .......................................................................................................................  13  
Japan  ......................................................................................................................  13  
CAR  SHARING  SYSTEM  .........................................................................................  14  
ELECTRIC  CARS  ....................................................................................................  14  
INTERACTIVE  BUS  STOPS  ....................................................................................  14  
Potential  additions  to  a  connected  bus  shelter  that  will  enable  more  business  models  ...  15  
INTERACTIVE  BUS  STOPS  IN  DUBAI  .........................................................................  15  
SMART  MALLS  .......................................................................................................  16  
GASOLINE  STATION/  RECHARGING  STATION  .....................................................  16  
SOLID  WASTE  MANAGEMENT  .......................................................................  18  
pneumatic  refuse  collection,  or  automated  vacuum  collection  ...........................  18  
Outline  ....................................................................................................................  19  
System  construction  .................................................................................................  19  
Features  ..................................................................................................................  19  
Specification  ............................................................................................................  20  
System  flow  of  waste  pneumatic  transportation  system  ..............................................  20  
WASTE  TO  ENERGY  &  FUEL  ..................................................................................  21  
 
3  
WASTE  TO  ENERGY  ...............................................................................................  21  
SMART  WATER  .............................................................................................  23  
Smart  Metering  Definition  ....................................................................................  23  
Why  Use  Smart  Metering?  ....................................................................................  23  
Smart  meters  –  Water,  electricity  and  gas  ...........................................................  24  
HOME  BASED    and  INDUSTRY  BASED  ..................................................................  25  
WATER  LEAKAGES  ................................................................................................  26  
Smart  Water:  pipe  control  to  reduce  water  leakages  in  Smart  Cities  .............................  26  
Water  leakage  detectors  :  Sensor  technology  solutions  ...............................................  27  
WATER  QUALITY  MONITORING  ...........................................................................  28  
Monitoring  the  Water  Quality  in  a  Smart  Water  Distribution  Network  ................  31  
Real  Time  Monitoring  of  Water  Level  Variations  In  Rivers  and  Flood  Alerting  
System  using  (Advanced  Risk  Machine)Arm7  ......................................................  33  
MONITORING  FLOODS  .........................................................................................  33  
Hardware  Requirements:  .....................................................................................  34  
Looping  water  reuse  .............................................................................................  35  
ONCE  THROUGH  SYSTEM  .........................................................................................  35  
LOOPED  SYSTEM  .....................................................................................................  35  
JAPAN  as  a  good  model  for  other  developing  and  developed  countries  in  WATER  
LOOPING  SYSTEM  ....................................................................................................  36  
STORM  WATER  MANAGEMENT  .....................................................................  38  
Green  Roofs  ..........................................................................................................  38  
Rain  Barrels  and  Cisterns  .....................................................................................  39  
Permeable  Pavements  ..........................................................................................  39  
Bioretention  Areas  ................................................................................................  40  
Vegetated  Swales/Dry  Swales  .............................................................................  41  
Curb  and  Gutter  Elimination  .................................................................................  41  
Vegetated  Filter  Strips  .........................................................................................  42  
Sand  and  Organic  Filters  ......................................................................................  42  
Constructed  Wetlands  ..........................................................................................  43  
Riparian  Buffers  ...................................................................................................  44  
Renewable  energy  sources  for  water  facilities  (solar  power,  wind  power  etc)  ...  44  
ENERGY  MANAGEMENT  ................................................................................  45  
Renewable  source  of  energy  ................................................................................  45  
Energy  efficient  and  green  buildings  ....................................................................  46  
“Zero-­energy”  or  “Zero-­carbon”  new  buildings  ...................................................  49  
Case  study  1:  Senedd  (National  Assembly  building),-­the  green  building  for  the  National  
Assembly  for  Wales,  UK  ............................................................................................  50  
Passivhaus”  or  “Passive  house”  in  EU  ..................................................................  51  
 
4  
Googleplex,  California,  USA  .......................................................................................  52  
Financial  benefits  of  green  buildings  ...................................................................  53  
Integrated  energy  solutions  .................................................................................  54  
Integrated  energy  system  at  community  level  ............................................................  55  
URBAN  WIND  POWER  ..........................................................................................  56  
wind  tree  .................................................................................................................  58  
What  Is  ENEFARM?  ..............................................................................................  58  
The  Power  Generation  Principle  of  ENEFARM  ..............................................................  59  
ENEFARM  System  Configuration  ................................................................................  59  
Wind  Energy  .........................................................................................................  60  
WIND  POWER  CAPACITY  IN  INDIA  ............................................................................  61  
Solar  Energy  .........................................................................................................  62  
Smart  grid  system  with  distributed  power  sources  .............................................  63  
HYDROGEN  REUSE  SYSTEM  .................................................................................  65  
HYDROGEN  REUSE  SYSTEM  CITY  LEVEL  ....................................................................  66  
What  is  cogeneration?  ..........................................................................................  68  
Case  example  city  level  .............................................................................................  70  
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
5  
WHAT  IS  SMART  CITY?  
There	
  is	
  no	
  universally	
  accepted	
  definition	
  of	
  a	
  Smart	
  City.	
  It	
  means	
  different	
  things	
  to	
  
different	
  people,	
  varies	
  from	
  city	
  to	
  city	
  and	
  country	
  to	
  country,	
  depending	
  on	
  the	
  level	
  of	
  
development,	
   willingness	
   to	
   change	
   and	
   reform,	
   resources	
   and	
   aspirations	
   of	
   the	
   city	
  
residents.	
  There	
  is	
  no	
  one	
  way	
  of	
  defining	
  a	
  Smart	
  City.	
  	
  
DEFINITION:  
A	
  smart	
  city	
  is	
  an	
  innovative	
  city	
  that	
  uses	
  information	
  and	
  communication	
  technologies	
  
and	
  other	
  means	
  to	
  improve	
  quality	
  of	
  life	
  ,	
  efficiency	
  of	
  urban	
  operation	
  and	
  services,	
  and	
  
competitiveness	
  	
  while	
  ensuring	
  that	
  it	
  meets	
  the	
  needs	
  of	
  present	
  and	
  future	
  generations	
  
with	
  respect	
  to	
  economic	
  ,	
  social	
  and	
  environmental	
  aspects.	
  
Smart  Cities  in  India  
The	
  Prime	
  Minister	
  of	
  India,	
  Shri	
  Narendra	
  Modi	
  has	
  a	
  vision	
  of	
  developing	
  100	
  smart	
  cities	
  
as	
  satellite	
  towns	
  of	
  larger	
  cities	
  and	
  by	
  modernizing	
  the	
  existing	
  midsized	
  cities.	
  
The	
  government	
  plans	
  to	
  identify	
  20	
  smart	
  cities	
  in	
  2015,	
  40	
  in	
  2016	
  and	
  another	
  40	
  in	
  
2017.	
  
Smart	
  cities	
  are	
  projected	
  to	
  be	
  equipped	
  with	
  basic	
  infrastructure,	
  will	
  offer	
  a	
  good	
  quality	
  
of	
  life	
  through	
  smart	
  solutions.	
  	
  
Core	
  Infrastructure	
  Elements	
  
o   Adequate	
  water	
  supply	
  
o   Assured	
  electricity	
  supply	
  
o   Sanitation,	
  including	
  solid	
  waste	
  management	
  
o   Efficient	
  urban	
  mobility	
  and	
  public	
  transport	
  
o   Affordable	
  housing,	
  especially	
  for	
  the	
  poor	
  
o   Robust	
  IT	
  connectivity	
  and	
  digitization	
  
o   Good	
  governance,	
  especially	
  e-­‐‑Governance	
  and	
  citizen	
  participation	
  
o   Sustainable	
  environment	
  
o   Safety	
  and	
  security	
  of	
  citizens,	
  particularly	
  women,	
  children	
  and	
  the	
  elderly	
  
o   Health	
  and	
  education	
  
 
6  
SOLUTIONS  OF  SMART  CITIES    
URBAN  MOBILITY  
o   Smart	
  parking	
  
o   Shared	
  bicycles	
  	
  
o   Smart	
  lighting	
  	
  
o   Intelligent	
  traffic	
  management	
  
o   Integrated	
  multi	
  modal	
  transport	
  
o   Interactive	
  bus	
  stops	
  
o   Recharging	
  stations	
  	
  
o   Using	
  EVs	
  and	
  Hybrid	
  cars	
  for	
  leveling	
  off	
  the	
  peaks	
  	
  
o   Car	
  sharing	
  or	
  other	
  volunteer	
  car	
  shares	
  programs	
  
WASTE  MANAGEMENT  
o   Smarter	
  waste	
  collection	
  	
  
o   3R	
  (reuse	
  reduce	
  recycle)	
  policies	
  	
  
o   Waste	
  to	
  energy	
  &	
  fuel	
  
o   Waste	
  to	
  compost	
  
o   Waste	
  water	
  to	
  be	
  treated	
  
o   Recycling	
  and	
  reduction	
  of	
  Construction	
  &	
  Demolition	
  waste	
  
ENERGY  MANAGEMENT  
o   Smart	
  meters	
  and	
  management	
  
o   Renewable	
  source	
  of	
  energy	
  
o   Energy	
  efficient	
  and	
  green	
  buildings	
  
o   Integrated	
  energy	
  solutions	
  
o   Urban	
  wind	
  power	
  	
  
o   Environmental	
  sensors	
  	
  
o   Smart	
  grid	
  system	
  with	
  distributed	
  power	
  sources	
  	
  
o   Ene-­‐‑farm	
  (self	
  power	
  plant	
  from	
  hydrogen)	
  	
  
o   Hydrogen	
  reuse	
  system	
  
o   Co	
  generation	
  
WATER  MANAGEMENT  
o   Smart	
  meters	
  &	
  Mangement	
  
o   Leakage	
  indentification	
  ,	
  preventive	
  maint	
  
o   Water	
  quality	
  monitoring	
  
o   Renewable	
  energy	
  sources	
  for	
  water	
  facilities	
  (solar	
  power,	
  wind	
  power	
  etc)	
  	
  
o   Looping	
  water	
  use	
  would	
  be	
  another	
  solution	
  (use	
  of	
  graywater)	
  	
  
 
7  
E-­  GOVERNANCE  AND  CITIZEN  SEVICES  
o   Public	
  information,	
  Grievance	
  redressal	
  
o   Electronic	
  service	
  delivery	
  
o   Citizen	
  engagement	
  
o   Citizens	
  –	
  city's	
  eyes	
  and	
  ears	
  
o   Video	
  crime	
  monitoring	
  
OTHERS  
o   Tele	
  medicine	
  &	
  tele	
  education	
  
o   Incubation/trade	
  facilitation	
  centres	
  
o   Skill	
  development	
  centres	
  
Technology  and  trends  
o   Ubiquitous	
  computing	
  	
  
o   Open	
  Data	
  
o   Big	
  Data	
  
o   GIS	
  (Geographical	
  information	
  system)	
  
o   Cloud	
  Computing	
  
o   Embedded	
  networks	
  
o   Internet	
  of	
  Things	
  
BUDGET    
A	
  total	
  of	
  US	
  $15	
  BILLION	
  has	
  been	
  approved	
  by	
  the	
  cabinet	
  for	
  development	
  of	
  100	
  smart	
  
cities	
  and	
  rejuvenation	
  of	
  500	
  other	
  cities.	
  
$	
  7.1	
  billion	
  for	
  100	
  smart	
  cities	
  
$	
  7.4	
  billion	
  for	
  urban	
  transformation	
  and	
  rejuvenation.	
  
$	
  71	
  million	
  for	
  each	
  city	
  approximately	
  
	
  
	
  
	
  
	
  
	
  
 
8  
URBAN  MOBILITY  
smart  parking  
Definition:	
  A	
  vehicle	
  parking	
  system	
  that	
  helps	
  drivers	
  find	
  a	
  vacant	
  spot.	
  Using	
  sensors	
  
in	
  each	
  parking	
  space	
  that	
  detect	
  the	
  presence	
  or	
  absence	
  of	
  a	
  vehicle,	
  signs	
  direct	
  
incoming	
  drivers	
  to	
  available	
  locations.	
  
Benefits	
  
•   Improved	
  traffic	
  flow	
  /	
  reduced	
  congestion	
  
•   Statistical	
  and	
  real-­‐‑time	
  information	
  on	
  parking	
  vacancies	
  
•   Intelligent	
  usage	
  of	
  infrastructure	
  
•   Simplified	
  parking	
  data	
  collection	
  at	
  a	
  reduced	
  cost	
  
•   reduce	
  transportation-­‐‑related	
  emissions.	
  
•   Possibility	
  of	
  convenient	
  cashless	
  parking	
  via	
  automated	
  up-­‐‑to-­‐‑the-­‐‑minute	
  billing	
  
•   Safer	
  traffic	
  with	
  efficient	
  enforcement	
  of	
  illegal	
  parking	
  activities	
  
•   Usage	
  of	
  smart	
  parking	
  infrastructure	
  and	
  data	
  for	
  multiple	
  applications	
  in	
  and	
  
beyond	
  traffic	
  Management	
  
•   Encourage	
  the	
  use	
  of	
  public	
  transportation	
  at	
  times	
  of	
  congestion	
  
	
  
	
  
http://www.mobility.siemens.com/mobility/global/en/urban-­‐‑mobility/road-­‐‑solutions/integrated-­‐‑
smart-­‐‑parking-­‐‑solution/pages/integrated-­‐‑smart-­‐‑parking-­‐‑solution.aspx	
  
Does  Smart  parking  helps  to  Minimize  the  usage  of  cars?  
Since	
  Smart	
  Parking	
  gives	
  the	
  before	
  hand	
  information	
  of	
  vacancy	
  and	
  data	
  such	
  as	
  time	
  
 
9  
needed	
  to	
  secure	
  the	
  parking	
  space	
  and	
  walking	
  distance	
  to	
  the	
  desired	
  location.	
  This	
  
results	
  in	
  an	
  intelligent	
  comparison	
  of	
  travel	
  modes,	
  encouraging	
  use	
  of	
  public	
  transport	
  
as	
  needed	
  and	
  can	
  helps	
  to	
  minimize	
  the	
  usage	
  of	
  private	
  vehicles.	
  
Smart  Parking  
case  study  :Town  of  Cottesloe,  Perth  –  Australia  
SmartPark	
   transformed	
   on-­‐‑street	
   city	
   parking	
   by	
   combining	
   three	
   Smart	
   Parking	
  
technologies	
   to	
   identify	
   all	
   overstays	
   and	
   enforce	
   infringement	
   notices,	
   while	
   helping	
  
drivers	
  park	
  quickly	
  and	
  easily.	
  
	
  
	
  
The	
  challenge	
  
o   The	
  Town	
  of	
  Cottesloe	
  in	
  Perth,	
  Australia	
  is	
  a	
  popular	
  tourist	
  destination.	
  	
  
o   	
  A	
  fair,	
  efficient	
  parking	
  management	
  system	
  is	
  an	
  essential	
  component	
  of	
  making	
  a	
  
visit	
  to	
  the	
  Town	
  of	
  Cottesloe	
  enjoyable	
  for	
  visitors,	
  fair	
  to	
  residents	
  and	
  profitable	
  
to	
  local	
  businesses.	
  
o   Cottesloe	
  had	
  been	
  managing	
  parking	
  through	
  traditional	
  methods:	
  officers	
  would	
  
patrol	
  time-­‐‑restricted	
  areas,	
  identifying	
  overstays	
  and	
  issuing	
  infringement	
  notices.	
  	
  
o   This	
  had	
  proved	
  inefficient	
  as	
  not	
  all	
  infringing	
  vehicles	
  could	
  be	
  identified.	
  It	
  was	
  
also	
  a	
  tedious,	
  time	
  consuming	
  and	
  mundane	
  task	
  for	
  parking	
  enforcement	
  officers.	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
SENSOR	
  
Smart	
  Eye	
  
Advanced	
  sensor	
  technology	
  
Smart	
  Eye	
  gather	
  information	
  on	
  parking	
  space	
  occupancy	
  .	
  Real	
  time	
  ,	
  individual	
  vehicle	
  ,	
  
individual	
  space	
  data	
  from	
  
 
10  
	
  
Information	
  on	
  parking	
  space	
  occupancy	
  gathered	
  by	
  smart	
  Eye	
  sensors	
  will	
  fed	
  to	
  smart	
  
Rep	
  
SERVER	
  
Smart	
  Rep.	
  
Smart	
  Rep	
  is	
  the	
  software	
  at	
  the	
  centre	
  of	
  Smart	
  Parkings	
  cutting	
  edge	
  technologies	
  and	
  
parking	
  management	
  systems.	
  	
  
	
  
Smart	
  rep	
  	
  Manages	
  ,	
  Analyses	
  and	
  disseminates	
  data	
  and	
  used	
  for	
  daily	
  management	
  
including	
  payment	
  and	
  enforcement	
  as	
  well	
  as	
  long	
  term	
  planning.	
  
SMART	
  GUIDE	
  
Data	
   managed	
   by	
   smart	
   Rep	
   	
   forwarded	
   to	
   technologies	
   including	
   SmartApp,	
   digital	
  
guidance	
  signage,	
  parking	
  attendants	
  handheld	
  devices,	
  pay	
  stations,	
  permit	
  systems	
  and	
  
pay	
  by	
  phone.	
  
 
11  
	
  
RFID	
  tag	
  that	
  links	
  vehicle	
  to	
  permitted	
  space	
  	
  
RFID	
  (radio	
  frequency	
  identification	
  )is	
  an	
  in	
  vehicle	
  tag	
  that	
  identifies	
  a	
  driver	
  as	
  the	
  
permit	
  holder.	
  This	
  is	
  read	
  by	
  smart	
  eye	
  at	
  the	
  permit	
  only	
  parking	
  bay	
  and	
  fed	
  to	
  smart	
  
Rep.	
  	
  
smart	
  Rep	
  then	
  actiavtes	
  instant	
  and	
  	
  comprehensive	
  enforcement	
  systems	
  and	
  facilities	
  
payment.	
  
	
  
SMART	
  solution	
  
§   Cottesloe’s	
   busy	
   and	
   popular	
   commercial	
   strip	
   –	
   Napoleon	
   Street	
   installed	
   and	
  
trialled	
  SmartParking	
  .	
  	
  	
  
§   The	
   town’s	
   SmartPark	
   trial	
   system	
   comprised	
   34	
   Smart	
   Eye	
   sensors,	
   relaying	
  
information	
   to	
   SmartRep,	
   Smart	
   Parking’s	
   powerful	
   car	
   parking	
   management	
  
software	
  tool,	
  which	
  collates	
  and	
  analyses	
  the	
  data.	
  	
  	
  
§   All	
  overstays	
  are	
  identified,	
  in	
  real-­‐‑time,	
  the	
  minute	
  each	
  parked	
  vehicle	
  exceeds	
  
the	
  time	
  limit.	
  	
  
Bicycle  sharing  
o   Bicycle	
  sharing	
  is	
  a	
  bicycle	
  loan	
  service	
  that	
  can	
  be	
  utilized	
  via	
  the	
  many	
  ports	
  set	
  
up	
  within	
  a	
  service	
  area.	
  	
  
o   In	
  addition	
  to	
  income	
  from	
  usage	
  fees,	
  advertisements	
  are	
  sometimes	
  attached	
  to	
  
the	
  bicycles,	
  which	
  helps	
  cover	
  operating	
  expenses.	
  	
  
o   As	
  a	
  measure	
  to	
  ease	
  traffic	
  congestion	
  in	
  urban	
  areas	
  and	
  reduce	
  CO2	
  emissions,	
  
 
12  
the	
  practice	
  has	
  been	
  spreading	
  in	
  Western	
  countries	
  since	
  the	
  beginning	
  of	
  this	
  
century.	
  
	
  
As	
  of	
  now,	
  more	
  than	
  600	
  cities	
  worldwide	
  had	
  a	
  bike-­‐‑sharing	
  program.	
  
Netherlands  
o   The	
   Netherlands	
   has	
   a	
   single	
   nationwide	
   bike	
   sharing	
   program.	
   It's	
   called	
   "OV-­‐‑
fiets",	
  which	
  means	
  'public	
  transport	
  bike'.	
  6000	
  bikes	
  in	
  252	
  locations,	
  mainly	
  train	
  
stations,	
  all	
  over	
  the	
  country.	
  	
  
o   Membership	
   is	
   required	
   (annual	
   fee	
   €10,	
   €3.15	
   per	
   rental	
   day)	
   and	
   can	
   be	
  
combined	
  with	
  public	
  transport	
  card.	
  The	
  program,	
  which	
  started	
  on	
  a	
  small	
  scale	
  
in	
  2003,	
  has	
  enjoyed	
  a	
  steadily	
  increasing	
  popularity	
  with	
  over	
  1.53	
  million	
  rides	
  
registered	
  in	
  2014.	
  	
  
o   The	
  nature	
  of	
  the	
  Dutch	
  bike	
  sharing	
  program	
  differs	
  from	
  that	
  of	
  programs	
  in	
  other	
  
countries	
   partly	
   because	
   the	
   already	
   high	
   bike	
   ownership	
   of	
   the	
   population.	
   Its	
  
interconnection	
  with	
  the	
  public	
  transport	
  network	
  allows	
  it	
  to	
  fill	
  the	
  need	
  of	
  people	
  
who	
  also	
  want	
  to	
  continue	
  traveling	
  by	
  bike	
  from	
  the	
  station	
  of	
  their	
  destination.	
  
	
  
The	
  Netherlands:	
  OV-­‐‑fiets	
  
 
13  
India  
•   Indian	
  Institute	
  of	
  Science,	
  Bangalore	
  –	
  NammaCycle	
  
•   Pondicherry	
  University,	
  Kalapet	
  –	
  Bike	
  Share	
  
•   Birla	
  Institute	
  of	
  Technology,	
  Mesra,	
  Ranchi	
  -­‐‑	
  Desi	
  Wheels	
  
Japan  
•   According	
  to	
  the	
  Ministry	
  of	
  Land,	
  Infrastructure,	
  Transport	
  and	
  Tourism	
  as	
  of	
  2012	
  
there	
  were	
  a	
  number	
  of	
  city-­‐‑level	
  pilot	
  schemes	
  in	
  operation	
  in	
  Japan,	
  the	
  largest	
  of	
  
which	
  was	
  Edogawa	
  City	
  in	
  Tokyo	
  with	
  500	
  cycles	
  available	
  for	
  hire.	
  	
  
•   Toyama	
  also	
  has	
  a	
  bicycle	
  sharing	
  system,	
  that	
  takes	
  the	
  region's	
  public	
  transit	
  IC	
  
card	
  Passca.	
  
•   	
  
	
  
	
  
The	
  Chiyokuru	
  bicycle	
  sharing	
  system	
  has	
  many	
  business	
  users	
  at	
  the	
  Marunouchi	
  Building	
  in	
  
Chiyoda	
  Ward,	
  Tokyo.	
  Photo:	
  The	
  Yomiuri	
  Shimbun/ANN	
  
http://transport.asiaone.com/news/general/story/bicycle-­‐‑sharing-­‐‑japanese-­‐‑cities-­‐‑
picking-­‐‑speed	
  
 
14  
CAR  SHARING  SYSTEM  
	
  
ELECTRIC  CARS  
	
  
INTERACTIVE  BUS  STOPS  
San	
  Francisco	
  Interactive	
  Bus	
  Stops	
  
	
  
 
15  
	
  
Potential  additions  to  a  connected  bus  shelter  that  will  enable  more  
business  models  
	
  
Nokia	
  Innovation	
  2020	
  Report	
  Connected	
  bus	
  shelter	
  	
  
INTERACTIVE  BUS  STOPS  IN  DUBAI  
	
   	
  
 
16  
SMART  MALLS  
•   Smart	
  Malls	
  are	
  the	
  newest	
  service	
  coming	
  to	
  Dubai,	
  which	
  will	
  allow	
  users	
  to	
  shop	
  
by	
  using	
  an	
  interactive	
  screen!	
  
•   added	
  to	
  5	
  metro	
  stations	
  across	
  Dubai	
  with	
  the	
  help	
  of	
  Etisalat.	
  
	
  
	
  
	
  
GASOLINE  STATION/  RECHARGING  STATION  
	
  
	
  
 
17  
SOLAR	
  POWER	
  HYDROGEN	
  HYBRID	
  POWER	
  CHARGING	
  STATION	
  –	
  INITIAL	
  LAUNCH	
  
IN	
  SAITAMA	
  PREFECTURE-­‐‑	
  by	
  HONDA	
  
	
  
Petrol	
  pump	
  
•   One	
  petrol	
  pump	
  for	
  150	
  ha	
  of	
  gross	
  residential	
  areas	
  in	
  residential	
  zone	
  
•   One	
  petrol	
  pump	
  for	
  40	
  ha	
  of	
  gross	
  industrial	
  area	
  
•   Two	
  petrol	
  pumps	
  in	
  each	
  district	
  Centre	
  5	
  lakh	
  pop	
  
•   One	
  petrol	
  pump	
  in	
  each	
  community	
  center	
  Up	
  to	
  100,000	
  pop	
  
No	
  of	
  Recharge	
  centers	
  /petrol	
  pumps	
  needed	
  ?	
  	
  
2	
  RECHARGE	
  STATIONS	
  &	
  PETROL	
  PUMPS	
  
Petrol	
  bunks	
  /	
  recharging	
  station	
  
Petrol	
  Pumps	
  
The	
   following	
   regulations	
   are	
   recommended	
   for	
   locating	
   the	
   petrol	
   pump	
   cum	
   service	
  
stations.	
  
Minimum	
  distance	
  from	
  the	
  road	
  intersections.	
  
a)	
  	
  For	
  minor	
  roads	
  having	
  less	
  than	
  30	
  m.	
  R/W	
  	
  	
  	
  	
  50	
  m.	
  
b)	
  	
  For	
  major	
  roads	
  having	
  R/W	
  30	
  m.	
  or	
  more	
  	
  	
  	
  	
  	
  100	
  m.	
  
The	
  minimum	
  distance	
  of	
  the	
  property	
  line	
  of	
  pump	
  from	
  the	
  center	
  line	
  of	
  the	
  Road	
  should	
  
not	
  be	
  less	
  than	
  15	
  meters	
  on	
  roads	
  having	
  less	
  than	
  30	
  m.	
  R/W.	
  	
  In	
  case	
  of	
  roads	
  having	
  
30	
  m.	
  or	
  more	
  R/W,	
  the	
  R/W	
  of	
  the	
  road	
  should	
  be	
  protected.	
  	
  	
  	
  	
  
Plot	
  Size	
  
a)	
  Only	
   filling	
   stations	
   30	
   m.	
   x	
   17	
   m.	
   and	
   small	
   size	
   18	
   m.	
   x	
   15	
   m.	
   (for	
   two	
   and	
   three	
  
wheelers)	
  
b)	
  Filling-­‐‑cum-­‐‑service	
  station	
  minimum	
  size	
  36	
  m.	
  x	
  30	
  m.	
  and	
  maximum	
  45	
  m.	
  x	
  33	
  m.	
  
c)	
  Frontage	
  of	
  the	
  plot	
  should	
  not	
  be	
  less	
  than	
  30	
  m.	
  
d)	
  Longer	
  side	
  of	
  the	
  plot	
  should	
  be	
  the	
  frontage.	
  
New	
  Petrol	
  Pump	
  shall	
  not	
  be	
  located	
  on	
  roads	
  having	
  less	
  than	
  30	
  m.	
  R/W.	
  
	
  
	
  
 
18  
SOLID  WASTE  MANAGEMENT    
pneumatic  refuse  collection,  or  automated  vacuum  collection  
An	
  automated	
  vacuum	
  waste	
  collection	
  system,	
  also	
  known	
  as	
  pneumatic	
  refuse	
  collection,	
  
or	
   automated	
   vacuum	
   collection	
   (AVAC),	
   transports	
   waste	
   at	
   high	
   speed	
   through	
  
underground	
  pneumatic	
  tubes	
  to	
  a	
  collection	
  station	
  where	
  it	
  is	
  compacted	
  and	
  sealed	
  in	
  
containers.	
  When	
  the	
  container	
  is	
  full,	
  it	
  is	
  transported	
  away	
  and	
  emptied.	
  The	
  system	
  
helps	
  facilitate	
  separation	
  and	
  recycling	
  of	
  waste	
  
	
  
	
  
http://ifonlysingaporeans.blogspot.jp/2015/06/less-­‐‑odour-­‐‑with-­‐‑yuhuas-­‐‑automated-­‐‑
waste.html	
  
Waste	
  Treatment	
  Technology	
  in	
  JAPAN	
  
Collection,	
  Transportation	
  and	
  Storage	
  
	
  
	
  
	
  
	
  
 
19  
Waste	
  Pneumatic	
  Transportation	
  System	
  
Outline  
There	
  are	
  many	
  problems	
  in	
  collection	
  of	
  municipal	
  solid	
  waste	
  by	
  conventional	
  vehicles	
  
transportation	
   system	
   such	
   as	
   noise	
   from	
   collecting	
   vehicles,	
   bad	
   odor	
   and	
   scattered	
  
residue.	
   Kobe	
   Steel's	
   waste	
   pneumatic	
   transportation	
   system	
   can	
   eliminate	
   these	
  
problems	
  by	
  collecting	
  waste	
  by	
  means	
  of	
  air	
  flow	
  through	
  underground	
  pipe	
  line,	
  like	
  
vacuum	
  cleaner.	
  
System  construction  
  
Kobe	
  Steel's	
  waste	
  pneumatic	
  transportation	
  system	
  is	
  consisted	
  of	
  waste	
  disposal	
  posts,	
  
storages,	
  pipe	
  lines,	
  separators	
  with	
  dust	
  collectors,	
  blowers,	
  de-­‐‑odorizers	
  and	
  control	
  
system.	
  There	
  are	
  two	
  types	
  of	
  disposal	
  posts,	
  one	
  is	
  for	
  dust	
  suit	
  type	
  installed	
  in	
  tall	
  
buildings	
  and	
  the	
  other	
  is	
  for	
  floor	
  type	
  installed	
  at	
  parks	
  or	
  lower	
  buildings.	
  In	
  order	
  to	
  
reject	
  unsuited	
  waste	
  for	
  this	
  transportation	
  system,	
  a	
  device	
  to	
  restrict	
  of	
  waste	
  volume	
  
is	
  installed	
  in	
  the	
  waste	
  disposal	
  posts.	
  Waste	
  disposed	
  at	
  the	
  posts	
  is	
  stored	
  once	
  in	
  the	
  
storage.	
  The	
  capacity	
  of	
  the	
  storage	
  is	
  selected	
  by	
  the	
  predicted	
  disposal	
  volume	
  of	
  waste.	
  
The	
  waste	
  is	
  transported	
  to	
  the	
  collection	
  center	
  through	
  pipe	
  line	
  by	
  means	
  of	
  vacuum	
  
operation.	
   At	
   the	
   collection	
   center,	
   the	
   waste	
   is	
   exhausted	
   from	
   the	
   pipe	
   line	
   by	
   the	
  
separator	
  with	
  dust	
  collector.	
  The	
  waste	
  is	
  then	
  sent	
  to	
  the	
  adjacent	
  incineration	
  plant	
  
directly	
  or	
  after	
  compaction.	
  
http://infohouse.p2ric.org/ref/26/japan/Waste-­‐‑025.html	
  
Features  
1.	
  Complete	
  closed	
  and	
  sanitary	
  system.	
  
2.	
  Easy	
  operation	
  can	
  be	
  provided	
  by	
  computer	
  control	
  system.	
  
3.	
  Waste	
  can	
  be	
  disposed	
  24	
  hours	
  per	
  day.	
  
4.	
  Waste	
  collecting	
  vehicle	
  can	
  be	
  eliminated	
  from	
  the	
  town.	
  
5.	
  Recycle	
  can	
  be	
  realized	
  by	
  the	
  addition	
  of	
  sorting	
  system.	
  
6.	
  Safety	
  design.	
  
	
  
	
  
	
  
 
20  
Specification  
  
	
  
	
  
System  flow  of  waste  pneumatic  transportation  system  
  
	
  
	
  
	
  
	
  
	
  
 
21  
WASTE  TO  ENERGY  &  FUEL  
	
  
•   Incineration	
  is	
  a	
  waste	
  treatment	
  process	
  that	
  involves	
  the	
  combustion	
  of	
  organic	
  
substances	
  contained	
  in	
  waste	
  materials.	
  	
  
•   Incineration	
  of	
  waste	
  materials	
  converts	
  the	
  waste	
  into	
  ash,	
  flue	
  gas,	
  and	
  heat.	
  	
  
•   The	
  heat	
  generated	
  by	
  incineration	
  can	
  be	
  used	
  to	
  generate	
  electric	
  power	
  OR	
  
•   produce	
   a	
   combustible	
   fuel	
   commodity,	
   such	
   as	
   methane,	
   methanol,	
   ethanol	
   or	
  
synthetic	
  fuels.	
  
	
  	
  
	
  
WASTE  TO  COMPOST  
Composting	
  
•   Organic	
  matter	
  constitutes	
  35%–40%	
  of	
  the	
  municipal	
  solid	
  waste	
  generated	
  in	
  
India.	
  	
  
•   This	
  waste	
  can	
  be	
  recycled	
  by	
  the	
  method	
  of	
  composting,	
  one	
  of	
  the	
  oldest	
  forms	
  
of	
  disposal.	
  	
  
•   It	
  is	
  the	
  natural	
  process	
  of	
  decomposition	
  of	
  organic	
  waste	
  that	
  yields	
  manure	
  or	
  
compost,	
  which	
  is	
  very	
  rich	
  in	
  nutrients.	
  
•   Burning	
  organic	
  matter	
  generates	
  bio	
  mass.	
  
•   	
  
 
22  
•   biomass	
  is	
  used	
  to	
  generate	
  electricity.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
23  
SMART  WATER  
o   Smart	
  meters	
  &	
  Management	
  
o   Leakage	
  identification	
  
o   Water	
  quality	
  monitoring	
  
o   Detect	
  leakages	
  and	
  wastes	
  of	
  factories	
  in	
  rivers.	
  
o   River	
  Floods,
Monitoring	
  of	
  water	
  level	
  variations	
  in	
  rivers,	
  dams	
  and	
  reservoirs.	
  
o   Looping	
  water	
  use	
  would	
  be	
  another	
  solution	
  (use	
  of	
  gray	
  water)	
  	
  
o   Renewable	
  energy	
  sources	
  for	
  water	
  facilities	
  (solar	
  power,	
  wind	
  power	
  etc)	
  	
  
o   Storm	
  water	
  management	
  
	
  
Smart  Metering  Definition  
o   Smart	
  meters	
  are	
  Interval	
  meters	
  on	
  customer	
  premises	
  that	
  measure	
  consumption	
  
during	
  specific	
  time	
  periods	
  and	
  communicate	
  it	
  to	
  the	
  utility,	
  often	
  on	
  a	
  daily	
  basis.	
  	
  
o   While	
  in	
  the	
  electric	
  industry,	
  measurement	
  intervals	
  can	
  be	
  as	
  short	
  as	
  every	
  10	
  or	
  
15	
  minutes,	
  	
  
o   Water	
   intervals	
   of	
   30	
   to	
   60	
   minutes	
   or	
   longer	
   generally	
   provide	
   adequate	
  
information.	
  	
  
	
  
	
  
Why  Use  Smart  Metering?    
•   Information	
  to	
  the	
  Customer	
  
•   Information	
  to	
  the	
  Utility	
  	
  
•   Better	
  Services	
  Without	
  Incremental	
  Costs	
  	
  
•   Metering	
  and	
  measuring	
  facility	
  water	
  use	
  help	
  to	
  analyze	
  saving	
  opportunities.	
  	
  
•   This	
  also	
  assures	
  the	
  equipment	
  is	
  run	
  correctly	
  and	
  maintained	
  properly	
  to	
  help	
  
prevent	
  water	
  waste	
  from	
  leaks	
  or	
  malfunctioning	
  mechanical	
  equipment.	
  
	
  
 
24  
As	
   drought	
   and	
   population	
   growth	
   sharpen	
   the	
   focus	
   on	
   water	
   issues,	
   utilities,	
  
environmental	
  groups,	
  and	
  government	
  bodies	
  are	
  increasingly	
  looking	
  to	
  smart	
  metering	
  
to:	
  	
  
•   Help	
  customers	
  better	
  understand	
  their	
  water	
  use	
  and	
  curb	
  waste.	
  	
  
•   Identify	
  leaks.	
  	
  
•   Under	
  pin	
  new	
  rate	
  and	
  regulatory	
  programs	
  that	
  respond	
  flexibly	
  to	
  community	
  
water	
  needs.	
  	
  
•   Smart	
  metering	
  may	
  also	
  include:	
  	
  
At	
  the	
  customer	
  site:	
  An	
  easy	
  to	
  read	
  display.	
  It	
  helps	
  customers	
  check	
  for	
  leaks,	
  reduce	
  
consumption,	
  and	
  monitor	
  compliance	
  with	
  local	
  restrictions.	
  
	
  At	
  the	
  utility:	
  Additional	
  data	
  collection	
  and	
  processing	
  
Software,	
  such	
  as	
  a	
  meter	
  data	
  management	
  application.	
  	
  
This	
  isolates	
  the	
  existing	
  billing	
  system	
  from	
  the	
  increasing	
  meter	
  data	
  volumes	
  that	
  smart	
  
metering	
  introduces.	
  	
  
Smart  meters  –  Water,  electricity  and  gas  
  
HOME	
  DISPLAYS	
  
	
  
	
  
	
  
 
25  
HOME  BASED    and  INDUSTRY  BASED  
FLUID	
  Is	
  A	
  Smart	
  Water	
  Meter	
  For	
  Your	
  Home	
  
•   FLUID	
  is	
  a	
  smart	
  water	
  meter	
  that	
  helps	
  you	
  understand	
  exactly	
  when,	
  where	
  and	
  
how	
  much	
  water	
  you’re	
  consuming	
  in	
  your	
  home	
  on	
  a	
  daily	
  basis	
  
•   FLUID	
   simply	
   snaps	
   around	
   the	
   main	
   water	
   pipe	
   in	
   your	
   home.	
   You	
   plug	
   it	
   in,	
  
connect	
  it	
  to	
  your	
  Wi-­‐‑Fi,	
  and	
  download	
  the	
  FLUID	
  app	
  to	
  access	
  real-­‐‑time	
  reports	
  
on	
  your	
  iPhone	
  or	
  Android.	
  
•   Using	
   ultrasonic	
   technology	
   —	
   essentially	
   sending	
   pulses	
   from	
   one	
   ultrasonic	
  
transducer	
   to	
   another	
   —	
   the	
   device	
   is	
   able	
   to	
   measure	
   the	
   rate	
   of	
   water	
   flow	
  
without	
  cutting	
  into	
  the	
  pipe.	
  
•   In	
   the	
   case	
   of	
   a	
   leak,	
   FLUID	
   serves	
   as	
   a	
   disaster	
   prevention	
   tool,	
   alerting	
   you	
  
immediately	
   before	
   your	
   basement	
   floods	
   and	
   your	
   water	
   bill	
   spikes	
   to	
   all	
  
new	
  heights.	
  
	
  
	
  
	
  
	
  
Including	
  All	
  Potential	
  Benefits	
  	
  
Smart	
  Metering	
  may	
  be	
  hard	
  to	
  cost-­‐‑justify	
  if	
  it	
  rests	
  solely	
  on	
  lower	
  water	
  use.	
  It	
  is	
  easier	
  
to	
  cost-­‐‑	
  justify	
  when	
  it	
  includes,	
  for	
  instance,	
  the	
  value	
  of:	
  	
  
o   Ensuring	
  that	
  all	
  meters	
  are	
  recording	
  water	
  flow	
  following	
  repair	
  of	
  abreak	
  in	
  a	
  
main.	
  	
  
o   Remote	
  programming	
  that	
  enables	
  customers	
  to	
  use	
  new	
  products	
  or	
  services	
  to	
  
advance	
  community	
  and	
  environmental.	
  	
  
o   Fewer	
   meter	
   readers	
   ,which	
   means	
   lower	
   total	
   costs	
   for	
   salary,	
   benefits	
   and	
  
workers	
  compensation.	
  	
  
o   Remote	
  rather	
  than	
  expensive	
  and	
  occasionally	
  risky	
  on-­‐‑site	
  disconnects	
  or	
  flow	
  
restrictions.	
  	
  
o   Less	
  wasted	
  time	
  in	
  attempts	
  to	
  pin	
  point	
  the	
  size	
  and	
  source	
  of	
  leaks	
  and	
  breaks.	
  	
  
o   Lower	
  risk	
  to	
  public	
  safety	
  from	
  flooded	
  intersections	
  or	
  lack	
  of	
  service	
  to	
  hydrants.	
  	
  
o   Better	
  meter	
  reading	
  accuracy,	
  resulting	
  in	
  fewer	
  calls	
  to	
  the	
  contact	
  center.	
  	
  
 
26  
o   Faster	
  theft	
  or	
  other	
  loss	
  detection.	
  	
  
o   Lower	
  electricity	
  costs	
  (for	
  those	
  utilities	
  using	
  electric	
  pumps).	
  	
  
o   Reduced	
  use	
  of	
  chemicals	
  currently	
  used	
  to	
  treat	
  water	
  that	
  is	
  then	
  wasted	
  through	
  
leakage	
  from	
  water	
  mains	
  or	
  via	
  customer-­‐‑premises	
  leaks	
  from	
  pipes	
  or	
  fixtures.	
  	
  
o   Longer	
  lifespans	
  for	
  water	
  treatment	
  equipment.	
  	
  
	
  
WATER  LEAKAGES  
  
	
  
	
  
Smart  Water:  pipe  control  to  reduce  water  leakages  in  Smart  Cities  
Water	
  is	
  becoming	
  a	
  scarcer	
  resource	
  due	
  to	
  many	
  reasons:	
  	
  
•   Increased	
  city	
  populations	
  mean	
  increased	
  demand	
  for	
  water	
  
•   Climactic	
  changes	
  have	
  reduced	
  rainfall	
  forecasts	
  
•   Traditional	
   water	
   extraction	
   methods	
   have	
   depleted	
   available	
   water	
   from	
   some	
  
local	
  sources.	
  
Smart	
   cities	
   must	
   monitor	
   water	
   supply	
   and	
   distribution	
   to	
   ensure	
   that	
   there	
   is	
  
sufficient	
  access	
  for	
  citizen	
  and	
  industry	
  use	
  and	
  also	
  to	
  save	
  money.	
  	
  
For	
  example	
  the	
  amount	
  of	
  a	
  city’s	
  water	
  supply	
  that	
  is	
  lost	
  to	
  water	
  leakage	
  is	
  as	
  high	
  as:	
  
•   Up	
  to	
  20%	
  in	
  Canadian	
  municipalities	
  
•   20	
  %	
  in	
  United	
  Kingdom,	
  Spain,	
  Malta,	
  and	
  the	
  Czech	
  Republic	
  
•   25%	
  in	
  Rome.	
  
 
27  
•   40	
  %	
  in	
  India	
  (Times	
  of	
  India)	
  
•   Nearly	
  50%	
  in	
  London	
  and	
  Vietnam	
  
	
  
Water  leakage  detectors  :  Sensor  technology  solutions  
Wireless	
  Sensor	
  Networks	
  provide	
  the	
  technology	
  for	
  cities	
  to	
  more	
  accurately	
  monitor	
  
their	
  water	
  pipe	
  systems	
  and	
  identify	
  their	
  greatest	
  water	
  loss	
  risks.	
  	
  
Cities	
   that	
   are	
   addressing	
   water	
   leakages	
   with	
   sensor	
   technology	
   are	
   generating	
   high	
  
savings	
   from	
   their	
   investment.	
   Tokyo,	
   for	
   example,	
   has	
   calculated	
   they	
   save	
   $USD170	
  
million	
  each	
  year	
  by	
  detecting	
  water	
  leakage	
  problems	
  early.	
  	
  
Libelium’s	
  Smart	
  Metering	
  Sensor	
  Board	
  includes	
  a	
  water	
  flow	
  sensor	
  that	
  can	
  detect	
  pipe	
  
flow	
  rates	
  ranging	
  from	
  0.15	
  to	
  60	
  litres/minute.	
  	
  
The	
  system	
  can	
  report	
  pipe	
  flow	
  measurement	
  data	
  regularly,	
  as	
  well	
  as	
  send	
  automatic	
  
alerts	
  if	
  water	
  use	
  is	
  outside	
  of	
  an	
  expected	
  normal	
  range.	
  This	
  allows	
  a	
  smart	
  city	
  to	
  
identify	
  the	
  location	
  of	
  leaking	
  pipes	
  and	
  prioritize	
  repairs	
  based	
  on	
  the	
  amount	
  of	
  water	
  
loss	
  that	
  could	
  be	
  prevented.	
  
	
  
	
  
Libelium’s	
  Smart	
  Metering	
  Sensor	
  	
  
	
  
 
28  
WATER  QUALITY  MONITORING  
	
  
Water	
  and	
  Air	
  Quality	
  Monitoring	
  in	
  Civil	
  Works	
  OR	
  WATER	
  TREATMENT	
  PLANTS	
  
•   Environmental	
   impacts	
   detection	
   system	
   in	
   real	
   time	
   which	
   allows	
   measure	
  
water	
  quality	
  and	
  other	
  atmospheric	
  parameters	
  based	
  on	
  libelium	
  wireless	
  sensor	
  
networks	
  technology.	
  
•   	
  
Case	
  example	
  
•   This	
   project	
   has	
   been	
   deployed	
   in	
   the	
   “villapérez”	
   water	
   treatment	
   plant	
  
construction,	
  located	
  in	
  oviedo	
  (asturias,	
  spain).	
  
	
  
	
  
 
29  
The	
   four	
   Waspmote	
   Plug	
   &	
   Sense!	
   Sensor	
   Platform	
   installed	
   monitor	
   the	
   following	
  
environmental	
  and	
  water	
  quality	
  parameters:	
  
•   Waspmote	
  Plug	
  &	
  Sense!	
  Smart	
  Water:	
  Turbidity,	
  Oxidation-­‐‑Reduction	
  Potential	
  
(ORP),	
  pH,	
  Dissolved	
  Oxygen	
  (DO)	
  and	
  Temperature.	
  
•   Waspmote	
  Plug	
  &	
  Sense!	
  Smart	
  Environment:	
  particle	
  matter	
  PM1;	
  PM2,5	
  PM10,	
  
and	
  Temperature,	
  Humidity,	
  Pressure	
  atmospheric.	
  
•   Waspmote	
  Plug	
  &	
  Sense!	
  Smart	
  Cities:	
  day,	
  evening	
  and	
  night	
  Luminosity.	
  
•   Waspmote	
  Plug	
  &	
  Sense!	
  Smart	
  Cities:	
  Luminosity	
  and	
  temperature.	
  
	
  
The	
  Waspmote	
  Plug	
  &	
  Sense!	
  autonomous	
  sensors	
  which	
  measure	
  the	
  water	
  quality	
  are	
  
installed	
  in	
  the	
  processed	
  water	
  from	
  the	
  water	
  treatment	
  plant	
  way	
  out	
  manhole.	
  
From	
  there,	
  data	
  is	
  sent	
  to	
  the	
  Meshlium	
  Gateway	
  and	
  the	
  information	
  is	
  processed	
  in	
  
VisionTech4Life	
  apps,	
  which	
  send	
  alerts	
  and	
  enables	
  to	
  analyze	
  the	
  results	
  in	
  the	
  medium	
  
and	
  long	
  term.	
  
	
  
	
  
	
  
 
30  
	
  
“Smart	
  Water	
  is	
  an	
  improvement	
  on	
  existing	
  water	
  quality	
  control	
  in	
  terms	
  of	
  accuracy,	
  
efficiency,	
   and	
   low	
   operational	
   costs.	
   For	
   municipalities,	
   water	
   quality	
   detection	
   and	
  
monitoring	
  systems	
  have	
  to	
  be	
  reliable,	
  autonomous,	
  and	
  flexible,	
  
	
  
Smart	
  Water	
  Sensors	
  to	
  monitor	
  water	
  quality	
  in	
  rivers,	
  lakes	
  and	
  the	
  sea	
  
•   Libelium	
   launched	
   Waspmote	
   Smart	
   Water	
   is	
   suitable	
   for	
   potable	
   water	
  
monitoring,	
   chemical	
   leakage	
   detection	
   in	
   rivers,	
   remote	
   measurement	
   of	
  
swimming	
  pools	
  and	
  spas,	
  and	
  levels	
  of	
  seawater	
  pollution.	
  	
  
•   The	
  Waspmote	
  Smart	
  Water	
  platform	
  is	
  an	
  ultra	
  low-­‐‑power	
  sensor	
  node	
  designed	
  
for	
  use	
  in	
  rugged	
  environments	
  and	
  deployment	
  in	
  Smart	
  Cities	
  in	
  hard-­‐‑to-­‐‑access	
  
locations	
  to	
  detect	
  changes	
  and	
  potential	
  risk	
  to	
  public	
  health	
  in	
  real	
  time.	
  
 
31  
•   The	
   water	
   quality	
   parameters	
   measured	
   include	
   pH,	
   dissolved	
   oxygen	
   (DO),	
  
oxidation-­‐‑reduction	
  potential	
  (ORP),	
  conductivity	
  (salinity),	
  turbidity,	
  temperature	
  
and	
   dissolved	
   ions	
   (Fluoride	
   (Fluoride	
   (F-­‐‑),	
   Calcium	
   (Ca2+),	
   Nitrate	
   (NO3-­‐‑),	
  
Chloride	
  (Cl-­‐‑),	
  Iodide	
  (I-­‐‑),	
  Cupric	
  (Cu2+),	
  Bromide	
  (Br-­‐‑),	
  Silver	
  (Ag+),	
  Fluoroborate	
  
(BF4-­‐‑),	
   Ammonia	
   (NH4),	
   Lithium	
   (Li+),	
   Magnesium	
   (Mg2+),	
   Nitrite	
   (NO2-­‐‑),	
  
Perchlorate	
  (ClO4),	
  Potassium	
  (K+),	
  Sodium	
  (Na+).	
  
	
  
Monitoring  the  Water  Quality  in  a  Smart  Water  Distribution  Network    
•   Water	
  distribution	
  networks	
  are	
  steadily	
  entering	
  the	
  age	
  of	
  smart	
  technology	
  and	
  
communication.	
   As	
   this	
   movement	
   develops,	
   more	
   governments,	
   municipalities	
  
and	
  urban	
  planners	
  are	
  embracing	
  the	
  internet	
  of	
  things	
  (iot)	
  for	
  intelligent	
  water	
  
distribution	
  systems.	
  	
  
	
  
	
  
The	
  Smart	
  LEATM	
  system	
  has	
  been	
  developed	
  by	
  Blue	
  I	
  Water	
  Technologies	
  	
  
FEATURES	
  	
  
	
  SMART	
  LEA	
  :	
  Independent	
  Power	
  Supply	
  	
  
•   Provides	
  practical,	
  efficient	
  and	
  viable	
  solution	
  for	
  gathering	
  and	
  communicating	
  
water	
  quality	
  data	
  without	
  relying	
  on	
  a	
  city’s	
  power	
  supply	
  to	
  gather	
  and	
  transmit	
  
data	
  in	
  a	
  smart	
  water	
  network.	
  	
  
 
32  
•   Self-­‐‑powered	
  by	
  a	
  long-­‐‑life	
  battery,	
  the	
  device’s	
  innovative	
  measurement	
  sequence	
  
and	
   operation	
   algorithms	
   reduce	
   power	
   consumption	
   and	
   significantly	
   prolong	
  
battery	
  life.	
  	
  
•   This	
  means	
  that	
  site	
  visits	
  for	
  maintenance	
  can	
  be	
  significantly	
  reduced	
  and	
  that	
  
measurement	
  can	
  therefore	
  be	
  performed	
  where	
  it	
  is	
  needed	
  and	
  not	
  where	
  it	
  is	
  
simply	
  convenient.	
  	
  
•   By	
  doing	
  so,	
  operations	
  are	
  improved	
  so	
  as	
  to	
  secure	
  safe	
  and	
  healthy	
  water	
  for	
  all	
  
consumers.	
  	
  
	
  
SENSORS	
  :	
  Low	
  Energy	
  Analyzers	
  to	
  Monitor	
  All	
  Locations	
  in	
  the	
  Smart	
  Water	
  Network	
  	
  
•   High-­‐‑precision	
  water	
  quality	
  sensors	
  and	
  analysis	
  devices	
  that	
  can	
  perform	
  online	
  
data	
   collection	
   and	
   streaming	
   are	
   integral	
   components	
   for	
   the	
   ‘intelligent’	
  
operations	
  of	
  a	
  distribution	
  system.	
  	
  
•   They	
  make	
  it	
  possible	
  sustain	
  an	
  environmentally	
  sound,	
  reliable,	
  efficient	
  and	
  safe	
  
distribution	
  process,	
  all	
  along	
  the	
  route	
  from	
  source	
  to	
  tap.	
  	
  
•   The	
   device	
   performs	
   periodical	
   and	
   on-­‐‑demand	
   measurements	
   in	
   areas	
   with	
  
restricted	
  accessibility	
  in	
  the	
  water	
  distribution	
  network.	
  	
  
	
  
GSM/GPRS	
  
The	
   measurement	
   data	
   and	
   alarms	
   are	
   logged	
   locally	
   and	
   also	
   transmitted	
   through	
  
GSM/GPRS	
  data	
  communication	
  systems.	
  
	
  
 
33  
Real  Time  Monitoring  of  Water  Level  Variations  In  Rivers  and  Flood  Alerting  
System  using  (Advanced  Risk  Machine)Arm7  
	
  
MONITORING  FLOODS  
	
  
 
34  
Hardware  Requirements:  
This	
  project	
  requires	
  some	
  hardware	
  components	
  such	
  as	
  ARM	
  (Advanced	
  Risk	
  Machine),	
  	
  
•   Flow	
  Sensor,	
  	
  
•   Temperature	
  Sensor,	
  	
  
•   Raindrop	
  Sensor,	
  	
  
•   GPRS	
  and	
  GSM.	
  	
  
	
  
	
  
	
  
	
  
 
35  
	
  
Looping  water  reuse  
  
ONCE  THROUGH  SYSTEM  
In	
   a	
   traditional	
   urban	
   water	
   system,	
   after	
   water	
   use,	
   wastewater	
   is	
   treated	
   to	
   certain	
  
legalized	
  quality	
  levels	
  when	
  discharged	
  into	
  receiving	
  water	
  bodies.	
  Such	
  a	
  water	
  use	
  
system	
  is	
  generally	
  regarded	
  as	
  a	
  once-­‐‑through	
  system	
  (Indigo,	
  2003).	
  	
  In	
  such	
  system	
  
water	
  is	
  only	
  used	
  once,	
  so	
  the	
  efficiency	
  of	
  water	
  use	
  is	
  low.	
  	
  
LOOPED  SYSTEM  
looped	
  system	
  created	
  when	
  treated	
  wastewater	
  is	
  reused	
  for	
  some	
  applications	
  which	
  do	
  
not	
   require	
   high-­‐‑quality	
   drinking	
   water,	
   such	
   as	
   irrigation	
   and	
   sanitation.	
   Wastewater	
  
reuse	
  practices	
  will	
  help	
  in	
  satisfying	
  more	
  water	
  demands	
  while	
  effluent	
  discharge	
  can	
  be	
  
reduced.	
  	
  
Although	
   a	
   looped	
   system	
   is	
   relatively	
   complex,	
   it	
   provides	
   much	
   higher	
   water	
   use	
  
efficiency.	
  	
  
	
  
	
  
 
36  
	
  
	
  
JAPAN  as  a  good  model  for  other  developing  and  developed  countries  in  
WATER  LOOPING  SYSTEM  
o   Japan	
   stands	
   out	
   as	
   a	
   nation	
   that	
   adopted	
   a	
   mix	
   of	
   water	
   reuse	
   strategies	
   that	
  
included	
  closed	
  loop	
  type	
  systems	
  at	
  a	
  very	
  early	
  stage	
  and	
  in	
  a	
  more	
  significant	
  
manner.	
  	
  
o   Japan	
  also	
  utilized	
  a	
  blend	
  of	
  reclaimed	
  water	
  sources:	
  municipal	
  wastewater,	
  grey	
  
water	
  and	
  rainwater.	
  	
  
o   As	
  a	
  result	
  of	
  concentrated	
  high	
  density	
  growth	
  in	
  post	
  World	
  War	
  II	
  Japan,	
  urban	
  
areas	
  that	
  lacked	
  adequate	
  water	
  resource	
  systems	
  were	
  forced	
  to	
  find	
  alternative	
  
solutions.	
  	
  
o   As	
  a	
  result,	
  Japan	
  became	
  the	
  leader	
  in	
  urban	
  water	
  reuse,	
  with	
  8%	
  of	
  the	
  total	
  
reclaimed	
  water	
  being	
  used	
  for	
  urban	
  purposes	
  through	
  a	
  number	
  of	
  mechanisms	
  
which	
  includes	
  decentralized	
  closed	
  loop	
  and	
  open	
  loop	
  systems.	
  	
  
o   Because	
  of	
  Japan’s	
  focus	
  on	
  urban	
  water	
  reuse,	
  it	
  stands	
  as	
  a	
  good	
  model	
  for	
  other	
  
developing	
  and	
  developed	
  countries	
  that	
  seek	
  to	
  establish	
  water	
  reuse	
  systems	
  as	
  
part	
  of	
  urban	
  development	
  and	
  redevelopment.	
  	
  
o   The	
  first	
  indoor	
  closed	
  loop	
  water	
  reuse	
  projects	
  beginning	
  in	
  1984,	
  in	
  the	
  shinjuku	
  
district	
  of	
  tokyo.	
  	
  
o   Wastewater,	
   greywater	
   and	
   rainwater	
   being	
   captured	
   in	
   the	
   building	
   or	
   from	
  
neighboring	
  buildings.	
  Some	
  systems	
  are	
  therefore	
  very	
  small	
  but	
  taken	
  together	
  
 
37  
this	
  entire	
  network	
  of	
  large	
  area	
  systems	
  combined	
  within	
  building	
  systems	
  results	
  
in	
  61%	
  of	
  all	
  non	
  potable	
  water	
  demand	
  being	
  met	
  with	
  reuse	
  water	
  in	
  tokyo.	
  	
  
o   It	
  was	
  reported	
  in	
  1996	
  that	
  there	
  were	
  a	
  total	
  of	
  2,100	
  buildings	
  using	
  some	
  form	
  
of	
  water	
  reuse	
  and	
  that	
  130	
  new	
  water	
  reuse	
  systems	
  were	
  being	
  installed	
  each	
  
year.	
  (Yamagata)	
  	
  
o   In	
  addition,	
  of	
  the	
  1,718	
  wastewater	
  treatment	
  plants	
  that	
  exist	
  in	
  japan,	
  240	
  plants	
  
distribute	
  water	
  for	
  reuse	
  in	
  various	
  forms.	
  	
  
o   Currently	
  it	
  is	
  reported	
  that	
  4.2	
  million	
  gallons	
  per	
  day	
  of	
  reuse	
  water	
  for	
  toilet	
  
flushing	
  is	
  distributed	
  from	
  the	
  larger	
  plants	
  and	
  46	
  smaller	
  plants	
  provide	
  14.2	
  
million	
   gallons	
   per	
   day	
   of	
   reuse	
   for	
   various	
   in-­‐‑building	
   uses,	
   including	
   toilet	
  
flushing,	
  cooling	
  and	
  plant	
  watering.	
  
o   In	
  tokyo	
  the	
  requirement	
  for	
  water	
  reuse	
  is	
  for	
  all	
  buildings	
  over	
  10,000	
  square	
  
meters	
   and	
   in	
   osaka	
   and	
   fukuoma	
   the	
   requirement	
   for	
   water	
   reuse	
   is	
   for	
   all	
  
buildings	
   over	
   5,000	
   square	
   meters.	
   Additionally,	
   nonpotable	
   reuse	
   water	
   is	
  
utilized	
  to	
  supply	
  fire	
  suppression	
  systems	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
38  
STORM  WATER  MANAGEMENT  
Following	
  are	
  some	
  of	
  the	
  green	
  infrastructure	
  and	
  LID(Low	
  impact	
  development)	
  
practices	
  	
  uses	
  to	
  reduce	
  storm	
  water	
  runoff	
  and	
  pollution:	
  
•   Green	
  Roofs	
  
•   Rain	
  Barrels	
  and	
  Cisterns	
  
•   Permeable	
  Pavements	
  
•   Bio	
  retention	
  Areas	
  
•   Vegetated	
  Swales/Dry	
  Swales	
  
•   Curb	
  and	
  Gutter	
  Elimination	
  
•   Vegetated	
  Filter	
  Strips	
  
•   Sand	
  and	
  Organic	
  Filters	
  
•   Constructed	
  Wetlands	
  
•   Riparian	
  Buffers	
  
	
  
Green  Roofs  
“Green”	
   roofs	
   are	
   covered	
   with	
   vegetation	
   to	
   enable	
   rainfall	
   infiltration	
   and	
  
evapotranspiration	
  of	
  stored	
  water.	
  A	
  green	
  roof	
  can	
  also	
  reduce	
  the	
  effects	
  of	
  atmospheric	
  
pollution,	
  reduce	
  energy	
  costs,	
  decrease	
  the	
  “heat	
  island”	
  effect	
  and	
  create	
  an	
  attractive	
  
environment.	
  
Case	
  examples	
  	
  
Epa(Environmental	
  protection	
  agency	
  )	
  incorporated	
  green	
  rooftops	
  at	
  its	
  new	
  england	
  
regional	
  office	
  in	
  boston.	
  Rainwater	
  is	
  collected	
  from	
  the	
  4th,	
  5th	
  and	
  17th	
  floor	
  rooftops,	
  
stored	
  in	
  cisterns	
  and	
  distributed	
  by	
  a	
  solar-­‐‑powered	
  pump	
  to	
  irrigate	
  the	
  green	
  roof.	
  
The	
  a.W.	
  Breidenbach	
  environmental	
  research	
  center	
  in	
  cincinnati,	
  ohio,USA	
  has	
  an	
  8,000-­‐‑
square-­‐‑foot	
  green	
  roof.	
  The	
  roof	
  provides	
  1,000	
  cubic	
  feet	
  of	
  water	
  storage,	
  enough	
  to	
  
retain	
  the	
  rainfall	
  from	
  a	
  1.6-­‐‑inch	
  storm.	
  
	
  
Epa	
  also	
  has	
  green	
  roofs	
  at	
  its	
  offices	
  in	
  arlington,	
  virginia,	
  and	
  denver,	
  colorado,	
  as	
  well	
  as	
  
the	
  atlantic	
  ecology	
  division	
  laboratory	
  in	
  narragansett,	
  rhode	
  island.	
  
	
  
	
  
 
39  
	
  
Rain  Barrels  and  Cisterns  
	
  
•   Rain	
  barrels	
  and	
  cisterns	
  harvest	
  rainwater	
  primarily	
  from	
  rooftops	
  for	
  reuse.	
  Rain	
  
barrels	
   are	
   placed	
   at	
   roof	
   downspouts,	
   and	
   cisterns	
   store	
   rainwater	
   in	
   larger	
  
volumes	
  in	
  tanks	
  for	
  use	
  in	
  non-­‐‑potable	
  applications	
  such	
  as	
  toilet	
  flushing.	
  
•   Epa	
  headquarters	
  in	
  washington,	
  d.C.,	
  Has	
  installed	
  six	
  1,000-­‐‑gallon	
  cisterns	
  that	
  
are	
   used	
   to	
   irrigate	
   headquarters’	
   landscaping	
   as	
   part	
   of	
   an	
   LID	
   demonstration	
  
project.	
  
	
  
Permeable  Pavements  
	
  
 
40  
•   Permeable	
  surfaces,	
  unlike	
  impermeable	
  surfaces	
  such	
  as	
  asphalt	
  or	
  concrete,	
  allow	
  
storm	
  water	
  to	
  infiltrate	
  through	
  porous	
  surfaces	
  into	
  the	
  soil	
  and	
  groundwater.	
  	
  
•   EPA	
   parking	
   lots,	
   driveways	
   or	
   sidewalks	
   include	
   pervious	
   concrete,	
   porous	
  
asphalt,	
  pervious	
  interlocking	
  concrete	
  pavers	
  or	
  grid	
  pavers.	
  
•   Epa	
  installed	
  a	
  300,000-­‐‑square-­‐‑foot	
  permeable	
  pavement	
  parking	
  lot	
  with	
  porous	
  
asphalt,	
   porous	
   concrete	
   and	
   pervious	
   interlocking	
   paver	
   blocks	
   at	
   its	
   region	
   2	
  
laboratory	
   in	
   edison,	
   new	
   jersey,	
   to	
   research	
   the	
   effects	
   of	
   different	
   permeable	
  
surfaces	
  on	
  stormwater	
  runoff.	
  
	
  
Bioretention  Areas  
•   Bioretention	
  areas	
  are	
  shallow,	
  landscaped	
  depressions	
  that	
  allow	
  runoff	
  to	
  pond	
  
in	
   a	
   designated	
   area,	
   then	
   filter	
   through	
   soil	
   and	
   vegetation.	
   Small-­‐‑scale	
  
bioretention	
  areas	
  are	
  also	
  known	
  as	
  rain	
  gardens.	
  
•   Epa	
  employees	
  at	
  the	
  environmental	
  science	
  center	
  in	
  fort	
  meade,	
  maryland,	
  helped	
  
construct	
   a	
   rain	
   garden	
   with	
   native	
   grasses	
   and	
   wildflowers.	
   Rain	
   chains	
   guide	
  
rainwater	
  from	
  the	
  roof	
  gutter	
  to	
  the	
  garden.	
  
	
  
	
  
 
41  
	
  
Vegetated  Swales/Dry  Swales  
	
  
•   Swales	
  are	
  drainage	
  paths	
  or	
  vegetated	
  channels	
  used	
  to	
  transport	
  water.	
  They	
  can	
  
be	
   used	
   in	
   small	
   drainage	
   areas	
   with	
   low	
   runoff	
   instead	
   of	
   underground	
   storm	
  
sewers	
  or	
  concrete	
  open	
  channels.	
  	
  
•   Swales	
  help	
  slow	
  runoff,	
  facilitate	
  infiltration	
  and	
  filter	
  pollutants	
  as	
  runoff	
  flows	
  
through	
  the	
  system.	
  
•   	
  
Curb  and  Gutter  Elimination  
•   Curbs	
   and	
   gutters	
   collect	
   and	
   transport	
   runoff	
   quickly	
   to	
   a	
   stormwater	
   drain	
  
without	
  allowing	
  for	
  infiltration	
  or	
  pollutant	
  removal.	
  Eliminating	
  curbs	
  or	
  adding	
  
curb	
  cuts	
  allows	
  runoff	
  to	
  be	
  directed	
  into	
  pervious	
  areas	
  and	
  filtered	
  through	
  LID	
  
 
42  
features.	
  Swales	
  can	
  also	
  be	
  used	
  to	
  replace	
  curbs	
  and	
  gutters	
  as	
  a	
  way	
  to	
  convey	
  
runoff.	
  
	
  
	
  
Vegetated  Filter  Strips  
•   Vegetated	
   filter	
   strips	
   are	
   bands	
   of	
   dense	
   vegetation	
   through	
   which	
   runoff	
   is	
  
directed.	
  They	
  are	
  best	
  for	
  gently	
  sloping	
  areas,	
  where	
  channelized	
  flow	
  is	
  not	
  likely.	
  	
  
•   Filter	
  strips	
  may	
  treat	
  runoff	
  from	
  roads	
  and	
  highways,	
  roof	
  downspouts,	
  very	
  small	
  
parking	
  lots	
  and	
  impervious	
  surfaces.	
  
	
  
	
  
Sand  and  Organic  Filters  
•   Runoff	
  directed	
  to	
  these	
  filters	
  infiltrates	
  through	
  a	
  sand	
  bed	
  to	
  remove	
  floatables,	
  
particulate	
   metals	
   and	
   pollutants.	
   They	
   are	
   typically	
   used	
   as	
   a	
   component	
   of	
   a	
  
treatment	
  train	
  to	
  remove	
  pollution	
  from	
  stormwater	
  before	
  discharge	
  to	
  receiving	
  
waters,	
  to	
  groundwater	
  or	
  for	
  reuse.	
  
 
43  
•   Epa’s	
   region	
   7	
   office	
   in	
   lenexa,	
   kansas,	
   has	
   vegetated	
   swales,	
   sand	
   filters	
   and	
   a	
  
constructed	
  wetland	
  that	
  treat	
  and	
  infiltrate	
  100	
  percent	
  of	
  the	
  stormwater	
  on	
  the	
  
30-­‐‑acre	
  property.	
  
	
  
	
  
Constructed  Wetlands  
•   Constructed	
  wetlands	
  mimic	
  natural	
  wetlands.	
  They	
  capture	
  and	
  filter	
  stormwater	
  
and	
  create	
  diverse	
  wildlife	
  habitat.	
  They	
  are	
  designed	
  to	
  contain	
  standing	
  water	
  on	
  
the	
  surface	
  or	
  water	
  saturated	
  just	
  below	
  the	
  soil	
  surface.	
  
	
  
	
  
 
44  
Riparian  Buffers  
	
  
A	
  riparian	
  buffer	
  is	
  an	
  area	
  along	
  a	
  shoreline,	
  wetland	
  or	
  stream	
  where	
  development	
  is	
  
restricted	
  or	
  prohibited.	
  The	
  primary	
  function	
  is	
  to	
  physically	
  separate	
  and	
  protect	
  the	
  
aquatic	
  area	
  from	
  future	
  disturbance	
  or	
  encroachment.	
  A	
  properly	
  designed	
  buffer	
  can	
  act	
  
as	
  a	
  right-­‐‑of-­‐‑way	
  during	
  floods,	
  sustaining	
  the	
  integrity	
  of	
  aquatic	
  ecosystems	
  and	
  habitats.	
  
Renewable  energy  sources  for  water  facilities  (solar  power,  wind  power  
etc)    
	
  
 
45  
ENERGY  MANAGEMENT  
	
  
	
  
ENERGY	
  MANAGEMENT	
  
o   Renewable	
  source	
  of	
  energy	
  
o   Energy	
  efficient	
  and	
  green	
  buildings	
  
o   Integrated	
  energy	
  solutions	
  
o   Urban	
  wind	
  power	
  	
  
o   Smart	
  grid	
  system	
  with	
  distributed	
  power	
  sources	
  	
  
o   Ene-­‐‑farm	
  (self	
  power	
  plant	
  from	
  hydrogen)	
  	
  
o   Smart	
  meters	
  and	
  management	
  
o   Environmental	
  sensors	
  	
  
o   Hydrogen	
  reuse	
  system	
  
o   Co	
  generation	
  
	
  
Renewable  source  of  energy  
Renewable	
  energy	
  is	
  energy	
  generated	
  from	
  natural	
  resources—such	
  as	
  sunlight,	
  wind,	
  
rain,	
  tides	
  and	
  geothermal	
  heat—which	
  are	
  renewable	
  (naturally	
  replenished).	
  	
  
Renewable	
  energy	
  technologies	
  range	
  from	
  	
  
o   Wind	
  power	
  
o   Solar	
  energy	
  
 
46  
o   Hydropower:	
  hydroelectricity/micro	
  hydro	
  
o   Geothermal	
  energy	
  
o   Bio	
  energy:	
  biomass	
  and	
  biofuels	
  for	
  transportation	
  
o   Energy	
  storage	
  
	
  
	
  
	
  
Renewable	
  energy	
  often	
  utilizes	
  in	
  four	
  areas:	
  
´   Electricity	
  generation	
  
´   Hot	
  water/space	
  heating	
  
´   Transportation	
  and	
  	
  
´   Rural	
  (off-­‐‑grid)	
  energy	
  services	
  
	
  
Energy  efficient  and  green  buildings  
´   Today,	
  buildings	
  worldwide	
  account	
  for	
  up	
  to	
  40%	
  of	
  total	
  end-­‐‑use	
  energy.	
  The	
  US,	
  
OECD/	
   Europe	
   and	
   Russia	
   consume	
   most	
   of	
   their	
   energy	
   in	
   the	
   building	
   sector	
  
(about	
  40%)	
  .	
  	
  
´   There	
  is	
  over	
  50%	
  saving	
  potential	
  in	
  the	
  building	
  sector	
  and	
  thus	
  it	
  is	
  considered	
  
as	
  a	
  potential	
  sector	
  to	
  meet	
  the	
  challenges	
  of	
  global	
  energy	
  and	
  climate	
  change.	
  	
  
	
  
It	
  was	
  predicted	
  by	
  International	
  Panel	
  on	
  Climate	
  Change	
  (IPCC)	
  that	
  CO2	
  emissions	
  from	
  
buildings	
  (including	
  through	
  the	
  use	
  of	
  electricity)	
  could	
  increase	
  from	
  8.6	
  billion	
  tonnes	
  
in	
  2004	
  to	
  15.6	
  in	
  2030	
  under	
  a	
  high	
  growth	
  scenario	
  (Levine	
  et	
  al.,	
  2007).	
  	
  
	
  
 
47  
	
  
Global	
  energy	
  demand	
  by	
  sector	
  in	
  2005	
  (source:	
  IEA,	
  2008)	
  	
  
	
  
CO2	
   emissions	
   from	
   building	
   sector	
   under	
   high	
   growth	
   scenario	
   (including	
   the	
   use	
   of	
  
electricity).	
  (Source:	
  Levine	
  et	
  al.,	
  2007).	
  	
  
Building	
  types:	
  Commercial	
  and	
  residential	
  buildings	
  
	
  
 
48  
	
  
(a)	
  Existing	
  building	
  floor	
  spaces	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (b)	
  average	
  floor	
  space	
  per	
  person	
  	
  
(Source:	
  WBCSD,	
  2007)	
  	
  
Building	
  energy	
  projection	
  by	
  regions	
  in	
  2003	
  and	
  2030	
  (Source:	
  IEA,	
  2008).	
  
	
  
	
  
 
49  
	
  
Global	
  differences	
  in	
  home	
  size	
  and	
  energy	
  use	
  (Source:	
  WBCSD,	
  2009).	
  
“Zero-­energy”  or  “Zero-­carbon”  new  buildings  
´   Zero-­‐‑energy”	
   buildings	
   are	
   usually	
   built	
   with	
   significant	
   energy-­‐‑saving	
   features	
  
such	
  as	
  building	
  orientation,	
  solar	
  panel	
  roofs	
  and	
  super	
  insulated	
  HAVC	
  system.	
  	
  
´   The	
  goal	
  of	
  green	
  building	
  is	
  to	
  increase	
  the	
  efficiency	
  of	
  resource	
  use	
  (including	
  
energy,	
  water	
  and	
  materials)	
  and	
  reduce	
  the	
  building’s	
  negative	
  impacts	
  on	
  the	
  
environment	
  during	
  the	
  building’s	
  lifecycle.	
  	
  
´   The	
  UK	
  government	
  made	
  its	
  commitment	
  to	
  be	
  the	
  first	
  in	
  the	
  world	
  to	
  require	
  
zero	
  carbon	
  homes	
  as	
  a	
  law	
  from	
  2016.	
  	
  
	
  
	
  
 
50  
Case  study  1:  Senedd  (National  Assembly  building),-­the  green  building  for  
the  National  Assembly  for  Wales,  UK  
	
  
´   The	
  home	
  of	
  the	
  national	
  Assembly	
  for	
  Wales,	
  the	
  Senedd	
  building,	
  costs	
  some	
  £67	
  
million	
  and	
  was	
  completed	
  in	
  2006.	
  	
  
´   It	
  has	
  won	
  important	
  award	
  for	
  sustainable	
  construction	
  to	
  recognize	
  the	
  “green”	
  
principles	
  within	
  its	
  design	
  (BBC,	
  2009).	
  	
  
´   It	
  has	
  low	
  environmental	
  impact	
  achieved	
  through	
  the	
  use	
  of	
  renewable	
  and	
  low	
  
energy	
  solutions	
  to	
  generate	
  heat	
  and	
  maintain	
  the	
  building.	
  	
  
´   For	
  example,	
  the	
  roof	
  plane	
  around	
  the	
  top	
  building	
  turns	
  down	
  to	
  form	
  a	
  funnel	
  
into	
  the	
  debating	
  chamber,	
  allowing	
  ventilation	
  and	
  natural	
  light.	
  	
  
	
  
	
  
o   Natural	
  ventilation	
  is	
  used	
  in	
  nearly	
  all	
  areas	
  of	
  the	
  building.	
  Offices	
  do	
  not	
  have	
  air	
  
conditioning	
  as	
  outlets	
  in	
  the	
  floor	
  push	
  cool	
  air	
  into	
  the	
  rooms.	
  	
  
o   The	
  earth	
  heat	
  exchange	
  system	
  uses	
  the	
  earth	
  as	
  both	
  a	
  heat	
  source	
  and	
  a	
  heat	
  sink.	
  	
  
 
51  
o   A	
   biomass	
   boiler	
   fuelled	
   by	
   local	
   wood	
   chips	
   helps	
   to	
   reduce	
   carbon-­‐‑	
   dioxide	
  
emission.	
  	
  
o   Rainwater	
   is	
   collected	
   on	
   to	
   roof	
   and	
   used	
   to	
   supply	
   the	
   toilets	
   and	
   window	
  
washing.	
  	
  
	
  
Passivhaus”  or  “Passive  house”  in  EU  
“Passive	
  house”	
  (Passivhaus	
  in	
  German)	
  refers	
  to	
  energy	
  efficiency	
  buildings	
  mainly	
  built	
  
in	
  Europe.	
  It	
  requires	
  little	
  energy	
  for	
  space	
  heating	
  or	
  cooling.	
  	
  
Passive	
  houses	
  can	
  be	
  warmed	
  not	
  only	
  by	
  the	
  sun,	
  but	
  also	
  by	
  the	
  heat	
  from	
  appliances	
  
and	
  even	
  from	
  occupants’	
  bodies	
  (Rosenthal,	
  2008).	
  	
  
Up	
  to	
  date,	
  about	
  15,000	
  to	
  20,000	
  passive	
  houses	
  have	
  been	
  built	
  worldwide,	
  most	
  of	
  them	
  
in	
  German-­‐‑speaking	
  countries	
  or	
  Scandinavia,	
  including	
  residential	
  homes	
  and	
  offices,	
  new	
  
and	
   renovated	
   buildings.	
   According	
   to	
   a	
   report	
   by	
   the	
   World	
   Business	
   Council	
   for	
  
Sustainable	
  Development	
  (WBCSD,	
  2007),	
  there	
  are	
  five	
  key	
  elements	
  for	
  passive	
  houses:	
  	
  
´   The	
  envelope	
  -­‐‑	
  all	
  components	
  should	
  be	
  highly	
  insulated	
  	
  
´   Air-­‐‑tightness	
  -­‐‑	
  stop	
  air	
  leakage	
  through	
  unsealed	
  joints	
  	
  
´   Ventilation	
  -­‐‑	
  use	
  a	
  mechanical	
  system	
  with	
  heat	
  recovery	
  	
  
´   Thermal	
  bridges	
  -­‐‑	
  control	
  heat	
  loss	
  from	
  poorly	
  insulated	
  points	
  such	
  as	
  window	
  
and	
  doors	
  	
  
´   Windows-­‐‑minimise	
  heat	
  loss	
  in	
  winter	
  and	
  heat	
  gain	
  in	
  summer.	
  	
  
	
  
	
  
 
52  
	
  
	
  
	
  
Googleplex,  California,  USA  
´   Googleplex,	
  Google’s	
  headquarters	
  in	
  Mountain	
  View,	
  California	
  is	
  an	
  example	
  of	
  a	
  
zero-­‐‑energy	
  commercial	
  building	
  with	
  a	
  1.6	
  megawatt	
  photovoltaic	
  campus-­‐‑wide	
  
renewable	
  power	
  system.	
  	
  
´   Google	
   has	
   developed	
   advanced	
   technology	
   for	
   major	
   reductions	
   in	
   computer-­‐‑
server	
  energy	
  consumption	
  which	
  is	
  becoming	
  a	
  part	
  of	
  zero-­‐‑energy	
  commercial	
  
building	
  design.	
  	
  
´   In	
  the	
  US,	
  zero	
  energy	
  building	
  research	
  is	
  supported	
  by	
  the	
  US	
  Department	
  of	
  
Energy	
  (DOE)	
  Building	
  America	
  Program.	
  	
  
´   DOE	
   plans	
   to	
   invest	
   a	
   $40	
   million	
   fund	
   during	
   2008-­‐‑2012	
   to	
   develop	
   net-­‐‑zero-­‐‑
energy	
   homes	
   that	
   consume	
   50%	
   to	
   70%	
   less	
   energy	
   than	
   conventional	
   homes	
  
(DOE,	
  2007).	
  	
  
	
  
	
  
 
53  
	
  
	
  
Financial  benefits  of  green  buildings  
Category	
  	
  
Saving	
  (	
  per	
  square	
  foot)	
  
(based	
  on	
  20-­‐‑year	
  net	
  present	
  value)	
  	
  
Energy	
  savings	
  	
   $5.8	
  	
  
Emission	
  savings	
  	
   $1.2	
  	
  
Water	
  savings	
  	
   $0.5	
  	
  
Operations	
  and	
  maintenance	
  savings	
  	
   $8.5	
  	
  
Productivity	
  and	
  health	
  benefits	
  	
   $36.9-­‐‑$55.3	
  	
  
Subtotal	
  	
   $52.9-­‐‑$71.3	
  	
  
Average	
  extra	
  cost	
  of	
  building	
  green	
  	
   (-­‐‑$3	
  -­‐‑$5)	
  	
  
 
54  
	
  
  
  
Integrated  energy  solutions  
                  
DEFINITIONS	
  
´   Systems	
  which	
  can	
  manage	
  electricity,	
  heat	
  and	
  cooling	
  together.	
  
´   Distributed	
  generation	
  and	
  micro	
  grids	
  in	
  a	
  same	
  system.	
  
´   Planning	
  of	
  energy	
  in	
  supply	
  side	
  and	
  also	
  demand	
  side	
  is	
  an	
  integrated	
  energy	
  
planning.	
  
	
  
In	
  the	
  face	
  of	
  climate	
  change	
  and	
  resource	
  scarcity,	
  the	
  world’s	
  energy	
  system	
  is	
  on	
  the	
  
verge	
  of	
  a	
  major	
  transformation.	
  In	
  order	
  to	
  massively	
  reduce	
  CO2	
  emissions,	
  there	
  is	
  a	
  
need	
  to	
  build	
  a	
  new	
  energy	
  system	
  that	
  is	
  based	
  on	
  a	
  greatly	
  expanded	
  use	
  of	
  renewable	
  
energies.	
  It	
  is	
  almost	
  certain	
  that	
  in	
  20	
  or	
  30	
  years	
  time	
  the	
  world	
  will	
  have	
  a	
  very	
  different	
  
energy	
  system	
  from	
  the	
  one	
  that	
  currently	
  exists.	
  
The	
  technological	
  building	
  blocks	
  for	
  the	
  transition	
  to	
  a	
  sustainable	
  energy	
  future	
  already	
  
exist	
   in	
   the	
   form	
   of	
   decentralized	
   cogeneration	
   plants,	
   wind	
   turbines,	
   large	
   and	
   small	
  
biogas	
  plants,	
  solar	
  energy	
  and	
  various	
  types	
  of	
  biomass	
  for	
  energy	
  purposes.	
  The	
  primary	
  
task,	
   therefore,	
   is	
   to	
   integrate	
   the	
   various	
   forms	
   of	
   renewable	
   energy,	
   sometimes	
   in	
  
combination	
  with	
  natural	
  gas,	
  in	
  order	
  to	
  achieve	
  the	
  maximum	
  utilization	
  of	
  renewable	
  
energy	
  sources	
  and	
  supplies.	
  
	
  
	
  
Total	
  20-­‐‑year	
  net	
  benefit	
  	
   $50-­‐‑$65	
  	
  
 
55  
Integrated  energy  system  at  community  level    
	
  
	
  
	
  
 
56  
URBAN  WIND  POWER  
o   Commercial	
   and	
   residential	
   buildings	
   suck	
   up	
   over	
   60%	
   of	
   the	
   U.S.’s	
   electrical	
  
power.	
  	
  
o   Alternative	
   energy	
   solutions	
   are	
   needed	
   for	
   both	
   new	
   and	
   existing	
   buildings.	
  
AeroVironment,	
  Inc.	
  a	
  company	
  best	
  known	
  for	
  its	
  unmanned	
  aircraft	
  systems	
  may	
  
have	
  one	
  solution,	
  a	
  product	
  they	
  call	
  Architectural	
  Wind.	
  	
  
o   AeroVironment	
  was	
  recently	
  awarded	
  three	
  utility	
  patents,	
  six	
  U.S.	
  design	
  patents	
  
and	
  12	
  European	
  design	
  patents	
  for	
  the	
  Architectural	
  Wind	
  system	
  designed	
  for	
  
rooftop	
  installation	
  on	
  urban	
  buildings.	
  
	
  
	
  
An	
  urban	
  helical	
  turbine	
  at	
  work.	
  	
  
•   These	
  elegant	
  objects	
  are	
  actually	
  a	
  new	
  class	
  of	
  vertical-­‐‑axis	
  windmill.	
  	
  
•   They	
  are	
  able	
  to	
  produce	
  electricity	
  in	
  the	
  variable	
  winds	
  of	
  urban	
  environments,	
  
unlike	
  the	
  traditional	
  turbines	
  used	
  at	
  large	
  wind	
  farms.	
  	
  
•   By	
   using	
   the	
   twisted-­‐‑ribbon	
   shape	
   of	
   a	
   helix,	
   these	
   generators	
   overcome	
   the	
  
barriers	
  that	
  have	
  impeded	
  the	
  adaptation	
  of	
  other	
  windmill	
  types	
  to	
  small-­‐‑scale	
  
home	
  use,	
  such	
  as	
  noise,	
  impact	
  and	
  price.	
  
•   	
  
	
  
Chicago’	
  
 
57  
	
  
	
  
	
  
 
58  
wind  tree    
Jérôme	
  Michaud-­‐‑Larivière,	
  the	
  founder	
  of	
  the	
  company	
  New	
  Wind,	
  says	
  that	
  “The	
  idea	
  
came	
  to	
  me	
  in	
  a	
  square	
  where	
  I	
  saw	
  the	
  leaves	
  tremble	
  when	
  there	
  was	
  not	
  a	
  breath	
  of	
  air.”	
  
He	
   went	
   on	
   to	
   hypothesize	
   that	
   the	
   energy	
   “had	
   to	
   come	
   from	
   somewhere	
   and	
   be	
  
translatable	
  into	
  watts.”	
  	
  
Other	
  turbine	
  ideas	
  have	
  hit	
  the	
  headlines,	
  but	
  the	
  wind	
  tree	
  is	
  the	
  first	
  that	
  fully	
  integrates	
  
form	
  and	
  function	
  rather	
  than	
  being	
  an	
  add	
  on.	
  The	
  Wind	
  tree	
  will	
  be	
  on	
  display	
  in	
  Paris	
  
Place	
  de	
  Concorde	
  in	
  May	
  2015.	
  
	
  
	
  
What  Is  ENEFARM?  
ENEFARM	
  is	
  a	
  residential	
  hot	
  water	
  supply	
  and	
  hot	
  water	
  space	
  heating	
  system	
  that	
  can	
  
also	
  generate	
  electricity.	
  It	
  produces	
  electricity	
  by	
  extracting	
  hydrogen	
  from	
  LP	
  gas	
  or	
  city	
  
gas	
  for	
  use	
  in	
  a	
  chemical	
  reaction	
  with	
  oxygen	
  in	
  the	
  air	
  and	
  utilizes	
  heat	
  produced	
  during	
  
power	
  generation	
  for	
  hot	
  water	
  supply	
  or	
  space	
  heating.	
  	
  
Since	
   ENEFARM	
   can	
   produce	
   energy	
   at	
   home	
   or	
   wherever	
   it	
   is	
   needed,	
   it	
   is	
   an	
  
environment-­‐‑friendly	
  system	
  that	
  makes	
  possible	
  waste-­‐‑free,	
  efficient	
  energy	
  use.	
  
 
59  
The  Power  Generation  Principle  of  ENEFARM  
The	
  power	
  generation	
  mechanism	
  utilizes	
  the	
  reverse	
  principle	
  of	
  electrolysis	
  of	
  water,	
  in	
  
which	
  an	
  electric	
  current	
  is	
  passed	
  through	
  water	
  to	
  break	
  it	
  down	
  into	
  hydrogen	
  and	
  
oxygen.	
  First,	
  hydrogen	
  is	
  extracted	
  from	
  LP	
  gas	
  or	
  city	
  gas.	
  Electricity	
  is	
  then	
  generated	
  
through	
   a	
   chemical	
   reaction	
   between	
   the	
   hydrogen	
   and	
   oxygen	
   in	
   the	
   air.	
   Since	
   both	
  
electricity	
  and	
  heat	
  are	
  simultaneously	
  generated	
  at	
  the	
  time	
  of	
  the	
  chemical	
  reaction,	
  the	
  
heat	
  is	
  used	
  to	
  produce	
  hot	
  water	
  for	
  the	
  home.	
  
ENEFARM  System  Configuration  
ENEFARM	
  consists	
  of	
  a	
  fuel	
  cell	
  unit	
  and	
  a	
  hot	
  water	
  storage	
  unit.	
  At	
  the	
  fuel	
  cell	
  unit,	
  
electricity	
  is	
  generated	
  through	
  a	
  chemical	
  reaction	
  between	
  hydrogen	
  extracted	
  from	
  gas	
  
and	
  oxygen	
  in	
  the	
  air.	
  The	
  heat	
  generated	
  is	
  used	
  to	
  heat	
  water,	
  which	
  is	
  stored	
  in	
  the	
  hot	
  
water	
  storage	
  unit.	
  
	
  
	
  
 
60  
Wind  Energy  
Charles	
   F.	
   Brush	
   is	
   widely	
   credited	
   with	
   designing	
   and	
   erecting	
   the	
   world’s	
   first	
  
automatically	
  operating	
  wind	
  turbine	
  for	
  electricity	
  generation.	
  The	
  turbine,	
  which	
  was	
  
installed	
  in	
  Cleveland,	
  Ohio,	
  in	
  1887,	
  operated	
  for	
  20	
  years	
  with	
  a	
  peak	
  power	
  production	
  
of	
  12	
  kW	
  	
  
Nowadays,	
  the	
  typical	
  values	
  for	
  power	
  output	
  of	
  the	
  modern	
  turbines	
  deployed	
  around	
  
the	
  world	
  are	
  about	
  1.5	
  to	
  3.5	
  MW	
  with	
  blade	
  lengths	
  of	
  more	
  than	
  40	
  m	
  for	
  onshore	
  and	
  
60	
  m	
  for	
  offshore	
  applications.	
  	
  
	
  
	
  
Charles	
  F.	
  Brush’s	
  wind	
  turbine	
  (1887,	
  Cleveland,	
  Ohio),	
  the	
  world’s	
  first	
  automatically	
  
operating	
  wind	
  turbine	
  for	
  electricity	
  generation.	
  	
  
 
61  
WIND  POWER  CAPACITY  IN  INDIA  
	
  
	
  
	
  
LEGEND	
  	
  
o   New	
  Policies	
  scenario	
  shows	
  a	
  basically	
  flat	
  market	
  and	
  slightly	
  decreasing	
  
market	
  for	
  wind	
  power	
  for	
  the	
  next	
  two	
  decades	
  	
  
 
62  
o   The	
  moderate	
  scenario	
  is	
  more	
  likely	
  in	
  a	
  world	
  which	
  carries	
  on	
  more	
  or	
  less	
  
the	
   way	
   it	
   has	
   been,	
   with	
   wind	
   power	
   continuing	
   to	
   gain	
   ground	
   but	
   still	
  
struggling	
  
o   The	
  Advanced	
  scenario	
  shows	
  the	
  potential	
  of	
  wind	
  power	
  to	
  produce	
  20%	
  or	
  
more	
  of	
  global	
  electricity	
  supply	
  in	
  a	
  world	
  	
  
	
  	
  
Solar  Energy  
	
  
Solar	
  Tower	
  Power	
  Plant	
  SSPS,	
  Tabernas	
  Desert	
  in	
  Spain	
  	
  
´   A	
  handful	
  of	
  thermal	
  solar	
  energy	
  plants,	
  most	
  of	
  them	
  experimental,	
  have	
  been	
  
developed	
  over	
  the	
  last	
  two	
  decades.	
  The	
  Solar	
  One	
  power	
  tower	
  [13],	
  developed	
  
in	
  Southern	
  California	
  in	
  1981,	
  was	
  in	
  operation	
  from	
  1982	
  to	
  1986.	
  It	
  used	
  1,818	
  
mirrors,	
  each	
  40	
  m2,	
  for	
  a	
  total	
  area	
  of	
  72,650	
  m2.	
  	
  
´   The	
  Solar	
  Tower	
  Power	
  Plant	
  SSPS	
  was	
  developed	
  in	
  1980	
  in	
  the	
  Plataforma	
  Solar	
  
de	
  Almeria	
  (PSA)	
  on	
  the	
  edge	
  of	
  the	
  Tabernas	
  Desert	
  in	
  Spain	
  	
  
´   The	
  plant	
  had	
  92	
  heliostats	
  (40	
  m2)	
  producing	
  2.7	
  MWth	
  at	
  the	
  focal	
  point	
  of	
  the	
  
43-­‐‑m-­‐‑high	
  tower	
  where	
  the	
  heat	
  was	
  collected	
  by	
  liquid	
  sodium.	
  	
  
	
  
´   The	
  Solar	
  Energy	
  Generating	
  Systems	
  (SEGS)	
  [14]	
  begun	
  in	
  1984	
  in	
  the	
  Mojave	
  
Desert	
  in	
  California	
  uses	
  parabolic-­‐‑trough	
  technology.	
  SEGS	
  is	
  composed	
  of	
  nine	
  
solar	
  plants	
  and	
  is	
  still	
  the	
  largest	
  solar-­‐‑	
  energy-­‐‑generating	
  facility	
  in	
  the	
  world	
  with	
  
a	
  354-­‐‑MW	
  installed	
  capacity.	
  	
  
´   The	
  plants	
  have	
  a	
  total	
  of	
  936,384	
  mirrors	
  and	
  cover	
  more	
  than	
  6.5	
  km2.	
  Lined	
  up,	
  
the	
  parabolic	
  mirrors	
  would	
  extend	
  more	
  than	
  370	
  km.	
  	
  
	
  
 
63  
	
  
	
  
Smart  grid  system  with  distributed  power  sources  
Advanced	
  sensing,	
  communication	
  and	
  control	
  technologies	
  are	
  used	
  in	
  these	
  smart	
  grids	
  
not	
  only	
  for	
  generation	
  and	
  transmission	
  of	
  power,	
  but	
  also	
  distribution	
  and	
  utilization	
  of	
  
electricity	
  in	
  an	
  intelligent	
  and	
  effective	
  manner.	
  
A	
  Smart	
  Mini-­‐‑Grid	
  (SMG)	
  is	
  an	
  intelligent	
  electricity	
  distribution	
  network,	
  operating	
  at	
  or	
  
below	
  11	
  KV,	
  where	
  the	
  energy	
  demand	
  is	
  effectively	
  and	
  intelligently	
  managed	
  by	
  diverse	
  
range	
  of	
  Distributed	
  Energy	
  Resources	
  such	
  as	
  solar	
  PV,	
  micro-­‐‑hydro	
  power	
  plants,	
  wind	
  
turbines,	
  biomass,	
  small	
  conventional	
  generators	
  such	
  as	
  diesel	
  gensets	
  etc.	
  in	
  combination	
  
with	
   each	
   other	
   through	
   smart	
   control	
   techniques.	
   This	
   integrated	
   energy	
   system	
  
comprises:	
  
´   Variable	
  loads	
  which	
  are	
  connected	
  to	
  the	
  distribution	
  grid;	
  
´   Diverse	
  range	
  of	
  small,	
  local	
  generators	
  based	
  on	
  distributed	
  energy	
  resources,	
  for	
  
example,	
  solar,	
  wind	
  energy,	
  storage	
  system;	
  and	
  
´   Control	
  and	
  power	
  conditioning	
  systems.	
  
	
  
 
64  
	
  
	
  
•   A	
  Smart	
  Mini-­‐‑Grid	
  system	
  is	
  an	
  application	
  of	
  digital	
  technology	
  which	
  optimizes	
  
electrical	
  power	
  generation	
  and	
  delivery	
  	
  
•   The	
  system	
  is	
  based	
  on	
  the	
  integration	
  of	
  multiple	
  distributed	
  energy	
  resources	
  
(DERs)	
  into	
  the	
  same	
  grid.	
  	
  
•   This	
  system	
  is	
  also	
  based	
  on	
  intelligent	
  load	
  and	
  energy	
  resource	
  management.	
  	
  
•   It	
   is	
   designed	
   with	
   local	
   controllers	
   for	
   each	
   of	
   the	
   distributed	
   generation	
  
technologies	
  as	
  well	
  as	
  a	
  central	
  controller	
  called	
  intelligent	
  dispatch	
  controller	
  
(IDC)	
  which	
  communicates	
  with	
  the	
  each	
  local	
  controller.	
  	
  
Whereas	
   the	
   local	
   controllers	
   ensure	
   maximum	
   utilization	
   of	
   energy	
   resources	
   with	
  
permissible	
  output	
  power,	
  the	
  IDC	
  performs	
  complex	
  system	
  control	
  functions	
  and	
  takes	
  
critical	
   decisions	
   such	
   as	
   automating	
   the	
   demand	
   response,	
   dynamically	
   adding	
   or	
  
removing	
  DERs	
  in	
  a	
  seamless	
  manner	
  (based	
  on	
  the	
  existing	
  demand)	
  without	
  affecting	
  
the	
  grid	
  stability.	
  
	
  
 
65  
	
  
HYDROGEN  REUSE  SYSTEM  
´   Hydrogen	
  is	
  used	
  as	
  a	
  process	
  atmosphere	
  in	
  many	
  industries,	
  most	
  notably	
  metal	
  
treating,	
  powder	
  metallurgy,	
  glassmaking,	
  and	
  semiconductor	
  manufacturing.	
  	
  
´   It	
  is	
  typically	
  vented	
  during	
  these	
  processes	
  in	
  the	
  same	
  stream	
  as	
  other	
  waste	
  gas	
  
components.	
  To	
  date,	
  the	
  waste	
  hydrogen	
  gas	
  has	
  typically	
  not	
  been	
  recovered	
  for	
  
reuse.	
  This	
  is	
  especially	
  true	
  in	
  smaller	
  scale	
  applications,	
  because	
  there	
  was	
  no	
  
economical	
  means	
  by	
  which	
  to	
  scrub	
  the	
  gas	
  stream	
  of	
  accumulated	
  impurities,	
  or	
  
to	
  compress	
  it	
  in	
  a	
  way	
  that	
  it	
  could	
  be	
  efficiently	
  stored	
  for	
  later	
  use.	
  
	
  
Hydrogen	
   consumers	
   have	
   traditionally	
   had	
   two	
   solutions	
   to	
   the	
   problem	
   of	
   waste	
  
hydrogen:	
  	
  
´   purchase	
  more	
  hydrogen	
  from	
  industrial	
  gas	
  suppliers	
  
´   generate	
  hydrogen	
  on-­‐‑site	
  using	
  an	
  electrolyzer	
  or	
  a	
  reformer.	
  
	
  
 
66  
	
  
HYDROGEN  REUSE  SYSTEM  CITY  LEVEL  
	
  
 
67  
h2	
  renew™	
  
Sustainable	
   Innovation’s	
   solution	
   to	
   hydrogen	
   supply	
   lies	
   within	
   its	
   revolutionary	
  
H2RENEW™	
  technology;	
  capable	
  of	
  recycling	
  and	
  generating	
  high	
  purity	
  (99.999+%),	
  high	
  
pressure	
  hydrogen	
  using	
  a	
  solid	
  state	
  process.	
  Hydrogen	
  normally	
  exhausted	
  and/or	
  flared	
  
from	
  an	
  industrial	
  process	
  is	
  captured,	
  purified,	
  compressed,	
  and	
  stored	
  for	
  later	
  use.	
  As	
  a	
  
result,	
  up	
  to	
  98%	
  of	
  process	
  hydrogen	
  can	
  be	
  recycled,	
  greatly	
  reducing	
  the	
  amount	
  of	
  
purchased	
  hydrogen	
  and	
  handling	
  costs	
  and	
  risks.	
  Since	
  process	
  hydrogen	
  is	
  recycled,	
  
there	
  is	
  no	
  need	
  for	
  a	
  large	
  volume	
  of	
  stored	
  hydrogen	
  on-­‐‑site,	
  nor	
  the	
  need	
  to	
  generate	
  
large	
  quantities	
  of	
  gas.	
  
	
  
NASA	
  Recycles	
  Hydrogen	
  to	
  Beat	
  Bottled	
  Water	
  Blues	
  
´   If	
  you	
  think	
  high-­‐‑end	
  bottled	
  water	
  is	
  expensive	
  at	
  the	
  grocery	
  store,	
  you	
  should	
  try	
  
pricing	
  it	
  in	
  space.	
  In	
  looking	
  to	
  possible	
  future	
  manned	
  missions	
  to	
  the	
  Moon	
  and	
  
Mars,	
  NASA	
  today	
  sets	
  a	
  premium	
  on	
  recycling	
  the	
  water	
  (especially	
  the	
  hydrogen)	
  
already	
  onboard	
  its	
  spacecraft.	
  And	
  with	
  water	
  shipping	
  cost	
  estimates	
  a	
  million	
  
dollars	
  per	
  pound	
  or	
  more.	
  
´   So	
   recently,	
   NASA	
   granted	
   Sustainable	
   Innovations	
   a	
   Phase	
   I	
   Small	
   Business	
  
Innovation	
  Research	
  (SBIR)	
  Award	
  for	
  its	
  H2RENEW™	
  hydrogen	
  (and	
  therefore	
  
water)	
  recycling	
  technology.	
  
´   The	
  first	
  challenge	
  in	
  designing	
  an	
  onboard	
  spacecraft	
  gas	
  recycling	
  system	
  is	
  that	
  
molecular	
  hydrogen	
  is	
  so	
  small	
  and	
  lightweight,	
  it’s	
  hard	
  to	
  corral	
  into	
  even	
  an	
  
impure	
   stream.	
   But	
   then	
   refining	
   the	
   gas	
   stream	
   so	
   that	
   it	
   approaches	
   100%	
  
hydrogen	
  with	
  no	
  impurities	
  –	
  and	
  doing	
  so	
  using	
  only	
  a	
  portable,	
  lightweight	
  and	
  
low-­‐‑maintenance	
  system	
  –	
  is	
  especially	
  difficult.	
  
Internship Report on Amaravati Smart City Project
Internship Report on Amaravati Smart City Project
Internship Report on Amaravati Smart City Project
Internship Report on Amaravati Smart City Project
Internship Report on Amaravati Smart City Project

More Related Content

What's hot

Raj rewal Asian games Village
Raj rewal Asian games VillageRaj rewal Asian games Village
Raj rewal Asian games VillageWaseem Noor
 
District center nehru place
District center nehru placeDistrict center nehru place
District center nehru placesonali parashar
 
Case study Housing (Sem-VIth)
Case study Housing (Sem-VIth)Case study Housing (Sem-VIth)
Case study Housing (Sem-VIth)Amir Azhar
 
Site analysis - Transit hub
Site analysis - Transit hubSite analysis - Transit hub
Site analysis - Transit hubnainadesh
 
Jaipur City Planning - Urban Design
Jaipur City Planning - Urban DesignJaipur City Planning - Urban Design
Jaipur City Planning - Urban DesignZohab K.V
 
Theory of Settlement : Navi Mumbai
Theory of Settlement : Navi MumbaiTheory of Settlement : Navi Mumbai
Theory of Settlement : Navi Mumbaidebakshi
 
DLF Cyber city (integrated business district)
DLF Cyber city (integrated business district)  DLF Cyber city (integrated business district)
DLF Cyber city (integrated business district) Kapil Kaushik
 
Sabarmati Riverfront Development Project
Sabarmati Riverfront Development ProjectSabarmati Riverfront Development Project
Sabarmati Riverfront Development ProjectFabiha Rahman
 
Thesis presentation 2013
Thesis presentation 2013Thesis presentation 2013
Thesis presentation 2013ROHIT SINGLA
 
Bhubaneswar an ideal capital city
Bhubaneswar   an ideal capital cityBhubaneswar   an ideal capital city
Bhubaneswar an ideal capital cityRajesh Kolli
 
Ancient system of town planning in india
Ancient system of town planning in indiaAncient system of town planning in india
Ancient system of town planning in indiactlachu
 

What's hot (20)

Land use and zoning of mysore
Land use and zoning of mysoreLand use and zoning of mysore
Land use and zoning of mysore
 
Raj rewal Asian games Village
Raj rewal Asian games VillageRaj rewal Asian games Village
Raj rewal Asian games Village
 
District center nehru place
District center nehru placeDistrict center nehru place
District center nehru place
 
Case study Housing (Sem-VIth)
Case study Housing (Sem-VIth)Case study Housing (Sem-VIth)
Case study Housing (Sem-VIth)
 
Sri Rangam
Sri RangamSri Rangam
Sri Rangam
 
City development plan
City development planCity development plan
City development plan
 
Site analysis - Transit hub
Site analysis - Transit hubSite analysis - Transit hub
Site analysis - Transit hub
 
Jaipur City Planning - Urban Design
Jaipur City Planning - Urban DesignJaipur City Planning - Urban Design
Jaipur City Planning - Urban Design
 
Naya raipur
Naya raipur Naya raipur
Naya raipur
 
Gandhinagar- Town Planning
Gandhinagar- Town PlanningGandhinagar- Town Planning
Gandhinagar- Town Planning
 
Theory of Settlement : Navi Mumbai
Theory of Settlement : Navi MumbaiTheory of Settlement : Navi Mumbai
Theory of Settlement : Navi Mumbai
 
Integrated Township
Integrated TownshipIntegrated Township
Integrated Township
 
City center kolkata
City center kolkataCity center kolkata
City center kolkata
 
Jaipur planning
Jaipur planningJaipur planning
Jaipur planning
 
DLF Cyber city (integrated business district)
DLF Cyber city (integrated business district)  DLF Cyber city (integrated business district)
DLF Cyber city (integrated business district)
 
Sabarmati Riverfront Development Project
Sabarmati Riverfront Development ProjectSabarmati Riverfront Development Project
Sabarmati Riverfront Development Project
 
Thesis presentation 2013
Thesis presentation 2013Thesis presentation 2013
Thesis presentation 2013
 
Bhubaneswar an ideal capital city
Bhubaneswar   an ideal capital cityBhubaneswar   an ideal capital city
Bhubaneswar an ideal capital city
 
Ancient system of town planning in india
Ancient system of town planning in indiaAncient system of town planning in india
Ancient system of town planning in india
 
Ews housing (2)
Ews housing (2)Ews housing (2)
Ews housing (2)
 

Similar to Internship Report on Amaravati Smart City Project

Project Feasibility Study on establishing "Misale" Automatic Vending Machine ...
Project Feasibility Study on establishing "Misale" Automatic Vending Machine ...Project Feasibility Study on establishing "Misale" Automatic Vending Machine ...
Project Feasibility Study on establishing "Misale" Automatic Vending Machine ...Andualem192
 
Blockchain in Education. Alexander Grech & Anthony F. Camilleri. Editor Andre...
Blockchain in Education. Alexander Grech & Anthony F. Camilleri. Editor Andre...Blockchain in Education. Alexander Grech & Anthony F. Camilleri. Editor Andre...
Blockchain in Education. Alexander Grech & Anthony F. Camilleri. Editor Andre...eraser Juan José Calderón
 
project management in marketing
project management in marketing project management in marketing
project management in marketing nairobian
 
CRMAMultifacetedConceptforCPCE.pdf
CRMAMultifacetedConceptforCPCE.pdfCRMAMultifacetedConceptforCPCE.pdf
CRMAMultifacetedConceptforCPCE.pdfValentino Nguyen
 
sưu tầm ENHANCING INFORMATION TECHNOLOGY APPLICATION AND DIGITAL TRANSFORMATI...
sưu tầm ENHANCING INFORMATION TECHNOLOGY APPLICATION AND DIGITAL TRANSFORMATI...sưu tầm ENHANCING INFORMATION TECHNOLOGY APPLICATION AND DIGITAL TRANSFORMATI...
sưu tầm ENHANCING INFORMATION TECHNOLOGY APPLICATION AND DIGITAL TRANSFORMATI...lamluanvan.net Viết thuê luận văn
 
Strategic Technology Roadmap Houston Community College 2005
Strategic Technology Roadmap Houston Community College 2005Strategic Technology Roadmap Houston Community College 2005
Strategic Technology Roadmap Houston Community College 2005schetikos
 
IM-Skills_Business-Case_Brochure1
IM-Skills_Business-Case_Brochure1IM-Skills_Business-Case_Brochure1
IM-Skills_Business-Case_Brochure1Peter Barton
 
Summer internship at QATAR
Summer internship at QATARSummer internship at QATAR
Summer internship at QATARElise M. Mansour
 
Business case channel financing ver 1.5
Business case   channel financing ver 1.5Business case   channel financing ver 1.5
Business case channel financing ver 1.5Partho Chakraborty
 
Summer project report@EXIDE INDUSTRIES PVT. LTD.
Summer project report@EXIDE INDUSTRIES PVT. LTD.Summer project report@EXIDE INDUSTRIES PVT. LTD.
Summer project report@EXIDE INDUSTRIES PVT. LTD.Kumar Rama Shankar
 
MBA Dissertation - Green Car Future 2020: Scenario implications for the Europ...
MBA Dissertation - Green Car Future 2020: Scenario implications for the Europ...MBA Dissertation - Green Car Future 2020: Scenario implications for the Europ...
MBA Dissertation - Green Car Future 2020: Scenario implications for the Europ...Sailesh Patel
 
Ufone ful final new1
Ufone ful final new1Ufone ful final new1
Ufone ful final new1Saad Khan
 

Similar to Internship Report on Amaravati Smart City Project (20)

Project Feasibility Study on establishing "Misale" Automatic Vending Machine ...
Project Feasibility Study on establishing "Misale" Automatic Vending Machine ...Project Feasibility Study on establishing "Misale" Automatic Vending Machine ...
Project Feasibility Study on establishing "Misale" Automatic Vending Machine ...
 
Blockchain in Education. Alexander Grech & Anthony F. Camilleri. Editor Andre...
Blockchain in Education. Alexander Grech & Anthony F. Camilleri. Editor Andre...Blockchain in Education. Alexander Grech & Anthony F. Camilleri. Editor Andre...
Blockchain in Education. Alexander Grech & Anthony F. Camilleri. Editor Andre...
 
project management in marketing
project management in marketing project management in marketing
project management in marketing
 
Peterborough Technology Strategy 2014-2019
Peterborough Technology Strategy 2014-2019Peterborough Technology Strategy 2014-2019
Peterborough Technology Strategy 2014-2019
 
CRMAMultifacetedConceptforCPCE.pdf
CRMAMultifacetedConceptforCPCE.pdfCRMAMultifacetedConceptforCPCE.pdf
CRMAMultifacetedConceptforCPCE.pdf
 
Sri LanKan AIRLINE
Sri LanKan AIRLINESri LanKan AIRLINE
Sri LanKan AIRLINE
 
Ecommerce
EcommerceEcommerce
Ecommerce
 
sưu tầm ENHANCING INFORMATION TECHNOLOGY APPLICATION AND DIGITAL TRANSFORMATI...
sưu tầm ENHANCING INFORMATION TECHNOLOGY APPLICATION AND DIGITAL TRANSFORMATI...sưu tầm ENHANCING INFORMATION TECHNOLOGY APPLICATION AND DIGITAL TRANSFORMATI...
sưu tầm ENHANCING INFORMATION TECHNOLOGY APPLICATION AND DIGITAL TRANSFORMATI...
 
Strategic Technology Roadmap Houston Community College 2005
Strategic Technology Roadmap Houston Community College 2005Strategic Technology Roadmap Houston Community College 2005
Strategic Technology Roadmap Houston Community College 2005
 
IM-Skills_Business-Case_Brochure1
IM-Skills_Business-Case_Brochure1IM-Skills_Business-Case_Brochure1
IM-Skills_Business-Case_Brochure1
 
FYP 2 REPORT AMIRUL ARIFF
FYP 2 REPORT AMIRUL ARIFFFYP 2 REPORT AMIRUL ARIFF
FYP 2 REPORT AMIRUL ARIFF
 
STEM report_ 20 October 2015 (2)
STEM report_ 20 October 2015 (2)STEM report_ 20 October 2015 (2)
STEM report_ 20 October 2015 (2)
 
Summer internship at QATAR
Summer internship at QATARSummer internship at QATAR
Summer internship at QATAR
 
Business case channel financing ver 1.5
Business case   channel financing ver 1.5Business case   channel financing ver 1.5
Business case channel financing ver 1.5
 
Summer project report@EXIDE INDUSTRIES PVT. LTD.
Summer project report@EXIDE INDUSTRIES PVT. LTD.Summer project report@EXIDE INDUSTRIES PVT. LTD.
Summer project report@EXIDE INDUSTRIES PVT. LTD.
 
Fulltext01
Fulltext01Fulltext01
Fulltext01
 
MBA Dissertation - Green Car Future 2020: Scenario implications for the Europ...
MBA Dissertation - Green Car Future 2020: Scenario implications for the Europ...MBA Dissertation - Green Car Future 2020: Scenario implications for the Europ...
MBA Dissertation - Green Car Future 2020: Scenario implications for the Europ...
 
Luận Văn Maintain Change In Human Resources Management Of Tetra Pak Company
Luận Văn Maintain Change In Human Resources Management Of Tetra Pak CompanyLuận Văn Maintain Change In Human Resources Management Of Tetra Pak Company
Luận Văn Maintain Change In Human Resources Management Of Tetra Pak Company
 
Tn vision 2023
Tn vision 2023Tn vision 2023
Tn vision 2023
 
Ufone ful final new1
Ufone ful final new1Ufone ful final new1
Ufone ful final new1
 

Recently uploaded

9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort servicejennyeacort
 
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Callshivangimorya083
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptxthyngster
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfLars Albertsson
 
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一F La
 
04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationshipsccctableauusergroup
 
RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998YohFuh
 
Call Girls In Mahipalpur O9654467111 Escorts Service
Call Girls In Mahipalpur O9654467111  Escorts ServiceCall Girls In Mahipalpur O9654467111  Escorts Service
Call Girls In Mahipalpur O9654467111 Escorts ServiceSapana Sha
 
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...Pooja Nehwal
 
Data Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptxData Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptxFurkanTasci3
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Sapana Sha
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfLars Albertsson
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...Florian Roscheck
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...Suhani Kapoor
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingNeil Barnes
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDRafezzaman
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsappssapnasaifi408
 
Call Girls In Dwarka 9654467111 Escorts Service
Call Girls In Dwarka 9654467111 Escorts ServiceCall Girls In Dwarka 9654467111 Escorts Service
Call Girls In Dwarka 9654467111 Escorts ServiceSapana Sha
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPramod Kumar Srivastava
 

Recently uploaded (20)

9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
 
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
꧁❤ Greater Noida Call Girls Delhi ❤꧂ 9711199171 ☎️ Hard And Sexy Vip Call
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
 
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
 
Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdf
 
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
办理(Vancouver毕业证书)加拿大温哥华岛大学毕业证成绩单原版一比一
 
04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships
 
RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998
 
Call Girls In Mahipalpur O9654467111 Escorts Service
Call Girls In Mahipalpur O9654467111  Escorts ServiceCall Girls In Mahipalpur O9654467111  Escorts Service
Call Girls In Mahipalpur O9654467111 Escorts Service
 
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...{Pooja:  9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
{Pooja: 9892124323 } Call Girl in Mumbai | Jas Kaur Rate 4500 Free Hotel Del...
 
Data Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptxData Science Jobs and Salaries Analysis.pptx
Data Science Jobs and Salaries Analysis.pptx
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
 
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
VIP High Class Call Girls Jamshedpur Anushka 8250192130 Independent Escort Se...
 
Brighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data StorytellingBrighton SEO | April 2024 | Data Storytelling
Brighton SEO | April 2024 | Data Storytelling
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
 
Call Girls In Dwarka 9654467111 Escorts Service
Call Girls In Dwarka 9654467111 Escorts ServiceCall Girls In Dwarka 9654467111 Escorts Service
Call Girls In Dwarka 9654467111 Escorts Service
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
 

Internship Report on Amaravati Smart City Project

  • 1.     INTERNSHIP  REPORT  2016   Project  theme   AMARAVATI  SMART  CITY       Under  the  guidance  of                                                                          Mr.Michel  Van  akcere   Company:   Maki  and  associates,   Architecture  and  planning,  Tokyo.   Address   Hillside  West-­‐‑C,  13-­‐‑4  Hachiyama-­‐‑cho,  Shibuya,  Tokyo,  Japan  150-­‐‑0035   TEL:+81-­‐‑3-­‐‑3780-­‐‑3880  FAX:+81-­‐‑3-­‐‑3780-­‐‑3881                                                                                                                                                                                                    Name:  Shyam  sunder  sirimalla                                                                                                                                                                                            Student  ID:  81524584                                                                                                                                                                                            Keio  university,  SFC                                                                                                                                                                                        Graduate  school  of  Media  and  Governance,                                                                                                                                                                                              EG,  M2,  2016.    
  • 2.   2   TABLE  OF  CONTENTS   AMARAVATI  SMART  CITY  ..................................................................................  1   What  is  smart  city?  .........................................................................................  5   DEFINITION:  ..........................................................................................................  5   Smart  Cities  in  India  ...............................................................................................  5   SOLUTIONS  OF  SMART  CITIES  ...............................................................................  6   URBAN  MOBILITY  ......................................................................................................  6   WASTE  MANAGEMENT  ................................................................................................  6   ENERGY  MANAGEMENT  ..............................................................................................  6   WATER  MANAGEMENT  ...............................................................................................  6   E-­  GOVERNANCE  AND  CITIZEN  SEVICES  .....................................................................  7   OTHERS  ....................................................................................................................  7   Technology  and  trends  ...........................................................................................  7   BUDGET  ..................................................................................................................  7   URBAN  MOBILITY  ..........................................................................................  8   smart  parking  .........................................................................................................  8   Definition  ................................................................................................................  8   Does  Smart  parking  helps  to  Minimize  the  usage  of  cars?  ....................................  8   Smart  Parking  case  study  :Town  of  Cottesloe,  Perth  –  Australia  .....................................  9   Bicycle  sharing  .....................................................................................................  11   Netherlands  .............................................................................................................  12   India  .......................................................................................................................  13   Japan  ......................................................................................................................  13   CAR  SHARING  SYSTEM  .........................................................................................  14   ELECTRIC  CARS  ....................................................................................................  14   INTERACTIVE  BUS  STOPS  ....................................................................................  14   Potential  additions  to  a  connected  bus  shelter  that  will  enable  more  business  models  ...  15   INTERACTIVE  BUS  STOPS  IN  DUBAI  .........................................................................  15   SMART  MALLS  .......................................................................................................  16   GASOLINE  STATION/  RECHARGING  STATION  .....................................................  16   SOLID  WASTE  MANAGEMENT  .......................................................................  18   pneumatic  refuse  collection,  or  automated  vacuum  collection  ...........................  18   Outline  ....................................................................................................................  19   System  construction  .................................................................................................  19   Features  ..................................................................................................................  19   Specification  ............................................................................................................  20   System  flow  of  waste  pneumatic  transportation  system  ..............................................  20   WASTE  TO  ENERGY  &  FUEL  ..................................................................................  21  
  • 3.   3   WASTE  TO  ENERGY  ...............................................................................................  21   SMART  WATER  .............................................................................................  23   Smart  Metering  Definition  ....................................................................................  23   Why  Use  Smart  Metering?  ....................................................................................  23   Smart  meters  –  Water,  electricity  and  gas  ...........................................................  24   HOME  BASED    and  INDUSTRY  BASED  ..................................................................  25   WATER  LEAKAGES  ................................................................................................  26   Smart  Water:  pipe  control  to  reduce  water  leakages  in  Smart  Cities  .............................  26   Water  leakage  detectors  :  Sensor  technology  solutions  ...............................................  27   WATER  QUALITY  MONITORING  ...........................................................................  28   Monitoring  the  Water  Quality  in  a  Smart  Water  Distribution  Network  ................  31   Real  Time  Monitoring  of  Water  Level  Variations  In  Rivers  and  Flood  Alerting   System  using  (Advanced  Risk  Machine)Arm7  ......................................................  33   MONITORING  FLOODS  .........................................................................................  33   Hardware  Requirements:  .....................................................................................  34   Looping  water  reuse  .............................................................................................  35   ONCE  THROUGH  SYSTEM  .........................................................................................  35   LOOPED  SYSTEM  .....................................................................................................  35   JAPAN  as  a  good  model  for  other  developing  and  developed  countries  in  WATER   LOOPING  SYSTEM  ....................................................................................................  36   STORM  WATER  MANAGEMENT  .....................................................................  38   Green  Roofs  ..........................................................................................................  38   Rain  Barrels  and  Cisterns  .....................................................................................  39   Permeable  Pavements  ..........................................................................................  39   Bioretention  Areas  ................................................................................................  40   Vegetated  Swales/Dry  Swales  .............................................................................  41   Curb  and  Gutter  Elimination  .................................................................................  41   Vegetated  Filter  Strips  .........................................................................................  42   Sand  and  Organic  Filters  ......................................................................................  42   Constructed  Wetlands  ..........................................................................................  43   Riparian  Buffers  ...................................................................................................  44   Renewable  energy  sources  for  water  facilities  (solar  power,  wind  power  etc)  ...  44   ENERGY  MANAGEMENT  ................................................................................  45   Renewable  source  of  energy  ................................................................................  45   Energy  efficient  and  green  buildings  ....................................................................  46   “Zero-­energy”  or  “Zero-­carbon”  new  buildings  ...................................................  49   Case  study  1:  Senedd  (National  Assembly  building),-­the  green  building  for  the  National   Assembly  for  Wales,  UK  ............................................................................................  50   Passivhaus”  or  “Passive  house”  in  EU  ..................................................................  51  
  • 4.   4   Googleplex,  California,  USA  .......................................................................................  52   Financial  benefits  of  green  buildings  ...................................................................  53   Integrated  energy  solutions  .................................................................................  54   Integrated  energy  system  at  community  level  ............................................................  55   URBAN  WIND  POWER  ..........................................................................................  56   wind  tree  .................................................................................................................  58   What  Is  ENEFARM?  ..............................................................................................  58   The  Power  Generation  Principle  of  ENEFARM  ..............................................................  59   ENEFARM  System  Configuration  ................................................................................  59   Wind  Energy  .........................................................................................................  60   WIND  POWER  CAPACITY  IN  INDIA  ............................................................................  61   Solar  Energy  .........................................................................................................  62   Smart  grid  system  with  distributed  power  sources  .............................................  63   HYDROGEN  REUSE  SYSTEM  .................................................................................  65   HYDROGEN  REUSE  SYSTEM  CITY  LEVEL  ....................................................................  66   What  is  cogeneration?  ..........................................................................................  68   Case  example  city  level  .............................................................................................  70                            
  • 5.   5   WHAT  IS  SMART  CITY?   There  is  no  universally  accepted  definition  of  a  Smart  City.  It  means  different  things  to   different  people,  varies  from  city  to  city  and  country  to  country,  depending  on  the  level  of   development,   willingness   to   change   and   reform,   resources   and   aspirations   of   the   city   residents.  There  is  no  one  way  of  defining  a  Smart  City.     DEFINITION:   A  smart  city  is  an  innovative  city  that  uses  information  and  communication  technologies   and  other  means  to  improve  quality  of  life  ,  efficiency  of  urban  operation  and  services,  and   competitiveness    while  ensuring  that  it  meets  the  needs  of  present  and  future  generations   with  respect  to  economic  ,  social  and  environmental  aspects.   Smart  Cities  in  India   The  Prime  Minister  of  India,  Shri  Narendra  Modi  has  a  vision  of  developing  100  smart  cities   as  satellite  towns  of  larger  cities  and  by  modernizing  the  existing  midsized  cities.   The  government  plans  to  identify  20  smart  cities  in  2015,  40  in  2016  and  another  40  in   2017.   Smart  cities  are  projected  to  be  equipped  with  basic  infrastructure,  will  offer  a  good  quality   of  life  through  smart  solutions.     Core  Infrastructure  Elements   o   Adequate  water  supply   o   Assured  electricity  supply   o   Sanitation,  including  solid  waste  management   o   Efficient  urban  mobility  and  public  transport   o   Affordable  housing,  especially  for  the  poor   o   Robust  IT  connectivity  and  digitization   o   Good  governance,  especially  e-­‐‑Governance  and  citizen  participation   o   Sustainable  environment   o   Safety  and  security  of  citizens,  particularly  women,  children  and  the  elderly   o   Health  and  education  
  • 6.   6   SOLUTIONS  OF  SMART  CITIES     URBAN  MOBILITY   o   Smart  parking   o   Shared  bicycles     o   Smart  lighting     o   Intelligent  traffic  management   o   Integrated  multi  modal  transport   o   Interactive  bus  stops   o   Recharging  stations     o   Using  EVs  and  Hybrid  cars  for  leveling  off  the  peaks     o   Car  sharing  or  other  volunteer  car  shares  programs   WASTE  MANAGEMENT   o   Smarter  waste  collection     o   3R  (reuse  reduce  recycle)  policies     o   Waste  to  energy  &  fuel   o   Waste  to  compost   o   Waste  water  to  be  treated   o   Recycling  and  reduction  of  Construction  &  Demolition  waste   ENERGY  MANAGEMENT   o   Smart  meters  and  management   o   Renewable  source  of  energy   o   Energy  efficient  and  green  buildings   o   Integrated  energy  solutions   o   Urban  wind  power     o   Environmental  sensors     o   Smart  grid  system  with  distributed  power  sources     o   Ene-­‐‑farm  (self  power  plant  from  hydrogen)     o   Hydrogen  reuse  system   o   Co  generation   WATER  MANAGEMENT   o   Smart  meters  &  Mangement   o   Leakage  indentification  ,  preventive  maint   o   Water  quality  monitoring   o   Renewable  energy  sources  for  water  facilities  (solar  power,  wind  power  etc)     o   Looping  water  use  would  be  another  solution  (use  of  graywater)    
  • 7.   7   E-­  GOVERNANCE  AND  CITIZEN  SEVICES   o   Public  information,  Grievance  redressal   o   Electronic  service  delivery   o   Citizen  engagement   o   Citizens  –  city's  eyes  and  ears   o   Video  crime  monitoring   OTHERS   o   Tele  medicine  &  tele  education   o   Incubation/trade  facilitation  centres   o   Skill  development  centres   Technology  and  trends   o   Ubiquitous  computing     o   Open  Data   o   Big  Data   o   GIS  (Geographical  information  system)   o   Cloud  Computing   o   Embedded  networks   o   Internet  of  Things   BUDGET     A  total  of  US  $15  BILLION  has  been  approved  by  the  cabinet  for  development  of  100  smart   cities  and  rejuvenation  of  500  other  cities.   $  7.1  billion  for  100  smart  cities   $  7.4  billion  for  urban  transformation  and  rejuvenation.   $  71  million  for  each  city  approximately            
  • 8.   8   URBAN  MOBILITY   smart  parking   Definition:  A  vehicle  parking  system  that  helps  drivers  find  a  vacant  spot.  Using  sensors   in  each  parking  space  that  detect  the  presence  or  absence  of  a  vehicle,  signs  direct   incoming  drivers  to  available  locations.   Benefits   •   Improved  traffic  flow  /  reduced  congestion   •   Statistical  and  real-­‐‑time  information  on  parking  vacancies   •   Intelligent  usage  of  infrastructure   •   Simplified  parking  data  collection  at  a  reduced  cost   •   reduce  transportation-­‐‑related  emissions.   •   Possibility  of  convenient  cashless  parking  via  automated  up-­‐‑to-­‐‑the-­‐‑minute  billing   •   Safer  traffic  with  efficient  enforcement  of  illegal  parking  activities   •   Usage  of  smart  parking  infrastructure  and  data  for  multiple  applications  in  and   beyond  traffic  Management   •   Encourage  the  use  of  public  transportation  at  times  of  congestion       http://www.mobility.siemens.com/mobility/global/en/urban-­‐‑mobility/road-­‐‑solutions/integrated-­‐‑ smart-­‐‑parking-­‐‑solution/pages/integrated-­‐‑smart-­‐‑parking-­‐‑solution.aspx   Does  Smart  parking  helps  to  Minimize  the  usage  of  cars?   Since  Smart  Parking  gives  the  before  hand  information  of  vacancy  and  data  such  as  time  
  • 9.   9   needed  to  secure  the  parking  space  and  walking  distance  to  the  desired  location.  This   results  in  an  intelligent  comparison  of  travel  modes,  encouraging  use  of  public  transport   as  needed  and  can  helps  to  minimize  the  usage  of  private  vehicles.   Smart  Parking   case  study  :Town  of  Cottesloe,  Perth  –  Australia   SmartPark   transformed   on-­‐‑street   city   parking   by   combining   three   Smart   Parking   technologies   to   identify   all   overstays   and   enforce   infringement   notices,   while   helping   drivers  park  quickly  and  easily.       The  challenge   o   The  Town  of  Cottesloe  in  Perth,  Australia  is  a  popular  tourist  destination.     o    A  fair,  efficient  parking  management  system  is  an  essential  component  of  making  a   visit  to  the  Town  of  Cottesloe  enjoyable  for  visitors,  fair  to  residents  and  profitable   to  local  businesses.   o   Cottesloe  had  been  managing  parking  through  traditional  methods:  officers  would   patrol  time-­‐‑restricted  areas,  identifying  overstays  and  issuing  infringement  notices.     o   This  had  proved  inefficient  as  not  all  infringing  vehicles  could  be  identified.  It  was   also  a  tedious,  time  consuming  and  mundane  task  for  parking  enforcement  officers.                                                                                                     SENSOR   Smart  Eye   Advanced  sensor  technology   Smart  Eye  gather  information  on  parking  space  occupancy  .  Real  time  ,  individual  vehicle  ,   individual  space  data  from  
  • 10.   10     Information  on  parking  space  occupancy  gathered  by  smart  Eye  sensors  will  fed  to  smart   Rep   SERVER   Smart  Rep.   Smart  Rep  is  the  software  at  the  centre  of  Smart  Parkings  cutting  edge  technologies  and   parking  management  systems.       Smart  rep    Manages  ,  Analyses  and  disseminates  data  and  used  for  daily  management   including  payment  and  enforcement  as  well  as  long  term  planning.   SMART  GUIDE   Data   managed   by   smart   Rep     forwarded   to   technologies   including   SmartApp,   digital   guidance  signage,  parking  attendants  handheld  devices,  pay  stations,  permit  systems  and   pay  by  phone.  
  • 11.   11     RFID  tag  that  links  vehicle  to  permitted  space     RFID  (radio  frequency  identification  )is  an  in  vehicle  tag  that  identifies  a  driver  as  the   permit  holder.  This  is  read  by  smart  eye  at  the  permit  only  parking  bay  and  fed  to  smart   Rep.     smart  Rep  then  actiavtes  instant  and    comprehensive  enforcement  systems  and  facilities   payment.     SMART  solution   §   Cottesloe’s   busy   and   popular   commercial   strip   –   Napoleon   Street   installed   and   trialled  SmartParking  .       §   The   town’s   SmartPark   trial   system   comprised   34   Smart   Eye   sensors,   relaying   information   to   SmartRep,   Smart   Parking’s   powerful   car   parking   management   software  tool,  which  collates  and  analyses  the  data.       §   All  overstays  are  identified,  in  real-­‐‑time,  the  minute  each  parked  vehicle  exceeds   the  time  limit.     Bicycle  sharing   o   Bicycle  sharing  is  a  bicycle  loan  service  that  can  be  utilized  via  the  many  ports  set   up  within  a  service  area.     o   In  addition  to  income  from  usage  fees,  advertisements  are  sometimes  attached  to   the  bicycles,  which  helps  cover  operating  expenses.     o   As  a  measure  to  ease  traffic  congestion  in  urban  areas  and  reduce  CO2  emissions,  
  • 12.   12   the  practice  has  been  spreading  in  Western  countries  since  the  beginning  of  this   century.     As  of  now,  more  than  600  cities  worldwide  had  a  bike-­‐‑sharing  program.   Netherlands   o   The   Netherlands   has   a   single   nationwide   bike   sharing   program.   It's   called   "OV-­‐‑ fiets",  which  means  'public  transport  bike'.  6000  bikes  in  252  locations,  mainly  train   stations,  all  over  the  country.     o   Membership   is   required   (annual   fee   €10,   €3.15   per   rental   day)   and   can   be   combined  with  public  transport  card.  The  program,  which  started  on  a  small  scale   in  2003,  has  enjoyed  a  steadily  increasing  popularity  with  over  1.53  million  rides   registered  in  2014.     o   The  nature  of  the  Dutch  bike  sharing  program  differs  from  that  of  programs  in  other   countries   partly   because   the   already   high   bike   ownership   of   the   population.   Its   interconnection  with  the  public  transport  network  allows  it  to  fill  the  need  of  people   who  also  want  to  continue  traveling  by  bike  from  the  station  of  their  destination.     The  Netherlands:  OV-­‐‑fiets  
  • 13.   13   India   •   Indian  Institute  of  Science,  Bangalore  –  NammaCycle   •   Pondicherry  University,  Kalapet  –  Bike  Share   •   Birla  Institute  of  Technology,  Mesra,  Ranchi  -­‐‑  Desi  Wheels   Japan   •   According  to  the  Ministry  of  Land,  Infrastructure,  Transport  and  Tourism  as  of  2012   there  were  a  number  of  city-­‐‑level  pilot  schemes  in  operation  in  Japan,  the  largest  of   which  was  Edogawa  City  in  Tokyo  with  500  cycles  available  for  hire.     •   Toyama  also  has  a  bicycle  sharing  system,  that  takes  the  region's  public  transit  IC   card  Passca.   •         The  Chiyokuru  bicycle  sharing  system  has  many  business  users  at  the  Marunouchi  Building  in   Chiyoda  Ward,  Tokyo.  Photo:  The  Yomiuri  Shimbun/ANN   http://transport.asiaone.com/news/general/story/bicycle-­‐‑sharing-­‐‑japanese-­‐‑cities-­‐‑ picking-­‐‑speed  
  • 14.   14   CAR  SHARING  SYSTEM     ELECTRIC  CARS     INTERACTIVE  BUS  STOPS   San  Francisco  Interactive  Bus  Stops    
  • 15.   15     Potential  additions  to  a  connected  bus  shelter  that  will  enable  more   business  models     Nokia  Innovation  2020  Report  Connected  bus  shelter     INTERACTIVE  BUS  STOPS  IN  DUBAI      
  • 16.   16   SMART  MALLS   •   Smart  Malls  are  the  newest  service  coming  to  Dubai,  which  will  allow  users  to  shop   by  using  an  interactive  screen!   •   added  to  5  metro  stations  across  Dubai  with  the  help  of  Etisalat.         GASOLINE  STATION/  RECHARGING  STATION      
  • 17.   17   SOLAR  POWER  HYDROGEN  HYBRID  POWER  CHARGING  STATION  –  INITIAL  LAUNCH   IN  SAITAMA  PREFECTURE-­‐‑  by  HONDA     Petrol  pump   •   One  petrol  pump  for  150  ha  of  gross  residential  areas  in  residential  zone   •   One  petrol  pump  for  40  ha  of  gross  industrial  area   •   Two  petrol  pumps  in  each  district  Centre  5  lakh  pop   •   One  petrol  pump  in  each  community  center  Up  to  100,000  pop   No  of  Recharge  centers  /petrol  pumps  needed  ?     2  RECHARGE  STATIONS  &  PETROL  PUMPS   Petrol  bunks  /  recharging  station   Petrol  Pumps   The   following   regulations   are   recommended   for   locating   the   petrol   pump   cum   service   stations.   Minimum  distance  from  the  road  intersections.   a)    For  minor  roads  having  less  than  30  m.  R/W          50  m.   b)    For  major  roads  having  R/W  30  m.  or  more            100  m.   The  minimum  distance  of  the  property  line  of  pump  from  the  center  line  of  the  Road  should   not  be  less  than  15  meters  on  roads  having  less  than  30  m.  R/W.    In  case  of  roads  having   30  m.  or  more  R/W,  the  R/W  of  the  road  should  be  protected.           Plot  Size   a)  Only   filling   stations   30   m.   x   17   m.   and   small   size   18   m.   x   15   m.   (for   two   and   three   wheelers)   b)  Filling-­‐‑cum-­‐‑service  station  minimum  size  36  m.  x  30  m.  and  maximum  45  m.  x  33  m.   c)  Frontage  of  the  plot  should  not  be  less  than  30  m.   d)  Longer  side  of  the  plot  should  be  the  frontage.   New  Petrol  Pump  shall  not  be  located  on  roads  having  less  than  30  m.  R/W.      
  • 18.   18   SOLID  WASTE  MANAGEMENT     pneumatic  refuse  collection,  or  automated  vacuum  collection   An  automated  vacuum  waste  collection  system,  also  known  as  pneumatic  refuse  collection,   or   automated   vacuum   collection   (AVAC),   transports   waste   at   high   speed   through   underground  pneumatic  tubes  to  a  collection  station  where  it  is  compacted  and  sealed  in   containers.  When  the  container  is  full,  it  is  transported  away  and  emptied.  The  system   helps  facilitate  separation  and  recycling  of  waste       http://ifonlysingaporeans.blogspot.jp/2015/06/less-­‐‑odour-­‐‑with-­‐‑yuhuas-­‐‑automated-­‐‑ waste.html   Waste  Treatment  Technology  in  JAPAN   Collection,  Transportation  and  Storage          
  • 19.   19   Waste  Pneumatic  Transportation  System   Outline   There  are  many  problems  in  collection  of  municipal  solid  waste  by  conventional  vehicles   transportation   system   such   as   noise   from   collecting   vehicles,   bad   odor   and   scattered   residue.   Kobe   Steel's   waste   pneumatic   transportation   system   can   eliminate   these   problems  by  collecting  waste  by  means  of  air  flow  through  underground  pipe  line,  like   vacuum  cleaner.   System  construction     Kobe  Steel's  waste  pneumatic  transportation  system  is  consisted  of  waste  disposal  posts,   storages,  pipe  lines,  separators  with  dust  collectors,  blowers,  de-­‐‑odorizers  and  control   system.  There  are  two  types  of  disposal  posts,  one  is  for  dust  suit  type  installed  in  tall   buildings  and  the  other  is  for  floor  type  installed  at  parks  or  lower  buildings.  In  order  to   reject  unsuited  waste  for  this  transportation  system,  a  device  to  restrict  of  waste  volume   is  installed  in  the  waste  disposal  posts.  Waste  disposed  at  the  posts  is  stored  once  in  the   storage.  The  capacity  of  the  storage  is  selected  by  the  predicted  disposal  volume  of  waste.   The  waste  is  transported  to  the  collection  center  through  pipe  line  by  means  of  vacuum   operation.   At   the   collection   center,   the   waste   is   exhausted   from   the   pipe   line   by   the   separator  with  dust  collector.  The  waste  is  then  sent  to  the  adjacent  incineration  plant   directly  or  after  compaction.   http://infohouse.p2ric.org/ref/26/japan/Waste-­‐‑025.html   Features   1.  Complete  closed  and  sanitary  system.   2.  Easy  operation  can  be  provided  by  computer  control  system.   3.  Waste  can  be  disposed  24  hours  per  day.   4.  Waste  collecting  vehicle  can  be  eliminated  from  the  town.   5.  Recycle  can  be  realized  by  the  addition  of  sorting  system.   6.  Safety  design.        
  • 20.   20   Specification         System  flow  of  waste  pneumatic  transportation  system              
  • 21.   21   WASTE  TO  ENERGY  &  FUEL     •   Incineration  is  a  waste  treatment  process  that  involves  the  combustion  of  organic   substances  contained  in  waste  materials.     •   Incineration  of  waste  materials  converts  the  waste  into  ash,  flue  gas,  and  heat.     •   The  heat  generated  by  incineration  can  be  used  to  generate  electric  power  OR   •   produce   a   combustible   fuel   commodity,   such   as   methane,   methanol,   ethanol   or   synthetic  fuels.         WASTE  TO  COMPOST   Composting   •   Organic  matter  constitutes  35%–40%  of  the  municipal  solid  waste  generated  in   India.     •   This  waste  can  be  recycled  by  the  method  of  composting,  one  of  the  oldest  forms   of  disposal.     •   It  is  the  natural  process  of  decomposition  of  organic  waste  that  yields  manure  or   compost,  which  is  very  rich  in  nutrients.   •   Burning  organic  matter  generates  bio  mass.   •    
  • 22.   22   •   biomass  is  used  to  generate  electricity.                          
  • 23.   23   SMART  WATER   o   Smart  meters  &  Management   o   Leakage  identification   o   Water  quality  monitoring   o   Detect  leakages  and  wastes  of  factories  in  rivers.   o   River  Floods,
Monitoring  of  water  level  variations  in  rivers,  dams  and  reservoirs.   o   Looping  water  use  would  be  another  solution  (use  of  gray  water)     o   Renewable  energy  sources  for  water  facilities  (solar  power,  wind  power  etc)     o   Storm  water  management     Smart  Metering  Definition   o   Smart  meters  are  Interval  meters  on  customer  premises  that  measure  consumption   during  specific  time  periods  and  communicate  it  to  the  utility,  often  on  a  daily  basis.     o   While  in  the  electric  industry,  measurement  intervals  can  be  as  short  as  every  10  or   15  minutes,     o   Water   intervals   of   30   to   60   minutes   or   longer   generally   provide   adequate   information.         Why  Use  Smart  Metering?     •   Information  to  the  Customer   •   Information  to  the  Utility     •   Better  Services  Without  Incremental  Costs     •   Metering  and  measuring  facility  water  use  help  to  analyze  saving  opportunities.     •   This  also  assures  the  equipment  is  run  correctly  and  maintained  properly  to  help   prevent  water  waste  from  leaks  or  malfunctioning  mechanical  equipment.    
  • 24.   24   As   drought   and   population   growth   sharpen   the   focus   on   water   issues,   utilities,   environmental  groups,  and  government  bodies  are  increasingly  looking  to  smart  metering   to:     •   Help  customers  better  understand  their  water  use  and  curb  waste.     •   Identify  leaks.     •   Under  pin  new  rate  and  regulatory  programs  that  respond  flexibly  to  community   water  needs.     •   Smart  metering  may  also  include:     At  the  customer  site:  An  easy  to  read  display.  It  helps  customers  check  for  leaks,  reduce   consumption,  and  monitor  compliance  with  local  restrictions.    At  the  utility:  Additional  data  collection  and  processing   Software,  such  as  a  meter  data  management  application.     This  isolates  the  existing  billing  system  from  the  increasing  meter  data  volumes  that  smart   metering  introduces.     Smart  meters  –  Water,  electricity  and  gas     HOME  DISPLAYS        
  • 25.   25   HOME  BASED    and  INDUSTRY  BASED   FLUID  Is  A  Smart  Water  Meter  For  Your  Home   •   FLUID  is  a  smart  water  meter  that  helps  you  understand  exactly  when,  where  and   how  much  water  you’re  consuming  in  your  home  on  a  daily  basis   •   FLUID   simply   snaps   around   the   main   water   pipe   in   your   home.   You   plug   it   in,   connect  it  to  your  Wi-­‐‑Fi,  and  download  the  FLUID  app  to  access  real-­‐‑time  reports   on  your  iPhone  or  Android.   •   Using   ultrasonic   technology   —   essentially   sending   pulses   from   one   ultrasonic   transducer   to   another   —   the   device   is   able   to   measure   the   rate   of   water   flow   without  cutting  into  the  pipe.   •   In   the   case   of   a   leak,   FLUID   serves   as   a   disaster   prevention   tool,   alerting   you   immediately   before   your   basement   floods   and   your   water   bill   spikes   to   all   new  heights.           Including  All  Potential  Benefits     Smart  Metering  may  be  hard  to  cost-­‐‑justify  if  it  rests  solely  on  lower  water  use.  It  is  easier   to  cost-­‐‑  justify  when  it  includes,  for  instance,  the  value  of:     o   Ensuring  that  all  meters  are  recording  water  flow  following  repair  of  abreak  in  a   main.     o   Remote  programming  that  enables  customers  to  use  new  products  or  services  to   advance  community  and  environmental.     o   Fewer   meter   readers   ,which   means   lower   total   costs   for   salary,   benefits   and   workers  compensation.     o   Remote  rather  than  expensive  and  occasionally  risky  on-­‐‑site  disconnects  or  flow   restrictions.     o   Less  wasted  time  in  attempts  to  pin  point  the  size  and  source  of  leaks  and  breaks.     o   Lower  risk  to  public  safety  from  flooded  intersections  or  lack  of  service  to  hydrants.     o   Better  meter  reading  accuracy,  resulting  in  fewer  calls  to  the  contact  center.    
  • 26.   26   o   Faster  theft  or  other  loss  detection.     o   Lower  electricity  costs  (for  those  utilities  using  electric  pumps).     o   Reduced  use  of  chemicals  currently  used  to  treat  water  that  is  then  wasted  through   leakage  from  water  mains  or  via  customer-­‐‑premises  leaks  from  pipes  or  fixtures.     o   Longer  lifespans  for  water  treatment  equipment.       WATER  LEAKAGES         Smart  Water:  pipe  control  to  reduce  water  leakages  in  Smart  Cities   Water  is  becoming  a  scarcer  resource  due  to  many  reasons:     •   Increased  city  populations  mean  increased  demand  for  water   •   Climactic  changes  have  reduced  rainfall  forecasts   •   Traditional   water   extraction   methods   have   depleted   available   water   from   some   local  sources.   Smart   cities   must   monitor   water   supply   and   distribution   to   ensure   that   there   is   sufficient  access  for  citizen  and  industry  use  and  also  to  save  money.     For  example  the  amount  of  a  city’s  water  supply  that  is  lost  to  water  leakage  is  as  high  as:   •   Up  to  20%  in  Canadian  municipalities   •   20  %  in  United  Kingdom,  Spain,  Malta,  and  the  Czech  Republic   •   25%  in  Rome.  
  • 27.   27   •   40  %  in  India  (Times  of  India)   •   Nearly  50%  in  London  and  Vietnam     Water  leakage  detectors  :  Sensor  technology  solutions   Wireless  Sensor  Networks  provide  the  technology  for  cities  to  more  accurately  monitor   their  water  pipe  systems  and  identify  their  greatest  water  loss  risks.     Cities   that   are   addressing   water   leakages   with   sensor   technology   are   generating   high   savings   from   their   investment.   Tokyo,   for   example,   has   calculated   they   save   $USD170   million  each  year  by  detecting  water  leakage  problems  early.     Libelium’s  Smart  Metering  Sensor  Board  includes  a  water  flow  sensor  that  can  detect  pipe   flow  rates  ranging  from  0.15  to  60  litres/minute.     The  system  can  report  pipe  flow  measurement  data  regularly,  as  well  as  send  automatic   alerts  if  water  use  is  outside  of  an  expected  normal  range.  This  allows  a  smart  city  to   identify  the  location  of  leaking  pipes  and  prioritize  repairs  based  on  the  amount  of  water   loss  that  could  be  prevented.       Libelium’s  Smart  Metering  Sensor      
  • 28.   28   WATER  QUALITY  MONITORING     Water  and  Air  Quality  Monitoring  in  Civil  Works  OR  WATER  TREATMENT  PLANTS   •   Environmental   impacts   detection   system   in   real   time   which   allows   measure   water  quality  and  other  atmospheric  parameters  based  on  libelium  wireless  sensor   networks  technology.   •     Case  example   •   This   project   has   been   deployed   in   the   “villapérez”   water   treatment   plant   construction,  located  in  oviedo  (asturias,  spain).      
  • 29.   29   The   four   Waspmote   Plug   &   Sense!   Sensor   Platform   installed   monitor   the   following   environmental  and  water  quality  parameters:   •   Waspmote  Plug  &  Sense!  Smart  Water:  Turbidity,  Oxidation-­‐‑Reduction  Potential   (ORP),  pH,  Dissolved  Oxygen  (DO)  and  Temperature.   •   Waspmote  Plug  &  Sense!  Smart  Environment:  particle  matter  PM1;  PM2,5  PM10,   and  Temperature,  Humidity,  Pressure  atmospheric.   •   Waspmote  Plug  &  Sense!  Smart  Cities:  day,  evening  and  night  Luminosity.   •   Waspmote  Plug  &  Sense!  Smart  Cities:  Luminosity  and  temperature.     The  Waspmote  Plug  &  Sense!  autonomous  sensors  which  measure  the  water  quality  are   installed  in  the  processed  water  from  the  water  treatment  plant  way  out  manhole.   From  there,  data  is  sent  to  the  Meshlium  Gateway  and  the  information  is  processed  in   VisionTech4Life  apps,  which  send  alerts  and  enables  to  analyze  the  results  in  the  medium   and  long  term.        
  • 30.   30     “Smart  Water  is  an  improvement  on  existing  water  quality  control  in  terms  of  accuracy,   efficiency,   and   low   operational   costs.   For   municipalities,   water   quality   detection   and   monitoring  systems  have  to  be  reliable,  autonomous,  and  flexible,     Smart  Water  Sensors  to  monitor  water  quality  in  rivers,  lakes  and  the  sea   •   Libelium   launched   Waspmote   Smart   Water   is   suitable   for   potable   water   monitoring,   chemical   leakage   detection   in   rivers,   remote   measurement   of   swimming  pools  and  spas,  and  levels  of  seawater  pollution.     •   The  Waspmote  Smart  Water  platform  is  an  ultra  low-­‐‑power  sensor  node  designed   for  use  in  rugged  environments  and  deployment  in  Smart  Cities  in  hard-­‐‑to-­‐‑access   locations  to  detect  changes  and  potential  risk  to  public  health  in  real  time.  
  • 31.   31   •   The   water   quality   parameters   measured   include   pH,   dissolved   oxygen   (DO),   oxidation-­‐‑reduction  potential  (ORP),  conductivity  (salinity),  turbidity,  temperature   and   dissolved   ions   (Fluoride   (Fluoride   (F-­‐‑),   Calcium   (Ca2+),   Nitrate   (NO3-­‐‑),   Chloride  (Cl-­‐‑),  Iodide  (I-­‐‑),  Cupric  (Cu2+),  Bromide  (Br-­‐‑),  Silver  (Ag+),  Fluoroborate   (BF4-­‐‑),   Ammonia   (NH4),   Lithium   (Li+),   Magnesium   (Mg2+),   Nitrite   (NO2-­‐‑),   Perchlorate  (ClO4),  Potassium  (K+),  Sodium  (Na+).     Monitoring  the  Water  Quality  in  a  Smart  Water  Distribution  Network     •   Water  distribution  networks  are  steadily  entering  the  age  of  smart  technology  and   communication.   As   this   movement   develops,   more   governments,   municipalities   and  urban  planners  are  embracing  the  internet  of  things  (iot)  for  intelligent  water   distribution  systems.         The  Smart  LEATM  system  has  been  developed  by  Blue  I  Water  Technologies     FEATURES      SMART  LEA  :  Independent  Power  Supply     •   Provides  practical,  efficient  and  viable  solution  for  gathering  and  communicating   water  quality  data  without  relying  on  a  city’s  power  supply  to  gather  and  transmit   data  in  a  smart  water  network.    
  • 32.   32   •   Self-­‐‑powered  by  a  long-­‐‑life  battery,  the  device’s  innovative  measurement  sequence   and   operation   algorithms   reduce   power   consumption   and   significantly   prolong   battery  life.     •   This  means  that  site  visits  for  maintenance  can  be  significantly  reduced  and  that   measurement  can  therefore  be  performed  where  it  is  needed  and  not  where  it  is   simply  convenient.     •   By  doing  so,  operations  are  improved  so  as  to  secure  safe  and  healthy  water  for  all   consumers.       SENSORS  :  Low  Energy  Analyzers  to  Monitor  All  Locations  in  the  Smart  Water  Network     •   High-­‐‑precision  water  quality  sensors  and  analysis  devices  that  can  perform  online   data   collection   and   streaming   are   integral   components   for   the   ‘intelligent’   operations  of  a  distribution  system.     •   They  make  it  possible  sustain  an  environmentally  sound,  reliable,  efficient  and  safe   distribution  process,  all  along  the  route  from  source  to  tap.     •   The   device   performs   periodical   and   on-­‐‑demand   measurements   in   areas   with   restricted  accessibility  in  the  water  distribution  network.       GSM/GPRS   The   measurement   data   and   alarms   are   logged   locally   and   also   transmitted   through   GSM/GPRS  data  communication  systems.    
  • 33.   33   Real  Time  Monitoring  of  Water  Level  Variations  In  Rivers  and  Flood  Alerting   System  using  (Advanced  Risk  Machine)Arm7     MONITORING  FLOODS    
  • 34.   34   Hardware  Requirements:   This  project  requires  some  hardware  components  such  as  ARM  (Advanced  Risk  Machine),     •   Flow  Sensor,     •   Temperature  Sensor,     •   Raindrop  Sensor,     •   GPRS  and  GSM.            
  • 35.   35     Looping  water  reuse     ONCE  THROUGH  SYSTEM   In   a   traditional   urban   water   system,   after   water   use,   wastewater   is   treated   to   certain   legalized  quality  levels  when  discharged  into  receiving  water  bodies.  Such  a  water  use   system  is  generally  regarded  as  a  once-­‐‑through  system  (Indigo,  2003).    In  such  system   water  is  only  used  once,  so  the  efficiency  of  water  use  is  low.     LOOPED  SYSTEM   looped  system  created  when  treated  wastewater  is  reused  for  some  applications  which  do   not   require   high-­‐‑quality   drinking   water,   such   as   irrigation   and   sanitation.   Wastewater   reuse  practices  will  help  in  satisfying  more  water  demands  while  effluent  discharge  can  be   reduced.     Although   a   looped   system   is   relatively   complex,   it   provides   much   higher   water   use   efficiency.        
  • 36.   36       JAPAN  as  a  good  model  for  other  developing  and  developed  countries  in   WATER  LOOPING  SYSTEM   o   Japan   stands   out   as   a   nation   that   adopted   a   mix   of   water   reuse   strategies   that   included  closed  loop  type  systems  at  a  very  early  stage  and  in  a  more  significant   manner.     o   Japan  also  utilized  a  blend  of  reclaimed  water  sources:  municipal  wastewater,  grey   water  and  rainwater.     o   As  a  result  of  concentrated  high  density  growth  in  post  World  War  II  Japan,  urban   areas  that  lacked  adequate  water  resource  systems  were  forced  to  find  alternative   solutions.     o   As  a  result,  Japan  became  the  leader  in  urban  water  reuse,  with  8%  of  the  total   reclaimed  water  being  used  for  urban  purposes  through  a  number  of  mechanisms   which  includes  decentralized  closed  loop  and  open  loop  systems.     o   Because  of  Japan’s  focus  on  urban  water  reuse,  it  stands  as  a  good  model  for  other   developing  and  developed  countries  that  seek  to  establish  water  reuse  systems  as   part  of  urban  development  and  redevelopment.     o   The  first  indoor  closed  loop  water  reuse  projects  beginning  in  1984,  in  the  shinjuku   district  of  tokyo.     o   Wastewater,   greywater   and   rainwater   being   captured   in   the   building   or   from   neighboring  buildings.  Some  systems  are  therefore  very  small  but  taken  together  
  • 37.   37   this  entire  network  of  large  area  systems  combined  within  building  systems  results   in  61%  of  all  non  potable  water  demand  being  met  with  reuse  water  in  tokyo.     o   It  was  reported  in  1996  that  there  were  a  total  of  2,100  buildings  using  some  form   of  water  reuse  and  that  130  new  water  reuse  systems  were  being  installed  each   year.  (Yamagata)     o   In  addition,  of  the  1,718  wastewater  treatment  plants  that  exist  in  japan,  240  plants   distribute  water  for  reuse  in  various  forms.     o   Currently  it  is  reported  that  4.2  million  gallons  per  day  of  reuse  water  for  toilet   flushing  is  distributed  from  the  larger  plants  and  46  smaller  plants  provide  14.2   million   gallons   per   day   of   reuse   for   various   in-­‐‑building   uses,   including   toilet   flushing,  cooling  and  plant  watering.   o   In  tokyo  the  requirement  for  water  reuse  is  for  all  buildings  over  10,000  square   meters   and   in   osaka   and   fukuoma   the   requirement   for   water   reuse   is   for   all   buildings   over   5,000   square   meters.   Additionally,   nonpotable   reuse   water   is   utilized  to  supply  fire  suppression  systems                                    
  • 38.   38   STORM  WATER  MANAGEMENT   Following  are  some  of  the  green  infrastructure  and  LID(Low  impact  development)   practices    uses  to  reduce  storm  water  runoff  and  pollution:   •   Green  Roofs   •   Rain  Barrels  and  Cisterns   •   Permeable  Pavements   •   Bio  retention  Areas   •   Vegetated  Swales/Dry  Swales   •   Curb  and  Gutter  Elimination   •   Vegetated  Filter  Strips   •   Sand  and  Organic  Filters   •   Constructed  Wetlands   •   Riparian  Buffers     Green  Roofs   “Green”   roofs   are   covered   with   vegetation   to   enable   rainfall   infiltration   and   evapotranspiration  of  stored  water.  A  green  roof  can  also  reduce  the  effects  of  atmospheric   pollution,  reduce  energy  costs,  decrease  the  “heat  island”  effect  and  create  an  attractive   environment.   Case  examples     Epa(Environmental  protection  agency  )  incorporated  green  rooftops  at  its  new  england   regional  office  in  boston.  Rainwater  is  collected  from  the  4th,  5th  and  17th  floor  rooftops,   stored  in  cisterns  and  distributed  by  a  solar-­‐‑powered  pump  to  irrigate  the  green  roof.   The  a.W.  Breidenbach  environmental  research  center  in  cincinnati,  ohio,USA  has  an  8,000-­‐‑ square-­‐‑foot  green  roof.  The  roof  provides  1,000  cubic  feet  of  water  storage,  enough  to   retain  the  rainfall  from  a  1.6-­‐‑inch  storm.     Epa  also  has  green  roofs  at  its  offices  in  arlington,  virginia,  and  denver,  colorado,  as  well  as   the  atlantic  ecology  division  laboratory  in  narragansett,  rhode  island.      
  • 39.   39     Rain  Barrels  and  Cisterns     •   Rain  barrels  and  cisterns  harvest  rainwater  primarily  from  rooftops  for  reuse.  Rain   barrels   are   placed   at   roof   downspouts,   and   cisterns   store   rainwater   in   larger   volumes  in  tanks  for  use  in  non-­‐‑potable  applications  such  as  toilet  flushing.   •   Epa  headquarters  in  washington,  d.C.,  Has  installed  six  1,000-­‐‑gallon  cisterns  that   are   used   to   irrigate   headquarters’   landscaping   as   part   of   an   LID   demonstration   project.     Permeable  Pavements    
  • 40.   40   •   Permeable  surfaces,  unlike  impermeable  surfaces  such  as  asphalt  or  concrete,  allow   storm  water  to  infiltrate  through  porous  surfaces  into  the  soil  and  groundwater.     •   EPA   parking   lots,   driveways   or   sidewalks   include   pervious   concrete,   porous   asphalt,  pervious  interlocking  concrete  pavers  or  grid  pavers.   •   Epa  installed  a  300,000-­‐‑square-­‐‑foot  permeable  pavement  parking  lot  with  porous   asphalt,   porous   concrete   and   pervious   interlocking   paver   blocks   at   its   region   2   laboratory   in   edison,   new   jersey,   to   research   the   effects   of   different   permeable   surfaces  on  stormwater  runoff.     Bioretention  Areas   •   Bioretention  areas  are  shallow,  landscaped  depressions  that  allow  runoff  to  pond   in   a   designated   area,   then   filter   through   soil   and   vegetation.   Small-­‐‑scale   bioretention  areas  are  also  known  as  rain  gardens.   •   Epa  employees  at  the  environmental  science  center  in  fort  meade,  maryland,  helped   construct   a   rain   garden   with   native   grasses   and   wildflowers.   Rain   chains   guide   rainwater  from  the  roof  gutter  to  the  garden.      
  • 41.   41     Vegetated  Swales/Dry  Swales     •   Swales  are  drainage  paths  or  vegetated  channels  used  to  transport  water.  They  can   be   used   in   small   drainage   areas   with   low   runoff   instead   of   underground   storm   sewers  or  concrete  open  channels.     •   Swales  help  slow  runoff,  facilitate  infiltration  and  filter  pollutants  as  runoff  flows   through  the  system.   •     Curb  and  Gutter  Elimination   •   Curbs   and   gutters   collect   and   transport   runoff   quickly   to   a   stormwater   drain   without  allowing  for  infiltration  or  pollutant  removal.  Eliminating  curbs  or  adding   curb  cuts  allows  runoff  to  be  directed  into  pervious  areas  and  filtered  through  LID  
  • 42.   42   features.  Swales  can  also  be  used  to  replace  curbs  and  gutters  as  a  way  to  convey   runoff.       Vegetated  Filter  Strips   •   Vegetated   filter   strips   are   bands   of   dense   vegetation   through   which   runoff   is   directed.  They  are  best  for  gently  sloping  areas,  where  channelized  flow  is  not  likely.     •   Filter  strips  may  treat  runoff  from  roads  and  highways,  roof  downspouts,  very  small   parking  lots  and  impervious  surfaces.       Sand  and  Organic  Filters   •   Runoff  directed  to  these  filters  infiltrates  through  a  sand  bed  to  remove  floatables,   particulate   metals   and   pollutants.   They   are   typically   used   as   a   component   of   a   treatment  train  to  remove  pollution  from  stormwater  before  discharge  to  receiving   waters,  to  groundwater  or  for  reuse.  
  • 43.   43   •   Epa’s   region   7   office   in   lenexa,   kansas,   has   vegetated   swales,   sand   filters   and   a   constructed  wetland  that  treat  and  infiltrate  100  percent  of  the  stormwater  on  the   30-­‐‑acre  property.       Constructed  Wetlands   •   Constructed  wetlands  mimic  natural  wetlands.  They  capture  and  filter  stormwater   and  create  diverse  wildlife  habitat.  They  are  designed  to  contain  standing  water  on   the  surface  or  water  saturated  just  below  the  soil  surface.      
  • 44.   44   Riparian  Buffers     A  riparian  buffer  is  an  area  along  a  shoreline,  wetland  or  stream  where  development  is   restricted  or  prohibited.  The  primary  function  is  to  physically  separate  and  protect  the   aquatic  area  from  future  disturbance  or  encroachment.  A  properly  designed  buffer  can  act   as  a  right-­‐‑of-­‐‑way  during  floods,  sustaining  the  integrity  of  aquatic  ecosystems  and  habitats.   Renewable  energy  sources  for  water  facilities  (solar  power,  wind  power   etc)      
  • 45.   45   ENERGY  MANAGEMENT       ENERGY  MANAGEMENT   o   Renewable  source  of  energy   o   Energy  efficient  and  green  buildings   o   Integrated  energy  solutions   o   Urban  wind  power     o   Smart  grid  system  with  distributed  power  sources     o   Ene-­‐‑farm  (self  power  plant  from  hydrogen)     o   Smart  meters  and  management   o   Environmental  sensors     o   Hydrogen  reuse  system   o   Co  generation     Renewable  source  of  energy   Renewable  energy  is  energy  generated  from  natural  resources—such  as  sunlight,  wind,   rain,  tides  and  geothermal  heat—which  are  renewable  (naturally  replenished).     Renewable  energy  technologies  range  from     o   Wind  power   o   Solar  energy  
  • 46.   46   o   Hydropower:  hydroelectricity/micro  hydro   o   Geothermal  energy   o   Bio  energy:  biomass  and  biofuels  for  transportation   o   Energy  storage         Renewable  energy  often  utilizes  in  four  areas:   ´   Electricity  generation   ´   Hot  water/space  heating   ´   Transportation  and     ´   Rural  (off-­‐‑grid)  energy  services     Energy  efficient  and  green  buildings   ´   Today,  buildings  worldwide  account  for  up  to  40%  of  total  end-­‐‑use  energy.  The  US,   OECD/   Europe   and   Russia   consume   most   of   their   energy   in   the   building   sector   (about  40%)  .     ´   There  is  over  50%  saving  potential  in  the  building  sector  and  thus  it  is  considered   as  a  potential  sector  to  meet  the  challenges  of  global  energy  and  climate  change.       It  was  predicted  by  International  Panel  on  Climate  Change  (IPCC)  that  CO2  emissions  from   buildings  (including  through  the  use  of  electricity)  could  increase  from  8.6  billion  tonnes   in  2004  to  15.6  in  2030  under  a  high  growth  scenario  (Levine  et  al.,  2007).      
  • 47.   47     Global  energy  demand  by  sector  in  2005  (source:  IEA,  2008)       CO2   emissions   from   building   sector   under   high   growth   scenario   (including   the   use   of   electricity).  (Source:  Levine  et  al.,  2007).     Building  types:  Commercial  and  residential  buildings    
  • 48.   48     (a)  Existing  building  floor  spaces                                                                                    (b)  average  floor  space  per  person     (Source:  WBCSD,  2007)     Building  energy  projection  by  regions  in  2003  and  2030  (Source:  IEA,  2008).      
  • 49.   49     Global  differences  in  home  size  and  energy  use  (Source:  WBCSD,  2009).   “Zero-­energy”  or  “Zero-­carbon”  new  buildings   ´   Zero-­‐‑energy”   buildings   are   usually   built   with   significant   energy-­‐‑saving   features   such  as  building  orientation,  solar  panel  roofs  and  super  insulated  HAVC  system.     ´   The  goal  of  green  building  is  to  increase  the  efficiency  of  resource  use  (including   energy,  water  and  materials)  and  reduce  the  building’s  negative  impacts  on  the   environment  during  the  building’s  lifecycle.     ´   The  UK  government  made  its  commitment  to  be  the  first  in  the  world  to  require   zero  carbon  homes  as  a  law  from  2016.        
  • 50.   50   Case  study  1:  Senedd  (National  Assembly  building),-­the  green  building  for   the  National  Assembly  for  Wales,  UK     ´   The  home  of  the  national  Assembly  for  Wales,  the  Senedd  building,  costs  some  £67   million  and  was  completed  in  2006.     ´   It  has  won  important  award  for  sustainable  construction  to  recognize  the  “green”   principles  within  its  design  (BBC,  2009).     ´   It  has  low  environmental  impact  achieved  through  the  use  of  renewable  and  low   energy  solutions  to  generate  heat  and  maintain  the  building.     ´   For  example,  the  roof  plane  around  the  top  building  turns  down  to  form  a  funnel   into  the  debating  chamber,  allowing  ventilation  and  natural  light.         o   Natural  ventilation  is  used  in  nearly  all  areas  of  the  building.  Offices  do  not  have  air   conditioning  as  outlets  in  the  floor  push  cool  air  into  the  rooms.     o   The  earth  heat  exchange  system  uses  the  earth  as  both  a  heat  source  and  a  heat  sink.    
  • 51.   51   o   A   biomass   boiler   fuelled   by   local   wood   chips   helps   to   reduce   carbon-­‐‑   dioxide   emission.     o   Rainwater   is   collected   on   to   roof   and   used   to   supply   the   toilets   and   window   washing.       Passivhaus”  or  “Passive  house”  in  EU   “Passive  house”  (Passivhaus  in  German)  refers  to  energy  efficiency  buildings  mainly  built   in  Europe.  It  requires  little  energy  for  space  heating  or  cooling.     Passive  houses  can  be  warmed  not  only  by  the  sun,  but  also  by  the  heat  from  appliances   and  even  from  occupants’  bodies  (Rosenthal,  2008).     Up  to  date,  about  15,000  to  20,000  passive  houses  have  been  built  worldwide,  most  of  them   in  German-­‐‑speaking  countries  or  Scandinavia,  including  residential  homes  and  offices,  new   and   renovated   buildings.   According   to   a   report   by   the   World   Business   Council   for   Sustainable  Development  (WBCSD,  2007),  there  are  five  key  elements  for  passive  houses:     ´   The  envelope  -­‐‑  all  components  should  be  highly  insulated     ´   Air-­‐‑tightness  -­‐‑  stop  air  leakage  through  unsealed  joints     ´   Ventilation  -­‐‑  use  a  mechanical  system  with  heat  recovery     ´   Thermal  bridges  -­‐‑  control  heat  loss  from  poorly  insulated  points  such  as  window   and  doors     ´   Windows-­‐‑minimise  heat  loss  in  winter  and  heat  gain  in  summer.        
  • 52.   52         Googleplex,  California,  USA   ´   Googleplex,  Google’s  headquarters  in  Mountain  View,  California  is  an  example  of  a   zero-­‐‑energy  commercial  building  with  a  1.6  megawatt  photovoltaic  campus-­‐‑wide   renewable  power  system.     ´   Google   has   developed   advanced   technology   for   major   reductions   in   computer-­‐‑ server  energy  consumption  which  is  becoming  a  part  of  zero-­‐‑energy  commercial   building  design.     ´   In  the  US,  zero  energy  building  research  is  supported  by  the  US  Department  of   Energy  (DOE)  Building  America  Program.     ´   DOE   plans   to   invest   a   $40   million   fund   during   2008-­‐‑2012   to   develop   net-­‐‑zero-­‐‑ energy   homes   that   consume   50%   to   70%   less   energy   than   conventional   homes   (DOE,  2007).        
  • 53.   53       Financial  benefits  of  green  buildings   Category     Saving  (  per  square  foot)   (based  on  20-­‐‑year  net  present  value)     Energy  savings     $5.8     Emission  savings     $1.2     Water  savings     $0.5     Operations  and  maintenance  savings     $8.5     Productivity  and  health  benefits     $36.9-­‐‑$55.3     Subtotal     $52.9-­‐‑$71.3     Average  extra  cost  of  building  green     (-­‐‑$3  -­‐‑$5)    
  • 54.   54         Integrated  energy  solutions                     DEFINITIONS   ´   Systems  which  can  manage  electricity,  heat  and  cooling  together.   ´   Distributed  generation  and  micro  grids  in  a  same  system.   ´   Planning  of  energy  in  supply  side  and  also  demand  side  is  an  integrated  energy   planning.     In  the  face  of  climate  change  and  resource  scarcity,  the  world’s  energy  system  is  on  the   verge  of  a  major  transformation.  In  order  to  massively  reduce  CO2  emissions,  there  is  a   need  to  build  a  new  energy  system  that  is  based  on  a  greatly  expanded  use  of  renewable   energies.  It  is  almost  certain  that  in  20  or  30  years  time  the  world  will  have  a  very  different   energy  system  from  the  one  that  currently  exists.   The  technological  building  blocks  for  the  transition  to  a  sustainable  energy  future  already   exist   in   the   form   of   decentralized   cogeneration   plants,   wind   turbines,   large   and   small   biogas  plants,  solar  energy  and  various  types  of  biomass  for  energy  purposes.  The  primary   task,   therefore,   is   to   integrate   the   various   forms   of   renewable   energy,   sometimes   in   combination  with  natural  gas,  in  order  to  achieve  the  maximum  utilization  of  renewable   energy  sources  and  supplies.       Total  20-­‐‑year  net  benefit     $50-­‐‑$65    
  • 55.   55   Integrated  energy  system  at  community  level          
  • 56.   56   URBAN  WIND  POWER   o   Commercial   and   residential   buildings   suck   up   over   60%   of   the   U.S.’s   electrical   power.     o   Alternative   energy   solutions   are   needed   for   both   new   and   existing   buildings.   AeroVironment,  Inc.  a  company  best  known  for  its  unmanned  aircraft  systems  may   have  one  solution,  a  product  they  call  Architectural  Wind.     o   AeroVironment  was  recently  awarded  three  utility  patents,  six  U.S.  design  patents   and  12  European  design  patents  for  the  Architectural  Wind  system  designed  for   rooftop  installation  on  urban  buildings.       An  urban  helical  turbine  at  work.     •   These  elegant  objects  are  actually  a  new  class  of  vertical-­‐‑axis  windmill.     •   They  are  able  to  produce  electricity  in  the  variable  winds  of  urban  environments,   unlike  the  traditional  turbines  used  at  large  wind  farms.     •   By   using   the   twisted-­‐‑ribbon   shape   of   a   helix,   these   generators   overcome   the   barriers  that  have  impeded  the  adaptation  of  other  windmill  types  to  small-­‐‑scale   home  use,  such  as  noise,  impact  and  price.   •       Chicago’  
  • 57.   57        
  • 58.   58   wind  tree     Jérôme  Michaud-­‐‑Larivière,  the  founder  of  the  company  New  Wind,  says  that  “The  idea   came  to  me  in  a  square  where  I  saw  the  leaves  tremble  when  there  was  not  a  breath  of  air.”   He   went   on   to   hypothesize   that   the   energy   “had   to   come   from   somewhere   and   be   translatable  into  watts.”     Other  turbine  ideas  have  hit  the  headlines,  but  the  wind  tree  is  the  first  that  fully  integrates   form  and  function  rather  than  being  an  add  on.  The  Wind  tree  will  be  on  display  in  Paris   Place  de  Concorde  in  May  2015.       What  Is  ENEFARM?   ENEFARM  is  a  residential  hot  water  supply  and  hot  water  space  heating  system  that  can   also  generate  electricity.  It  produces  electricity  by  extracting  hydrogen  from  LP  gas  or  city   gas  for  use  in  a  chemical  reaction  with  oxygen  in  the  air  and  utilizes  heat  produced  during   power  generation  for  hot  water  supply  or  space  heating.     Since   ENEFARM   can   produce   energy   at   home   or   wherever   it   is   needed,   it   is   an   environment-­‐‑friendly  system  that  makes  possible  waste-­‐‑free,  efficient  energy  use.  
  • 59.   59   The  Power  Generation  Principle  of  ENEFARM   The  power  generation  mechanism  utilizes  the  reverse  principle  of  electrolysis  of  water,  in   which  an  electric  current  is  passed  through  water  to  break  it  down  into  hydrogen  and   oxygen.  First,  hydrogen  is  extracted  from  LP  gas  or  city  gas.  Electricity  is  then  generated   through   a   chemical   reaction   between   the   hydrogen   and   oxygen   in   the   air.   Since   both   electricity  and  heat  are  simultaneously  generated  at  the  time  of  the  chemical  reaction,  the   heat  is  used  to  produce  hot  water  for  the  home.   ENEFARM  System  Configuration   ENEFARM  consists  of  a  fuel  cell  unit  and  a  hot  water  storage  unit.  At  the  fuel  cell  unit,   electricity  is  generated  through  a  chemical  reaction  between  hydrogen  extracted  from  gas   and  oxygen  in  the  air.  The  heat  generated  is  used  to  heat  water,  which  is  stored  in  the  hot   water  storage  unit.      
  • 60.   60   Wind  Energy   Charles   F.   Brush   is   widely   credited   with   designing   and   erecting   the   world’s   first   automatically  operating  wind  turbine  for  electricity  generation.  The  turbine,  which  was   installed  in  Cleveland,  Ohio,  in  1887,  operated  for  20  years  with  a  peak  power  production   of  12  kW     Nowadays,  the  typical  values  for  power  output  of  the  modern  turbines  deployed  around   the  world  are  about  1.5  to  3.5  MW  with  blade  lengths  of  more  than  40  m  for  onshore  and   60  m  for  offshore  applications.         Charles  F.  Brush’s  wind  turbine  (1887,  Cleveland,  Ohio),  the  world’s  first  automatically   operating  wind  turbine  for  electricity  generation.    
  • 61.   61   WIND  POWER  CAPACITY  IN  INDIA         LEGEND     o   New  Policies  scenario  shows  a  basically  flat  market  and  slightly  decreasing   market  for  wind  power  for  the  next  two  decades    
  • 62.   62   o   The  moderate  scenario  is  more  likely  in  a  world  which  carries  on  more  or  less   the   way   it   has   been,   with   wind   power   continuing   to   gain   ground   but   still   struggling   o   The  Advanced  scenario  shows  the  potential  of  wind  power  to  produce  20%  or   more  of  global  electricity  supply  in  a  world         Solar  Energy     Solar  Tower  Power  Plant  SSPS,  Tabernas  Desert  in  Spain     ´   A  handful  of  thermal  solar  energy  plants,  most  of  them  experimental,  have  been   developed  over  the  last  two  decades.  The  Solar  One  power  tower  [13],  developed   in  Southern  California  in  1981,  was  in  operation  from  1982  to  1986.  It  used  1,818   mirrors,  each  40  m2,  for  a  total  area  of  72,650  m2.     ´   The  Solar  Tower  Power  Plant  SSPS  was  developed  in  1980  in  the  Plataforma  Solar   de  Almeria  (PSA)  on  the  edge  of  the  Tabernas  Desert  in  Spain     ´   The  plant  had  92  heliostats  (40  m2)  producing  2.7  MWth  at  the  focal  point  of  the   43-­‐‑m-­‐‑high  tower  where  the  heat  was  collected  by  liquid  sodium.       ´   The  Solar  Energy  Generating  Systems  (SEGS)  [14]  begun  in  1984  in  the  Mojave   Desert  in  California  uses  parabolic-­‐‑trough  technology.  SEGS  is  composed  of  nine   solar  plants  and  is  still  the  largest  solar-­‐‑  energy-­‐‑generating  facility  in  the  world  with   a  354-­‐‑MW  installed  capacity.     ´   The  plants  have  a  total  of  936,384  mirrors  and  cover  more  than  6.5  km2.  Lined  up,   the  parabolic  mirrors  would  extend  more  than  370  km.      
  • 63.   63       Smart  grid  system  with  distributed  power  sources   Advanced  sensing,  communication  and  control  technologies  are  used  in  these  smart  grids   not  only  for  generation  and  transmission  of  power,  but  also  distribution  and  utilization  of   electricity  in  an  intelligent  and  effective  manner.   A  Smart  Mini-­‐‑Grid  (SMG)  is  an  intelligent  electricity  distribution  network,  operating  at  or   below  11  KV,  where  the  energy  demand  is  effectively  and  intelligently  managed  by  diverse   range  of  Distributed  Energy  Resources  such  as  solar  PV,  micro-­‐‑hydro  power  plants,  wind   turbines,  biomass,  small  conventional  generators  such  as  diesel  gensets  etc.  in  combination   with   each   other   through   smart   control   techniques.   This   integrated   energy   system   comprises:   ´   Variable  loads  which  are  connected  to  the  distribution  grid;   ´   Diverse  range  of  small,  local  generators  based  on  distributed  energy  resources,  for   example,  solar,  wind  energy,  storage  system;  and   ´   Control  and  power  conditioning  systems.    
  • 64.   64       •   A  Smart  Mini-­‐‑Grid  system  is  an  application  of  digital  technology  which  optimizes   electrical  power  generation  and  delivery     •   The  system  is  based  on  the  integration  of  multiple  distributed  energy  resources   (DERs)  into  the  same  grid.     •   This  system  is  also  based  on  intelligent  load  and  energy  resource  management.     •   It   is   designed   with   local   controllers   for   each   of   the   distributed   generation   technologies  as  well  as  a  central  controller  called  intelligent  dispatch  controller   (IDC)  which  communicates  with  the  each  local  controller.     Whereas   the   local   controllers   ensure   maximum   utilization   of   energy   resources   with   permissible  output  power,  the  IDC  performs  complex  system  control  functions  and  takes   critical   decisions   such   as   automating   the   demand   response,   dynamically   adding   or   removing  DERs  in  a  seamless  manner  (based  on  the  existing  demand)  without  affecting   the  grid  stability.    
  • 65.   65     HYDROGEN  REUSE  SYSTEM   ´   Hydrogen  is  used  as  a  process  atmosphere  in  many  industries,  most  notably  metal   treating,  powder  metallurgy,  glassmaking,  and  semiconductor  manufacturing.     ´   It  is  typically  vented  during  these  processes  in  the  same  stream  as  other  waste  gas   components.  To  date,  the  waste  hydrogen  gas  has  typically  not  been  recovered  for   reuse.  This  is  especially  true  in  smaller  scale  applications,  because  there  was  no   economical  means  by  which  to  scrub  the  gas  stream  of  accumulated  impurities,  or   to  compress  it  in  a  way  that  it  could  be  efficiently  stored  for  later  use.     Hydrogen   consumers   have   traditionally   had   two   solutions   to   the   problem   of   waste   hydrogen:     ´   purchase  more  hydrogen  from  industrial  gas  suppliers   ´   generate  hydrogen  on-­‐‑site  using  an  electrolyzer  or  a  reformer.    
  • 66.   66     HYDROGEN  REUSE  SYSTEM  CITY  LEVEL    
  • 67.   67   h2  renew™   Sustainable   Innovation’s   solution   to   hydrogen   supply   lies   within   its   revolutionary   H2RENEW™  technology;  capable  of  recycling  and  generating  high  purity  (99.999+%),  high   pressure  hydrogen  using  a  solid  state  process.  Hydrogen  normally  exhausted  and/or  flared   from  an  industrial  process  is  captured,  purified,  compressed,  and  stored  for  later  use.  As  a   result,  up  to  98%  of  process  hydrogen  can  be  recycled,  greatly  reducing  the  amount  of   purchased  hydrogen  and  handling  costs  and  risks.  Since  process  hydrogen  is  recycled,   there  is  no  need  for  a  large  volume  of  stored  hydrogen  on-­‐‑site,  nor  the  need  to  generate   large  quantities  of  gas.     NASA  Recycles  Hydrogen  to  Beat  Bottled  Water  Blues   ´   If  you  think  high-­‐‑end  bottled  water  is  expensive  at  the  grocery  store,  you  should  try   pricing  it  in  space.  In  looking  to  possible  future  manned  missions  to  the  Moon  and   Mars,  NASA  today  sets  a  premium  on  recycling  the  water  (especially  the  hydrogen)   already  onboard  its  spacecraft.  And  with  water  shipping  cost  estimates  a  million   dollars  per  pound  or  more.   ´   So   recently,   NASA   granted   Sustainable   Innovations   a   Phase   I   Small   Business   Innovation  Research  (SBIR)  Award  for  its  H2RENEW™  hydrogen  (and  therefore   water)  recycling  technology.   ´   The  first  challenge  in  designing  an  onboard  spacecraft  gas  recycling  system  is  that   molecular  hydrogen  is  so  small  and  lightweight,  it’s  hard  to  corral  into  even  an   impure   stream.   But   then   refining   the   gas   stream   so   that   it   approaches   100%   hydrogen  with  no  impurities  –  and  doing  so  using  only  a  portable,  lightweight  and   low-­‐‑maintenance  system  –  is  especially  difficult.