SlideShare a Scribd company logo
1 of 5
Download to read offline
ISSN (Print): 2328-3777, ISSN (Online): 2328-3785, ISSN (CD-ROM): 2328-3793
American International Journal of
Research in Formal, Applied
& Natural Sciences
AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 7
Available online at http://www.iasir.net
AIJRFANS is a refereed, indexed, peer-reviewed, multidisciplinary and open access journal published by
International Association of Scientific Innovation and Research (IASIR), USA
(An Association Unifying the Sciences, Engineering, and Applied Research)
Efficacy of aqueous plant extracts on the seed quality of pea (Pisum sativum
L.) during storage
Kiran Rana, K. C. Sharma and H. S. Kanwar1
Department of Entomology,
1
Department of Seed Science and Technology
Dr. Y S Parmar University of Horticulture and Forestry,
Nauni, Solan, Himachal Pradesh-173 230, India
I. Introduction
Storage of seed up to next sowing season is an essential part of seed industry. In general, legumes are more
susceptible to storage pests and pea is no exception. Because of its high protein content, pea seed is attacked by a
number of insect pests in storage, which causes considerable damage to the seed and deteriorate the quality of seed.
Among the important storage pests, the pulse beetle, Callosobruchus chinensis L. is a cosmopolitan pest causing
great losses to stored legumes [1]. The infested seeds lose viability and vigour thus affecting germination to a greater
extent. In order to get maximum germination of seed with synthetic insecticides is the only alternative, however the
descriptive use of chemicals and their residual toxicity adversely affects the non-target animals including human
beings besides affecting the seed quality. Hence, the safe and feasible approach is the treatment of seeds with
botanicals which are safe, economical, ecofriendly and nonharmful to seed, animal and human beings. It has been
proved beyond doubt that mixing the seed with botanicals prevents multiplication of beetles because of their
repellent or antifeedent property and smoothen the seed surface so that beetle cannot proliferate on the seed coat. In
view of this the present studies were carried out to evaluate the effect of seed treatment with some selected
botanicals on bruchid infestation and storability of pea.
II. Material and Methods
A storage experiment was conducted at Seed Technology and Production Centre (STPC), Dr. YS Parmar University
of Horticultural & Forestry, Nauni during 2011- 2012 to study the effect of seed treatment with some botanicals on
storability of pea. Pea (Pisum sativum L.) cv. P-89 seeds were procured from seed store of STPC of the University
having 8.5 per cent moisture content and 86 per cent germination. The seeds were treated with aqueous extracts of
leaves of worm,
s wood (Artemisia roxburghii L and A. annua L.), mint (Mentha longifolia L; M. spicata L.),
marigold (Tagetus erecta L.), drupes of dharek (Melia azedarach L.) at 1%, 2%, 4% and 6% /100g of seed with five
replications in each treatment and an untreated control. Aqueous extracts were prepared as per the method of
Gahukar [2]. All the treated and untreated seeds were separately kept in plastic jars of 250 cc capacity and stored
under ambient conditions (25-300
C temperature and 70-80% relative humidity). Seeds were retrieved from storage
Abstract: Studies were carried out to evaluate the efficacy of aqueous plant extracts on seed deterioration and
bruchid infestation in pea (Pisum sativum L.) cv. P-89 during storage. The seeds were treated with aqueous
extracts of leaves of worm,
s wood (Artemisia roxburghii L and A. annua L.), mint (Mentha longifolia L ; M.
spicata L.), marigold (Tagetus erecta L.) and drupes of dharek (Melia azedarach L.) against the pulse beetle,
Callosobruchus chinensis L. (Coleoptera: Bruchidae) at four different concentrations (1%, 2%, 4% and 6%) and
evaluated along with control. All the quality parameters showed significant differences due to seed treatment
with botanicals. The results revealed that seed treatment with aqueous extract of M. spicata recorded
significantly higher germination (82.1%), seed vigour index-length (1077), seed vigour index-mass (1395) at the
end of six months of storage period with nil percentage of insect infestation. This treatment was found on par
with aqueous extract of M. longifolia (81.6%, 922.25, and 1364, respectively) compared to control (65.5%,
606.63 and 1044, respectively). All the botanicals showed nil percentage of insect infestation as compared to
control (17%) after six months of storage.
Key words: Pea, plant aqueous extracts, germination, seed vigour, storage
Kiran Rana et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 07-11
AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 8
at periodic interval of 2 months from the start of seed storage up to six months and tested for standard germination,
seeding length, seed vigour index - length, seedling dry weight and seed vigour index-mass.
The germination test was conducted with 50 seeds from each treatment in five replications using Between Paper
(B.P.) method as per ISTA Rules [3]. The root length and shoot length of ten normal seedlings were measured on the
6th
day. The seedling vigour index-length (SVI-L) was calculated by adopting the method suggested by Abdul-Baki
and Anderson [4], SVI-L = Germination (%) x seedling length (cm). Dry weight of seedlings was measured by
taking the ten normal seedlings used for root and shoot length. The seedlings were kept in blotting paper and dried in
hot air oven maintained at 75o
C for 24hours. The dried seedlings were cooled in a desicator for 60 minutes, then
seedlings were weighed in an electronic balance and the weight was expressed in mg as dry weight of ten seedlings.
Seedling vigour index-mass (SVI-M) was calculated as SVI-M = Germination (%) x seedling dry weight (mg). The
data were analyzed statistically following completely randomized design (CRD) after proper transformations using
SPSS computer programme.
III. Results and Discussions
Aqueous extracts of all the plant species except Artimesia spp. significantly improved the seed germination of
treated seeds as compared to the untreated control seeds during storage. All the treatments prevented the bruchid
infestation to nil (0 per cent) as compared to control where 17 per cent infestation was recorded after six months of
storage.
Significantly higher germination was observed in M. spicata (89%) followed by M. longifolia (88.93%) irrespective
of months and both were equally effective in maintaining seed germination percentage (Table 1).This was followed
by seed germination in T. erecta (71.72%) and M. azedarach (71.17%) and both were at par with one another but
superior over control. In the present study, A. annua (68.77%) and A. roxburghii (64.36%) gave less reduction in
germination as compared to control (69.93%). Ziborkere reported some loss of viability of cowpea seeds treated
with chilli powder against C. maculates [5].
Table 1: Effect of aqueous plant extracts and storage period on seed germination of pea seeds
Treatment
*Mean seed germination (%) of treated pea seeds in the indicated months and concentration
2nd Month 4th Month 6th Month
6% 4% 2% 1% Mean 6% 4% 2% 1% Mean 6% 4% 2% 1% Mean overallMean
Artemesia annua 72.00
(58.12)
74.80
(59.89)
75.20
(60.16)
78.00
(62.04)
75.00
(60.05)
68.80
(56.11)
72.00
(58.07)
72.00
(58.13)
74.40
(59.63)
71.80
(57.99)
53.20
(46.84)
58.80
(50.08)
62.00
(51.95)
64.00
(53.14)
59.50
(50.51)
68.77
(56.18)
Artemesia roxburghii 67.00
(55.08)
64.80
(53.65)
66.80
(54.84)
70.00
(56.80)
67.20
(55.09)
62.80
(52.43)
63.60
(52.94)
65.60
(54.10)
67.20
(55.07)
64.80
(53.64)
57.60
(49.38)
60.00
(50.79)
62.00
(51.97)
64.80
(53.62)
61.10
(51.44)
64.37
(53.39)
Melia azedarach 72.40
(58.37)
78.00
(62.09)
78.40
(62.24)
80.00
(63.49)
77.20
(61.57)
70.80
(57.38)
73.60
(59.22)
74.40
(59.75)
76.80
(61.33)
73.90
(59.42)
62.00
(51.98)
60.00
(50.79)
62.40
(52.22)
65.20
(53.86)
62.40
(52.21)
71.17
(57.74)
Mentha longifolia 89.20
(70.86)
93.60
(75.50)
94.80
(76.95)
95.60
(77.93)
93.30
(75.61)
88.00
(69.78)
92.00
(73.62)
93.20
(74.92)
94.40
(76.43)
91.90
(73.69)
80.80
(64.04)
81.20
(64.39)
82.00
(64.92)
82.40
(65.23)
81.60
(64.65)
88.93
(71.22)
Mentha spicata 91.20
(72.77)
93.20
(75.00)
93.60
(75.95)
94.40
(76.43)
93.10
(74.94)
89.60
(71.23)
92.40
(74.02)
92.40
(74.02)
92.80
(74.52)
91.80
(73.46)
78.40
(62.34)
81.60
(64.82)
83.60
(66.27)
84.80
(67.31)
82.10
(65.19)
89.00
(71.19)
Tagetes erecta 71.60
(57.83)
76.40
(62.48)
78.00
(62.12)
82.00
(64.96)
77.00
(61.84)
66.00
(54.37)
69.60
(56.71)
73.20
(58.93)
78.00
(62.10)
71.70
(50.03)
59.00
(50.19)
62.80
(52.43)
68.00
(55.57)
76.00
(60.78)
66.45
(54.74)
71.72
(58.21)
Control 75.60
(60.47)
76.00
(60.70)
74.00
(59.37)
74.80
(59.95)
75.10
(60.12)
71.20
(57.58)
70.40
(57.41)
68.40
(55.80)
66.80
(54.84)
69.20
(56.32)
68.40
(55.80)
67.20
(55.07)
64.00
(53.14)
62.40
(52.19)
65.50
(54.05)
69.93
(56.83)
Mean 77.03
(61.93)
79.54
(64.19)
80.11
(64.48)
82.11
(65.94)
73.89
(59.84)
76.23
(61.66)
77.03
(62.24)
78.63
(63.42)
65.63
(54.37)
67.37
(55.48)
69.14
(56.58)
71.37
(58.02)
*Mean of five replications; Figures in parenthesis are arc sine transformed values
Overall CD (p=0.05)
Treatment: 1.05; Concentration: 0.79; Treatment x Concentration: 2.09
When effect of aqueous extracts was recorded in two, four and six months, it was found that after two months of
storage, the aqueous extracts of M. longifolia (93.3%) and M. spicata (93.1%) were the best and at par with each
other followed by M. azedarach (77.2%), T. erecta (77%) and A. annua (75%). The lowest seed germination was
recorded in A. roxburghii (67.2%). Similarly after 4th
month of seed treatment, M. longifolia gave significantly
higher germination (91.9%) which was at par with M. spicata (91.8%) followed by M. azedarach (73.9%), A. annua
Kiran Rana et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 07-11
AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 9
(71.8%), T. erecta (71.7%) and A. roxburghii (64.80%). After 6th
month of storage, the seed germination in aqueous
extract of M. spicata and M. longifolia was recorded as 82.1 and 81.6 per cent, respectively, whereas in the untreated
control the germination was 65.5 per cent revealing thereby that the aqueous extracts of M. spicata and M. longifolia
were effective in maintaining seed quality of pea. It was observed that the seed germination was indirectly
proportional to concentrations of plant aqueous extracts and also with time after seed treatment except in A.
roxburghii during 2nd
month (64.8 per cent germination at 4% and 67 per cent germination at 6%) and M. azedarach
during 6th
month (60 per cent germination at 4% and 62 per cent germination at 6%). George and Patel reported no
adverse effect of 10% mint (M. spicata) dry powder on green gram [6]. Keita et al. reported that seeds treated with
botanical extracts or oils did not loose their viability [7]. The studies in India and elsewhere carried out by various
workers revealed that though various plant products were effective in reducing oviposition and seed damage by
pulse beetle, the seed quality and germination were not affected [8], [9], [10], [11]. Singh et al. reported that seed
treatment of pigeon pea with neem based bio-insecticides showed higher germination percentage [12].
Table 2: Effect of aqueous plant extracts and storage period on Seed Vigour Index-Length (SVI-L) of pea
seeds
Treatment
*Mean SVI-L of treated pea seeds in the indicated months and concentration
2nd
Month 4th
Month 6th
Month
6% 4% 2% 1% Mean 6% 4% 2% 1% Mean 6% 4% 2% 1% Mean overallMean
Artemesia
annua
899.58
(28.96)
870.38
(29.31)
888.77
(29.82)
985.96
(31.32)
896.17
(29.90)
754.94
(27.45)
779.59
(27.92)
810.27
(28.46)
904.53
(30.02)
812.33
(28.46)
511.41
(22.62)
563.53
(23.73)
592.23
(24.34)
661.96
(25.70)
582.28
(24.10)
763.60
(27.49)
Artemesia
roxburghii
566.13
(23.79)
589.85
(24.28)
643.57
(25.37)
730.38
(27.03)
632.48
(25.12)
468.62
(21.63)
526.86
(22.95)
580.54
(24.08)
641.74
(25.32)
554.44
(23.50)
419.70
(20.49)
492.62
(22.19)
520.24
(22.81)
605.74
(24.58)
509.57
(22.52)
565.50
(23.71)
Melia
azedarach
735.55
(27.11)
761.72
(27.60)
793.41
(28.17)
817.62
(28.60)
777.08
(27.87)
690.98
(26.27)
601.83
(24.49)
707.66
(26.59)
711.86
(26.67)
678.08
(26.00)
567.45
(23.80)
456.62
(21.36)
470.41
(21.65)
506.44
(23.68)
513.73
(22.62)
656.30
(25.50)
Mentha
longifolia
1029.00
(32.07)
1110.00
(33.32)
1152.00
(33.95)
1198.00
(34.61)
1122.00
(33.49)
995.71
(31.55)
1049.00
(32.28)
1103.00
(33.21)
1114.00
(33.38)
1065.00
(32.63)
875.66
(29.59)
897.93
(29.97)
954.84
(30.89)
960.56
(30.99)
922.25
(30.36)
1037.00
(32.16)
Mentha
spicata
1300.00
(35.99)
1411.00
(37.55)
1503.00
(38.75)
1566.00
(39.58)
1445.00
(37.97)
1252.00
(35.34)
1323.00
(36.37)
1393.00
(37.29)
1413.00
(37.58)
1345.00
(36.64)
891.81
(29.82)
1036.00
(32.12)
1195.00
(34.54)
1185.00
(34.42)
1077.00
(33.73)
1289.00
(35.78)
Tagetes
erecta
915.57
(30.25)
911.23
(30.12)
988.86
(31.43)
1049.00
(32.39)
966.23
(31.05)
802.81
(28.28)
783.53
(27.94)
906.58
(30.08)
961.47
(30.99)
836.60
(29.32)
586.81
(24.23)
634.31
(25.18)
695.16
(26.37)
806.36
(28.38)
680.74
(26.04)
836.85
(28.80)
Control
859.98
(29.29)
877.58
(29.60)
808.89
(28.42)
876.16
(29.61)
855.40
(29.23)
742.84
(27.23)
765.50
(27.66)
693.77
(26.34)
793.71
(28.18)
748.95
(27.35)
555.14
(23.42)
546.47
(23.34)
619.35
(24.89)
705.57
(26.56)
606.63
(24.55)
737.00
(27.04)
Mean
892.06
(29.64)
933.08
(30.28)
968.33
(30.84)
1032.00
(31.88)
815.47
(28.25)
832.73
(28.53)
884.97
(29.43)
934.37
(30.31)
629.71
(24.85)
661.15
(25.41)
721.07
(26.50)
783.71
(27.76)
*Mean of five replications
Figures in parenthesis are √x+0.05 transformed values
Overall CD (p=0.05)
Treatment: 0.48; Concentration: 0.36; Concentration x Treatment: 0.96
Seed vigour is the sum total of all those properties of seeds which determine the potential level of performance and
activity of a non-dormant seed during germination and seedling emergence [13]. It was observed that the seed
vigour index-length was significantly influenced by aqueous extracts of all these plant species (Table 2). Overall
highest seed vigour index-length (1289) was recorded in M. spicata followed by M. longifolia (1037), T. erecta
(836.85), A. annua (736.60), M. azedarach (656.30) and the lowest in A. roxburghii (565.50) and all these were
significantly different from one another. After 2nd
, 4th
and 6th
month of seed treatment with aqueous plant extracts,
the maximum seed vigour index-length was observed in seeds treated with aqueous extract of M. spicata (1445,
1345 and 1077, respectively) followed by M. longifolia (1122, 1065 and 922.25, respectively) and T. erecta (966.23,
836.60 and 680.74, respectively) as compared to control (855.40, 748.95 and 606.63, respectively). The least seed
vigour was recorded in A. roxburghii (632.48, 554.44, and 509.57, respectively) at the end of 2nd
, 4th
and 6th
month
of seed storage. Seed vigour index-length was also observed to be the highest at lowest concentration (1%) of these
plant extracts.
The overall seed vigour index-mass (Table 3) was also higher (1861) in M. spicata treated seeds followed by M.
longifolia (1671), T. erecta (1339), A. annua (1233), M. azedarach (1129). Minimum seed vigour index-mass was
recorded when the seeds were treated with A. roxburghii (967.36) in comparison to control where it was 1305 and
was significantly different. After 2nd
month of seed treatment, the seed vigour index-mass was maximum in seeds
Kiran Rana et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 07-11
AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 10
treated with aqueous extract of M. spicata (2176) followed by M. longifolia (1953) similarly after 4th
month also,
these two extracts resulted in higher seed vigour index- mass i.e. 2011 and 1696, respectively. Besides, the treatment
with T. erecta (1384) and A. annua (1326) was also found to be superior over control (1214). After 6th
month of
storage, both the extracts of M. spicata (1395) and M. longifolia (1364) recorded significantly higher seed vigour
index- mass while T. erecta (1041) and control (1044) were at par with each other. All other treatments resulted in
low seed vigour index (Table 3).
Table 3: Effect of aqueous plant extracts and storage period on Seed Vigour Index-Mass (SVI-M) of pea seeds
Treatment
*Mean SVI-M of treated pea seeds in the indicated months and concentration
2nd
Month 4th
Month 6th
Month
6% 4% 2% 1% Mean 6% 4% 2% 1% Mean 6% 4% 2% 1% Mean overallMean
Artemesia
annua
1360.0
0
(36.83)
1504.0
0
(38.78)
1488.0
0
(38.58)
1552.0
0
(39.39)
1476.0
0
(38.39)
1213.0
0
(34.76)
1373.0
0
(37.05)
1337.0
0
(36.56)
1382.0
0
(37.16)
1326.0
0
(36.38)
761.65
(27.56)
906.72
(30.10)
938.43
(30.63)
957.73
(31.24)
895.63
(29.88)
1233.00
(34.89)
Artemesia
roxburghii
1065.0
0
(32.61)
1099.0
0
(33.12)
1185.0
0
(34.42)
1293.0
0
(35.96)
1160.0
0
(34.02)
884.05
(29.72)
930.26
(30.47)
987.52
(31.42)
1069.0
0
(32.70)
967.72
(31.08)
571.62
(23.90)
779.31
(27.88)
842.45
(29.02)
903.01
(30.05)
774.10
(27.71)
967.36
(30.94)
Melia
azedarach
1163.0
0
(34.09)
1357.0
0
(36.83)
1402.0
0
(37.45)
1473.0
0
(38.39)
1349.0
0
(36.69)
1060.0
0
(32.54)
1090.0
0
(32.98)
1195.0
0
(34.54)
1269.0
0
(35.63)
1153.0
0
(33.92)
863.52
(29.37)
790.03
(28.11)
897.73
(29.94)
983.18
(31.35)
883.61
(26.69)
1129.00
(35.43)
Mentha
longifolia
1835.0
0
(42.85)
1978.0
0
(44.48)
1997.0
0
(44.68)
2001.0
0
(44.74)
1953.0
0
(44.18)
1600.0
0
(39.99)
1673.0
0
(40.89)
1759.0
0
(41.94)
1751.0
0
(41.84)
1696.0
0
(41.17)
1304.0
0
(36.10)
1232.0
0
(35.09)
1451.0
0
(38.09)
1471.0
0
(38.35)
1364.0
0
(36.91)
1671.00
(40.75)
Mentha
spicata
2084.0
0
(45.62)
2094.0
0
(45.75)
2203.0
0
(46.94)
2321.0
0
(48.18)
2176.0
0
(46.62)
1973.0
0
(44.37)
1988.0
0
(44.58)
2011.0
0
(44.83)
2073.0
0
(45.50)
2011.0
0
(44.82)
1345.0
0
(36.66)
1389.0
0
(37.24)
1426.0
0
(37.75)
1418.0
0
(37.62)
1395.0
0
(37.32)
1861.00
(42.92)
Tagetes
erecta
1402.0
0
(37.43)
1629.0
0
(40.12)
1652.0
0
(40.62)
1682.0
0
(40.99)
1591.0
0
(39.79)
1181.0
0
(34.34)
1360.0
0
(36.69)
1473.0
0
(38.27)
1522.0
0
(38.95)
1384.0
0
(37.06)
913.00
(30.20)
864.11
(29.40)
1032.0
0
(32.12)
1355.0
0
(36.79)
1041.0
0
(32.13)
1339.00
(36.32)
Control
1671.0
0
(40.87)
1594.0
0
(39.92)
1657.0
0
(40.70)
1710.0
0
(41.35)
1658.0
0
(40.71)
1290.0
0
(35.83)
1296.0
0
(35.96)
1134.0
0
(33.69)
1136.0
0
(33.70)
1214.0
0
(34.78)
1020.0
0
(31.92)
1136.0
0
(33.68)
1011.0
0
(31.81)
1010.0
0
(31.78)
1044.0
0
(32.30)
1305.00
(35.93)
Mean
1511.0
0
(38.61)
1608.0
0
(39.86)
1655.0
0
(40.48)
1719.0
0
(41.28)
1315.0
0
(35.94)
1387.0
0
(36.94)
1414.0
0
(37.32)
1458.0
0
(37.92)
968.35
(30.82)
1014.0
0
(31.94)
1086.0
0
(32.77)
1159.0
0
(33.88)
*Mean of five replications; Figures in parenthesis are √x+0.05 transformed values
Overall CD (p=0.05)
Treatment: 0.58; Concentration: 0.44; Concentration x Treatment: 1.17
Keshavulu and Krishnasamy recorded higher SVI-I and SVI-II with soybean coated with H. rosasinensis and
polykote colours [14]. Mahesh Babu and Hunje reported higher germination, more seed length and more seeding
weight with botanicals in soybean treated with botanicals [15]. These findings are more or less in agreement with the
findings observed in the present studies. The beneficial effect of botanicals is known to occur due to induced
reduction and lipid peroxidation and quantitative changes in biochemical activities and increased free sugars during
germination [16].
The present studies thus revealed that there is a great scope of using botanicals like M. spicata, M. longifolia and T.
erecta @1%/100g of seed in protecting and maintaining the viability of pea during storage under ambient
conditions.
IV. References
[1] C.Park, S.I. Kim and Y.J. Ahn, Insecticidal activity of asarones identified in Acorus gramineus rhizome against three coleopteran
stored-product insects. Journal of Stored Products Research, 39(3), 2003, 333-342.
[2] R.T. Gahukar, Formulation of neem based products/pesticides. Pestology., 20, 1996: 44-45
[3] Anonymous. International rules for Seed testing. Seed Science Technology, 27, 1999: 25-30.
[4] A.A. Abdul Baki and J.D. Anderson , Vigour determination in Soybean seed by multiple criteria. Crop Science, 13, 1973: 630-633.
[5] D. S. Zibokere, Insecticidal potency of red pepper (Capsicum annum) on pulse beetle infesting cowpea (Vigna unguiculata) seeds
during storage. Indian Journal of Agricultural Sciences, 64, 1994: 727-728.
[6] V.George and J.R. Patel, Mint Mentha spicata-a promising botanical protectant for green gram against pulse beetle Callosobruchus
analis. Indian Journal of Plant Protection, 20, 1992: 66-69.
[7] S.M. Keita, C. Vincent, J. P. Schmit, J.T. Arnason and A. Belanger, Efficacy of essential oil of Ocimum basilicum L. and O.
gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae).
Journal of Stored Products Research, 37(4) , 2001, 339-349.
[8] N. Raja, S. Albert, S. Ignacimuthu and S.Dorn, Effect of plant volatile oils in protecting stored cowpea Vigna unguiculata (L.)
walpers against C. maculatus (F.) (Coleoptera: Bruchidae) infestation. Journal of Stored Products Research, 37(2), 2001,127-132.
Kiran Rana et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 07-11
AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 11
[9] A. Rahman and F.A. Talukder, Bio efficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus
maculatus. Journal of Insect Science, 6(3),2006, 1-7.
[10] V. Sathyaseelan, V. Baskaran and S. Mohan, Efficacy of some indigenous pesticidal plants against pulse beetle, Callosobruchus
chinensis (L.) on green gram. Journal of Entomology, 5(2), 2008, 28-132.
[11] M. Jayakumar, Oviposition deterrent and adult emergence activities of some plant aqueous extracts against Callosobruchus maculatus
F. (Coleoptera: Bruchidae). Journal of Biopesticides, 3(1), 2010, 325-329.
[12] C. B. Singh, M. Kumar, P. Singh, R. P. Vyas and V. P. Kanaujia, Relative efficacy of Neem based Bio-insecticides on Germination,
seedling length and seed vigour index in pigeon pea (Cajanus cajan L.). Seed Research, 39 (1), 2011,54-57.
[13] D. A. Perry, Report of the vigour test committee. Seed Science and Technolology, 6, 1978, 159-181.
[14] K. Keshavulu and V. Krishnasamy, Effect of seed colouring on seed quality and bruchid damage in soybean. Seed Research, 33(2),
2005, 208-210.
[15] H.M. Mahesh Babu and Hunje Ravi, Effect of seed treatment with botanicals on storability of Soyabean. Karnatka Journal of
Agriculture Science, 21(3), 2008, 357-360.
[16] M.M. Khan, N.M. Antherton and C.W.W. Walters, Free radical accumulation and lipid peroxidation in testas of rapidly aged soyabean
seeds: alight promoted process. Seed Science Research, 6, 1996, 101-107.

More Related Content

What's hot

HortFlora Research Spectrum, Vol.3(2) June 2014 ABSTRACTS
HortFlora Research Spectrum, Vol.3(2) June 2014 ABSTRACTSHortFlora Research Spectrum, Vol.3(2) June 2014 ABSTRACTS
HortFlora Research Spectrum, Vol.3(2) June 2014 ABSTRACTSHortFlora Research Spectrum
 
Effects of 60Co gamma radiation doses on seed germination of Jatropha curcas ...
Effects of 60Co gamma radiation doses on seed germination of Jatropha curcas ...Effects of 60Co gamma radiation doses on seed germination of Jatropha curcas ...
Effects of 60Co gamma radiation doses on seed germination of Jatropha curcas ...Innspub Net
 
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...paperpublications3
 
Emerging issues and challenges associated with conservation of the African ba...
Emerging issues and challenges associated with conservation of the African ba...Emerging issues and challenges associated with conservation of the African ba...
Emerging issues and challenges associated with conservation of the African ba...Innspub Net
 
Efficacy of rice-stubble allelochemicals on vegetative growth parameters of s...
Efficacy of rice-stubble allelochemicals on vegetative growth parameters of s...Efficacy of rice-stubble allelochemicals on vegetative growth parameters of s...
Efficacy of rice-stubble allelochemicals on vegetative growth parameters of s...ijtsrd
 
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...AI Publications
 
No 15. correlation and genetic distance on sixteen rice varieties grown under...
No 15. correlation and genetic distance on sixteen rice varieties grown under...No 15. correlation and genetic distance on sixteen rice varieties grown under...
No 15. correlation and genetic distance on sixteen rice varieties grown under...PARTNER, BADC, World Bank
 
22. utilization of ssr markers for seed purity testing in popular rice hybrids
22. utilization of ssr markers for seed purity testing in popular rice hybrids22. utilization of ssr markers for seed purity testing in popular rice hybrids
22. utilization of ssr markers for seed purity testing in popular rice hybridsVishwanath Koti
 
8_IJAT_10(6)_2014_S.B._Solang_F_Prof Chachar-Crop Physiology
8_IJAT_10(6)_2014_S.B._Solang_F_Prof Chachar-Crop Physiology8_IJAT_10(6)_2014_S.B._Solang_F_Prof Chachar-Crop Physiology
8_IJAT_10(6)_2014_S.B._Solang_F_Prof Chachar-Crop PhysiologyMs. Shakeela Bano solangi
 
Genetic studies of genotypic responses to water stress in upland cotton (Goss...
Genetic studies of genotypic responses to water stress in upland cotton (Goss...Genetic studies of genotypic responses to water stress in upland cotton (Goss...
Genetic studies of genotypic responses to water stress in upland cotton (Goss...INNS PUBNET
 
Advances in plant breeding
Advances in plant breedingAdvances in plant breeding
Advances in plant breedingSHUATS
 
Plant genetic resources
Plant genetic resourcesPlant genetic resources
Plant genetic resourcesICRISAT
 
Influence of Supporter Substrat on the Rooting Percentage of Kiwifruit Cuttin...
Influence of Supporter Substrat on the Rooting Percentage of Kiwifruit Cuttin...Influence of Supporter Substrat on the Rooting Percentage of Kiwifruit Cuttin...
Influence of Supporter Substrat on the Rooting Percentage of Kiwifruit Cuttin...irjes
 
Heterosis in bottle gourd [lagenaria siceraria (mol.) standl.]
Heterosis in bottle gourd [lagenaria siceraria (mol.) standl.]Heterosis in bottle gourd [lagenaria siceraria (mol.) standl.]
Heterosis in bottle gourd [lagenaria siceraria (mol.) standl.]Dr. Mahesh Ghuge
 
Sclerotia production a way ahead to morchella Cultivation
Sclerotia production a way ahead to morchella CultivationSclerotia production a way ahead to morchella Cultivation
Sclerotia production a way ahead to morchella CultivationDr. siddhant
 
Screening of Maize Genotypes against Southern Leaf Blight (Bipolaris Maydis) ...
Screening of Maize Genotypes against Southern Leaf Blight (Bipolaris Maydis) ...Screening of Maize Genotypes against Southern Leaf Blight (Bipolaris Maydis) ...
Screening of Maize Genotypes against Southern Leaf Blight (Bipolaris Maydis) ...Agriculture Journal IJOEAR
 

What's hot (20)

HortFlora Research Spectrum, Vol.3(2) June 2014 ABSTRACTS
HortFlora Research Spectrum, Vol.3(2) June 2014 ABSTRACTSHortFlora Research Spectrum, Vol.3(2) June 2014 ABSTRACTS
HortFlora Research Spectrum, Vol.3(2) June 2014 ABSTRACTS
 
Effects of 60Co gamma radiation doses on seed germination of Jatropha curcas ...
Effects of 60Co gamma radiation doses on seed germination of Jatropha curcas ...Effects of 60Co gamma radiation doses on seed germination of Jatropha curcas ...
Effects of 60Co gamma radiation doses on seed germination of Jatropha curcas ...
 
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
Assessment of Genetic Diversity in 13 Local Banana (Musa Spp.) Cultivars Usin...
 
Emerging issues and challenges associated with conservation of the African ba...
Emerging issues and challenges associated with conservation of the African ba...Emerging issues and challenges associated with conservation of the African ba...
Emerging issues and challenges associated with conservation of the African ba...
 
Molecular Characterization of Brassica Cultivars through RAPD Markers
Molecular Characterization of Brassica Cultivars through RAPD MarkersMolecular Characterization of Brassica Cultivars through RAPD Markers
Molecular Characterization of Brassica Cultivars through RAPD Markers
 
Efficacy of rice-stubble allelochemicals on vegetative growth parameters of s...
Efficacy of rice-stubble allelochemicals on vegetative growth parameters of s...Efficacy of rice-stubble allelochemicals on vegetative growth parameters of s...
Efficacy of rice-stubble allelochemicals on vegetative growth parameters of s...
 
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
Effect of Seedling Density on Growth Attributes of Cauliflower variety Kathma...
 
No 15. correlation and genetic distance on sixteen rice varieties grown under...
No 15. correlation and genetic distance on sixteen rice varieties grown under...No 15. correlation and genetic distance on sixteen rice varieties grown under...
No 15. correlation and genetic distance on sixteen rice varieties grown under...
 
22. utilization of ssr markers for seed purity testing in popular rice hybrids
22. utilization of ssr markers for seed purity testing in popular rice hybrids22. utilization of ssr markers for seed purity testing in popular rice hybrids
22. utilization of ssr markers for seed purity testing in popular rice hybrids
 
8_IJAT_10(6)_2014_S.B._Solang_F_Prof Chachar-Crop Physiology
8_IJAT_10(6)_2014_S.B._Solang_F_Prof Chachar-Crop Physiology8_IJAT_10(6)_2014_S.B._Solang_F_Prof Chachar-Crop Physiology
8_IJAT_10(6)_2014_S.B._Solang_F_Prof Chachar-Crop Physiology
 
Genetic studies of genotypic responses to water stress in upland cotton (Goss...
Genetic studies of genotypic responses to water stress in upland cotton (Goss...Genetic studies of genotypic responses to water stress in upland cotton (Goss...
Genetic studies of genotypic responses to water stress in upland cotton (Goss...
 
Comparative Effect of Potting Media on Sprouting and Seedling Growth of Grape...
Comparative Effect of Potting Media on Sprouting and Seedling Growth of Grape...Comparative Effect of Potting Media on Sprouting and Seedling Growth of Grape...
Comparative Effect of Potting Media on Sprouting and Seedling Growth of Grape...
 
Fruit variety registration and variety release procedures
Fruit variety registration and variety release proceduresFruit variety registration and variety release procedures
Fruit variety registration and variety release procedures
 
Advances in plant breeding
Advances in plant breedingAdvances in plant breeding
Advances in plant breeding
 
Study of the Tolerance to Drought Stress Levels of (PEG 6000) in Different Ge...
Study of the Tolerance to Drought Stress Levels of (PEG 6000) in Different Ge...Study of the Tolerance to Drought Stress Levels of (PEG 6000) in Different Ge...
Study of the Tolerance to Drought Stress Levels of (PEG 6000) in Different Ge...
 
Plant genetic resources
Plant genetic resourcesPlant genetic resources
Plant genetic resources
 
Influence of Supporter Substrat on the Rooting Percentage of Kiwifruit Cuttin...
Influence of Supporter Substrat on the Rooting Percentage of Kiwifruit Cuttin...Influence of Supporter Substrat on the Rooting Percentage of Kiwifruit Cuttin...
Influence of Supporter Substrat on the Rooting Percentage of Kiwifruit Cuttin...
 
Heterosis in bottle gourd [lagenaria siceraria (mol.) standl.]
Heterosis in bottle gourd [lagenaria siceraria (mol.) standl.]Heterosis in bottle gourd [lagenaria siceraria (mol.) standl.]
Heterosis in bottle gourd [lagenaria siceraria (mol.) standl.]
 
Sclerotia production a way ahead to morchella Cultivation
Sclerotia production a way ahead to morchella CultivationSclerotia production a way ahead to morchella Cultivation
Sclerotia production a way ahead to morchella Cultivation
 
Screening of Maize Genotypes against Southern Leaf Blight (Bipolaris Maydis) ...
Screening of Maize Genotypes against Southern Leaf Blight (Bipolaris Maydis) ...Screening of Maize Genotypes against Southern Leaf Blight (Bipolaris Maydis) ...
Screening of Maize Genotypes against Southern Leaf Blight (Bipolaris Maydis) ...
 

Similar to Aijrfans14 208

Potential Role of Aqueous Extract of Some Weeds against Egg Hatching and Juve...
Potential Role of Aqueous Extract of Some Weeds against Egg Hatching and Juve...Potential Role of Aqueous Extract of Some Weeds against Egg Hatching and Juve...
Potential Role of Aqueous Extract of Some Weeds against Egg Hatching and Juve...Journal of Agriculture and Crops
 
M021203090093
M021203090093M021203090093
M021203090093theijes
 
Allelopathic effect of Albizia saman F. Muell on three widely cultivated Indi...
Allelopathic effect of Albizia saman F. Muell on three widely cultivated Indi...Allelopathic effect of Albizia saman F. Muell on three widely cultivated Indi...
Allelopathic effect of Albizia saman F. Muell on three widely cultivated Indi...IOSR Journals
 
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...IRJET Journal
 
Effect of some pre sowing treatments on Sapindus laurifolius seed germination
Effect of some pre sowing treatments on Sapindus laurifolius seed germinationEffect of some pre sowing treatments on Sapindus laurifolius seed germination
Effect of some pre sowing treatments on Sapindus laurifolius seed germinationresearchplantsciences
 
Soil science and crop production. (Jaar) 2020 volume 8, number 1
Soil science and crop production. (Jaar) 2020 volume 8, number 1Soil science and crop production. (Jaar) 2020 volume 8, number 1
Soil science and crop production. (Jaar) 2020 volume 8, number 1ARCN
 
In-vitro screening of indigenous botanicals of Manipur for anti fungal activi...
In-vitro screening of indigenous botanicals of Manipur for anti fungal activi...In-vitro screening of indigenous botanicals of Manipur for anti fungal activi...
In-vitro screening of indigenous botanicals of Manipur for anti fungal activi...Agriculture Journal IJOEAR
 
Antibacterial and Antifungal Activities of Essential Oils of Crude Extracts o...
Antibacterial and Antifungal Activities of Essential Oils of Crude Extracts o...Antibacterial and Antifungal Activities of Essential Oils of Crude Extracts o...
Antibacterial and Antifungal Activities of Essential Oils of Crude Extracts o...lukeman Joseph Ade shittu
 
Efficacy of Aqueous Neem Seed Extract in the Control of Green Peach Aphids (M...
Efficacy of Aqueous Neem Seed Extract in the Control of Green Peach Aphids (M...Efficacy of Aqueous Neem Seed Extract in the Control of Green Peach Aphids (M...
Efficacy of Aqueous Neem Seed Extract in the Control of Green Peach Aphids (M...Journal of Agriculture and Crops
 
Effectiveness of anthraquinone and methylanthranilate against house sparrow (...
Effectiveness of anthraquinone and methylanthranilate against house sparrow (...Effectiveness of anthraquinone and methylanthranilate against house sparrow (...
Effectiveness of anthraquinone and methylanthranilate against house sparrow (...Innspub Net
 
Allelopathic Effect of Aqueous Extracts of Parthenium (Parthenium Hysterophor...
Allelopathic Effect of Aqueous Extracts of Parthenium (Parthenium Hysterophor...Allelopathic Effect of Aqueous Extracts of Parthenium (Parthenium Hysterophor...
Allelopathic Effect of Aqueous Extracts of Parthenium (Parthenium Hysterophor...Journal of Agriculture and Crops
 
Evaluation of the insecticidal and deterrence properties of pepper fruit, den...
Evaluation of the insecticidal and deterrence properties of pepper fruit, den...Evaluation of the insecticidal and deterrence properties of pepper fruit, den...
Evaluation of the insecticidal and deterrence properties of pepper fruit, den...Alexander Decker
 
amna mushroom report
amna mushroom reportamna mushroom report
amna mushroom reportAmna Khan
 
Wild relatives of chickpea as sources of genes for resistance to Helicoverpa ...
Wild relatives of chickpea as sources of genes for resistance to Helicoverpa ...Wild relatives of chickpea as sources of genes for resistance to Helicoverpa ...
Wild relatives of chickpea as sources of genes for resistance to Helicoverpa ...ICRISAT
 
PHYTO-NUTRITIONAL PROFILES OF BROOM WEED (SIDA ACUTA) LEAF EXTRACT
PHYTO-NUTRITIONAL PROFILES OF BROOM WEED (SIDA ACUTA) LEAF EXTRACTPHYTO-NUTRITIONAL PROFILES OF BROOM WEED (SIDA ACUTA) LEAF EXTRACT
PHYTO-NUTRITIONAL PROFILES OF BROOM WEED (SIDA ACUTA) LEAF EXTRACTSubmissionResearchpa
 
An international initiative to conduct comprehensive genome-wide association ...
An international initiative to conduct comprehensive genome-wide association ...An international initiative to conduct comprehensive genome-wide association ...
An international initiative to conduct comprehensive genome-wide association ...ICRISAT
 
Effect of Pectimorf® - A traditional growth regulator on the development and ...
Effect of Pectimorf® - A traditional growth regulator on the development and ...Effect of Pectimorf® - A traditional growth regulator on the development and ...
Effect of Pectimorf® - A traditional growth regulator on the development and ...Journal of Research in Biology
 

Similar to Aijrfans14 208 (20)

Potential Role of Aqueous Extract of Some Weeds against Egg Hatching and Juve...
Potential Role of Aqueous Extract of Some Weeds against Egg Hatching and Juve...Potential Role of Aqueous Extract of Some Weeds against Egg Hatching and Juve...
Potential Role of Aqueous Extract of Some Weeds against Egg Hatching and Juve...
 
IJPPR,Vol6,Issue4,Article14
IJPPR,Vol6,Issue4,Article14IJPPR,Vol6,Issue4,Article14
IJPPR,Vol6,Issue4,Article14
 
Allelopathic Potential and HPTLC Analysis of Ipomoea carnea
Allelopathic Potential and HPTLC Analysis of Ipomoea carneaAllelopathic Potential and HPTLC Analysis of Ipomoea carnea
Allelopathic Potential and HPTLC Analysis of Ipomoea carnea
 
M021203090093
M021203090093M021203090093
M021203090093
 
Allelopathic effect of Albizia saman F. Muell on three widely cultivated Indi...
Allelopathic effect of Albizia saman F. Muell on three widely cultivated Indi...Allelopathic effect of Albizia saman F. Muell on three widely cultivated Indi...
Allelopathic effect of Albizia saman F. Muell on three widely cultivated Indi...
 
The Stimulatory and Inhibitory Effects of Mungbean Extract on Germination and...
The Stimulatory and Inhibitory Effects of Mungbean Extract on Germination and...The Stimulatory and Inhibitory Effects of Mungbean Extract on Germination and...
The Stimulatory and Inhibitory Effects of Mungbean Extract on Germination and...
 
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
DIRECT AND INDIRECT EFFECTS OF QUANTITATIVE CHARACTERS IN QUINOA (Chenopodium...
 
Effect of some pre sowing treatments on Sapindus laurifolius seed germination
Effect of some pre sowing treatments on Sapindus laurifolius seed germinationEffect of some pre sowing treatments on Sapindus laurifolius seed germination
Effect of some pre sowing treatments on Sapindus laurifolius seed germination
 
Soil science and crop production. (Jaar) 2020 volume 8, number 1
Soil science and crop production. (Jaar) 2020 volume 8, number 1Soil science and crop production. (Jaar) 2020 volume 8, number 1
Soil science and crop production. (Jaar) 2020 volume 8, number 1
 
In-vitro screening of indigenous botanicals of Manipur for anti fungal activi...
In-vitro screening of indigenous botanicals of Manipur for anti fungal activi...In-vitro screening of indigenous botanicals of Manipur for anti fungal activi...
In-vitro screening of indigenous botanicals of Manipur for anti fungal activi...
 
Antibacterial and Antifungal Activities of Essential Oils of Crude Extracts o...
Antibacterial and Antifungal Activities of Essential Oils of Crude Extracts o...Antibacterial and Antifungal Activities of Essential Oils of Crude Extracts o...
Antibacterial and Antifungal Activities of Essential Oils of Crude Extracts o...
 
Efficacy of Aqueous Neem Seed Extract in the Control of Green Peach Aphids (M...
Efficacy of Aqueous Neem Seed Extract in the Control of Green Peach Aphids (M...Efficacy of Aqueous Neem Seed Extract in the Control of Green Peach Aphids (M...
Efficacy of Aqueous Neem Seed Extract in the Control of Green Peach Aphids (M...
 
Effectiveness of anthraquinone and methylanthranilate against house sparrow (...
Effectiveness of anthraquinone and methylanthranilate against house sparrow (...Effectiveness of anthraquinone and methylanthranilate against house sparrow (...
Effectiveness of anthraquinone and methylanthranilate against house sparrow (...
 
Allelopathic Effect of Aqueous Extracts of Parthenium (Parthenium Hysterophor...
Allelopathic Effect of Aqueous Extracts of Parthenium (Parthenium Hysterophor...Allelopathic Effect of Aqueous Extracts of Parthenium (Parthenium Hysterophor...
Allelopathic Effect of Aqueous Extracts of Parthenium (Parthenium Hysterophor...
 
Evaluation of the insecticidal and deterrence properties of pepper fruit, den...
Evaluation of the insecticidal and deterrence properties of pepper fruit, den...Evaluation of the insecticidal and deterrence properties of pepper fruit, den...
Evaluation of the insecticidal and deterrence properties of pepper fruit, den...
 
amna mushroom report
amna mushroom reportamna mushroom report
amna mushroom report
 
Wild relatives of chickpea as sources of genes for resistance to Helicoverpa ...
Wild relatives of chickpea as sources of genes for resistance to Helicoverpa ...Wild relatives of chickpea as sources of genes for resistance to Helicoverpa ...
Wild relatives of chickpea as sources of genes for resistance to Helicoverpa ...
 
PHYTO-NUTRITIONAL PROFILES OF BROOM WEED (SIDA ACUTA) LEAF EXTRACT
PHYTO-NUTRITIONAL PROFILES OF BROOM WEED (SIDA ACUTA) LEAF EXTRACTPHYTO-NUTRITIONAL PROFILES OF BROOM WEED (SIDA ACUTA) LEAF EXTRACT
PHYTO-NUTRITIONAL PROFILES OF BROOM WEED (SIDA ACUTA) LEAF EXTRACT
 
An international initiative to conduct comprehensive genome-wide association ...
An international initiative to conduct comprehensive genome-wide association ...An international initiative to conduct comprehensive genome-wide association ...
An international initiative to conduct comprehensive genome-wide association ...
 
Effect of Pectimorf® - A traditional growth regulator on the development and ...
Effect of Pectimorf® - A traditional growth regulator on the development and ...Effect of Pectimorf® - A traditional growth regulator on the development and ...
Effect of Pectimorf® - A traditional growth regulator on the development and ...
 

More from Iasir Journals (20)

ijetcas14 650
ijetcas14 650ijetcas14 650
ijetcas14 650
 
Ijetcas14 648
Ijetcas14 648Ijetcas14 648
Ijetcas14 648
 
Ijetcas14 647
Ijetcas14 647Ijetcas14 647
Ijetcas14 647
 
Ijetcas14 643
Ijetcas14 643Ijetcas14 643
Ijetcas14 643
 
Ijetcas14 641
Ijetcas14 641Ijetcas14 641
Ijetcas14 641
 
Ijetcas14 639
Ijetcas14 639Ijetcas14 639
Ijetcas14 639
 
Ijetcas14 632
Ijetcas14 632Ijetcas14 632
Ijetcas14 632
 
Ijetcas14 624
Ijetcas14 624Ijetcas14 624
Ijetcas14 624
 
Ijetcas14 619
Ijetcas14 619Ijetcas14 619
Ijetcas14 619
 
Ijetcas14 615
Ijetcas14 615Ijetcas14 615
Ijetcas14 615
 
Ijetcas14 608
Ijetcas14 608Ijetcas14 608
Ijetcas14 608
 
Ijetcas14 605
Ijetcas14 605Ijetcas14 605
Ijetcas14 605
 
Ijetcas14 604
Ijetcas14 604Ijetcas14 604
Ijetcas14 604
 
Ijetcas14 598
Ijetcas14 598Ijetcas14 598
Ijetcas14 598
 
Ijetcas14 594
Ijetcas14 594Ijetcas14 594
Ijetcas14 594
 
Ijetcas14 593
Ijetcas14 593Ijetcas14 593
Ijetcas14 593
 
Ijetcas14 591
Ijetcas14 591Ijetcas14 591
Ijetcas14 591
 
Ijetcas14 589
Ijetcas14 589Ijetcas14 589
Ijetcas14 589
 
Ijetcas14 585
Ijetcas14 585Ijetcas14 585
Ijetcas14 585
 
Ijetcas14 584
Ijetcas14 584Ijetcas14 584
Ijetcas14 584
 

Recently uploaded

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 

Recently uploaded (20)

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 

Aijrfans14 208

  • 1. ISSN (Print): 2328-3777, ISSN (Online): 2328-3785, ISSN (CD-ROM): 2328-3793 American International Journal of Research in Formal, Applied & Natural Sciences AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 7 Available online at http://www.iasir.net AIJRFANS is a refereed, indexed, peer-reviewed, multidisciplinary and open access journal published by International Association of Scientific Innovation and Research (IASIR), USA (An Association Unifying the Sciences, Engineering, and Applied Research) Efficacy of aqueous plant extracts on the seed quality of pea (Pisum sativum L.) during storage Kiran Rana, K. C. Sharma and H. S. Kanwar1 Department of Entomology, 1 Department of Seed Science and Technology Dr. Y S Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh-173 230, India I. Introduction Storage of seed up to next sowing season is an essential part of seed industry. In general, legumes are more susceptible to storage pests and pea is no exception. Because of its high protein content, pea seed is attacked by a number of insect pests in storage, which causes considerable damage to the seed and deteriorate the quality of seed. Among the important storage pests, the pulse beetle, Callosobruchus chinensis L. is a cosmopolitan pest causing great losses to stored legumes [1]. The infested seeds lose viability and vigour thus affecting germination to a greater extent. In order to get maximum germination of seed with synthetic insecticides is the only alternative, however the descriptive use of chemicals and their residual toxicity adversely affects the non-target animals including human beings besides affecting the seed quality. Hence, the safe and feasible approach is the treatment of seeds with botanicals which are safe, economical, ecofriendly and nonharmful to seed, animal and human beings. It has been proved beyond doubt that mixing the seed with botanicals prevents multiplication of beetles because of their repellent or antifeedent property and smoothen the seed surface so that beetle cannot proliferate on the seed coat. In view of this the present studies were carried out to evaluate the effect of seed treatment with some selected botanicals on bruchid infestation and storability of pea. II. Material and Methods A storage experiment was conducted at Seed Technology and Production Centre (STPC), Dr. YS Parmar University of Horticultural & Forestry, Nauni during 2011- 2012 to study the effect of seed treatment with some botanicals on storability of pea. Pea (Pisum sativum L.) cv. P-89 seeds were procured from seed store of STPC of the University having 8.5 per cent moisture content and 86 per cent germination. The seeds were treated with aqueous extracts of leaves of worm, s wood (Artemisia roxburghii L and A. annua L.), mint (Mentha longifolia L; M. spicata L.), marigold (Tagetus erecta L.), drupes of dharek (Melia azedarach L.) at 1%, 2%, 4% and 6% /100g of seed with five replications in each treatment and an untreated control. Aqueous extracts were prepared as per the method of Gahukar [2]. All the treated and untreated seeds were separately kept in plastic jars of 250 cc capacity and stored under ambient conditions (25-300 C temperature and 70-80% relative humidity). Seeds were retrieved from storage Abstract: Studies were carried out to evaluate the efficacy of aqueous plant extracts on seed deterioration and bruchid infestation in pea (Pisum sativum L.) cv. P-89 during storage. The seeds were treated with aqueous extracts of leaves of worm, s wood (Artemisia roxburghii L and A. annua L.), mint (Mentha longifolia L ; M. spicata L.), marigold (Tagetus erecta L.) and drupes of dharek (Melia azedarach L.) against the pulse beetle, Callosobruchus chinensis L. (Coleoptera: Bruchidae) at four different concentrations (1%, 2%, 4% and 6%) and evaluated along with control. All the quality parameters showed significant differences due to seed treatment with botanicals. The results revealed that seed treatment with aqueous extract of M. spicata recorded significantly higher germination (82.1%), seed vigour index-length (1077), seed vigour index-mass (1395) at the end of six months of storage period with nil percentage of insect infestation. This treatment was found on par with aqueous extract of M. longifolia (81.6%, 922.25, and 1364, respectively) compared to control (65.5%, 606.63 and 1044, respectively). All the botanicals showed nil percentage of insect infestation as compared to control (17%) after six months of storage. Key words: Pea, plant aqueous extracts, germination, seed vigour, storage
  • 2. Kiran Rana et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 07-11 AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 8 at periodic interval of 2 months from the start of seed storage up to six months and tested for standard germination, seeding length, seed vigour index - length, seedling dry weight and seed vigour index-mass. The germination test was conducted with 50 seeds from each treatment in five replications using Between Paper (B.P.) method as per ISTA Rules [3]. The root length and shoot length of ten normal seedlings were measured on the 6th day. The seedling vigour index-length (SVI-L) was calculated by adopting the method suggested by Abdul-Baki and Anderson [4], SVI-L = Germination (%) x seedling length (cm). Dry weight of seedlings was measured by taking the ten normal seedlings used for root and shoot length. The seedlings were kept in blotting paper and dried in hot air oven maintained at 75o C for 24hours. The dried seedlings were cooled in a desicator for 60 minutes, then seedlings were weighed in an electronic balance and the weight was expressed in mg as dry weight of ten seedlings. Seedling vigour index-mass (SVI-M) was calculated as SVI-M = Germination (%) x seedling dry weight (mg). The data were analyzed statistically following completely randomized design (CRD) after proper transformations using SPSS computer programme. III. Results and Discussions Aqueous extracts of all the plant species except Artimesia spp. significantly improved the seed germination of treated seeds as compared to the untreated control seeds during storage. All the treatments prevented the bruchid infestation to nil (0 per cent) as compared to control where 17 per cent infestation was recorded after six months of storage. Significantly higher germination was observed in M. spicata (89%) followed by M. longifolia (88.93%) irrespective of months and both were equally effective in maintaining seed germination percentage (Table 1).This was followed by seed germination in T. erecta (71.72%) and M. azedarach (71.17%) and both were at par with one another but superior over control. In the present study, A. annua (68.77%) and A. roxburghii (64.36%) gave less reduction in germination as compared to control (69.93%). Ziborkere reported some loss of viability of cowpea seeds treated with chilli powder against C. maculates [5]. Table 1: Effect of aqueous plant extracts and storage period on seed germination of pea seeds Treatment *Mean seed germination (%) of treated pea seeds in the indicated months and concentration 2nd Month 4th Month 6th Month 6% 4% 2% 1% Mean 6% 4% 2% 1% Mean 6% 4% 2% 1% Mean overallMean Artemesia annua 72.00 (58.12) 74.80 (59.89) 75.20 (60.16) 78.00 (62.04) 75.00 (60.05) 68.80 (56.11) 72.00 (58.07) 72.00 (58.13) 74.40 (59.63) 71.80 (57.99) 53.20 (46.84) 58.80 (50.08) 62.00 (51.95) 64.00 (53.14) 59.50 (50.51) 68.77 (56.18) Artemesia roxburghii 67.00 (55.08) 64.80 (53.65) 66.80 (54.84) 70.00 (56.80) 67.20 (55.09) 62.80 (52.43) 63.60 (52.94) 65.60 (54.10) 67.20 (55.07) 64.80 (53.64) 57.60 (49.38) 60.00 (50.79) 62.00 (51.97) 64.80 (53.62) 61.10 (51.44) 64.37 (53.39) Melia azedarach 72.40 (58.37) 78.00 (62.09) 78.40 (62.24) 80.00 (63.49) 77.20 (61.57) 70.80 (57.38) 73.60 (59.22) 74.40 (59.75) 76.80 (61.33) 73.90 (59.42) 62.00 (51.98) 60.00 (50.79) 62.40 (52.22) 65.20 (53.86) 62.40 (52.21) 71.17 (57.74) Mentha longifolia 89.20 (70.86) 93.60 (75.50) 94.80 (76.95) 95.60 (77.93) 93.30 (75.61) 88.00 (69.78) 92.00 (73.62) 93.20 (74.92) 94.40 (76.43) 91.90 (73.69) 80.80 (64.04) 81.20 (64.39) 82.00 (64.92) 82.40 (65.23) 81.60 (64.65) 88.93 (71.22) Mentha spicata 91.20 (72.77) 93.20 (75.00) 93.60 (75.95) 94.40 (76.43) 93.10 (74.94) 89.60 (71.23) 92.40 (74.02) 92.40 (74.02) 92.80 (74.52) 91.80 (73.46) 78.40 (62.34) 81.60 (64.82) 83.60 (66.27) 84.80 (67.31) 82.10 (65.19) 89.00 (71.19) Tagetes erecta 71.60 (57.83) 76.40 (62.48) 78.00 (62.12) 82.00 (64.96) 77.00 (61.84) 66.00 (54.37) 69.60 (56.71) 73.20 (58.93) 78.00 (62.10) 71.70 (50.03) 59.00 (50.19) 62.80 (52.43) 68.00 (55.57) 76.00 (60.78) 66.45 (54.74) 71.72 (58.21) Control 75.60 (60.47) 76.00 (60.70) 74.00 (59.37) 74.80 (59.95) 75.10 (60.12) 71.20 (57.58) 70.40 (57.41) 68.40 (55.80) 66.80 (54.84) 69.20 (56.32) 68.40 (55.80) 67.20 (55.07) 64.00 (53.14) 62.40 (52.19) 65.50 (54.05) 69.93 (56.83) Mean 77.03 (61.93) 79.54 (64.19) 80.11 (64.48) 82.11 (65.94) 73.89 (59.84) 76.23 (61.66) 77.03 (62.24) 78.63 (63.42) 65.63 (54.37) 67.37 (55.48) 69.14 (56.58) 71.37 (58.02) *Mean of five replications; Figures in parenthesis are arc sine transformed values Overall CD (p=0.05) Treatment: 1.05; Concentration: 0.79; Treatment x Concentration: 2.09 When effect of aqueous extracts was recorded in two, four and six months, it was found that after two months of storage, the aqueous extracts of M. longifolia (93.3%) and M. spicata (93.1%) were the best and at par with each other followed by M. azedarach (77.2%), T. erecta (77%) and A. annua (75%). The lowest seed germination was recorded in A. roxburghii (67.2%). Similarly after 4th month of seed treatment, M. longifolia gave significantly higher germination (91.9%) which was at par with M. spicata (91.8%) followed by M. azedarach (73.9%), A. annua
  • 3. Kiran Rana et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 07-11 AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 9 (71.8%), T. erecta (71.7%) and A. roxburghii (64.80%). After 6th month of storage, the seed germination in aqueous extract of M. spicata and M. longifolia was recorded as 82.1 and 81.6 per cent, respectively, whereas in the untreated control the germination was 65.5 per cent revealing thereby that the aqueous extracts of M. spicata and M. longifolia were effective in maintaining seed quality of pea. It was observed that the seed germination was indirectly proportional to concentrations of plant aqueous extracts and also with time after seed treatment except in A. roxburghii during 2nd month (64.8 per cent germination at 4% and 67 per cent germination at 6%) and M. azedarach during 6th month (60 per cent germination at 4% and 62 per cent germination at 6%). George and Patel reported no adverse effect of 10% mint (M. spicata) dry powder on green gram [6]. Keita et al. reported that seeds treated with botanical extracts or oils did not loose their viability [7]. The studies in India and elsewhere carried out by various workers revealed that though various plant products were effective in reducing oviposition and seed damage by pulse beetle, the seed quality and germination were not affected [8], [9], [10], [11]. Singh et al. reported that seed treatment of pigeon pea with neem based bio-insecticides showed higher germination percentage [12]. Table 2: Effect of aqueous plant extracts and storage period on Seed Vigour Index-Length (SVI-L) of pea seeds Treatment *Mean SVI-L of treated pea seeds in the indicated months and concentration 2nd Month 4th Month 6th Month 6% 4% 2% 1% Mean 6% 4% 2% 1% Mean 6% 4% 2% 1% Mean overallMean Artemesia annua 899.58 (28.96) 870.38 (29.31) 888.77 (29.82) 985.96 (31.32) 896.17 (29.90) 754.94 (27.45) 779.59 (27.92) 810.27 (28.46) 904.53 (30.02) 812.33 (28.46) 511.41 (22.62) 563.53 (23.73) 592.23 (24.34) 661.96 (25.70) 582.28 (24.10) 763.60 (27.49) Artemesia roxburghii 566.13 (23.79) 589.85 (24.28) 643.57 (25.37) 730.38 (27.03) 632.48 (25.12) 468.62 (21.63) 526.86 (22.95) 580.54 (24.08) 641.74 (25.32) 554.44 (23.50) 419.70 (20.49) 492.62 (22.19) 520.24 (22.81) 605.74 (24.58) 509.57 (22.52) 565.50 (23.71) Melia azedarach 735.55 (27.11) 761.72 (27.60) 793.41 (28.17) 817.62 (28.60) 777.08 (27.87) 690.98 (26.27) 601.83 (24.49) 707.66 (26.59) 711.86 (26.67) 678.08 (26.00) 567.45 (23.80) 456.62 (21.36) 470.41 (21.65) 506.44 (23.68) 513.73 (22.62) 656.30 (25.50) Mentha longifolia 1029.00 (32.07) 1110.00 (33.32) 1152.00 (33.95) 1198.00 (34.61) 1122.00 (33.49) 995.71 (31.55) 1049.00 (32.28) 1103.00 (33.21) 1114.00 (33.38) 1065.00 (32.63) 875.66 (29.59) 897.93 (29.97) 954.84 (30.89) 960.56 (30.99) 922.25 (30.36) 1037.00 (32.16) Mentha spicata 1300.00 (35.99) 1411.00 (37.55) 1503.00 (38.75) 1566.00 (39.58) 1445.00 (37.97) 1252.00 (35.34) 1323.00 (36.37) 1393.00 (37.29) 1413.00 (37.58) 1345.00 (36.64) 891.81 (29.82) 1036.00 (32.12) 1195.00 (34.54) 1185.00 (34.42) 1077.00 (33.73) 1289.00 (35.78) Tagetes erecta 915.57 (30.25) 911.23 (30.12) 988.86 (31.43) 1049.00 (32.39) 966.23 (31.05) 802.81 (28.28) 783.53 (27.94) 906.58 (30.08) 961.47 (30.99) 836.60 (29.32) 586.81 (24.23) 634.31 (25.18) 695.16 (26.37) 806.36 (28.38) 680.74 (26.04) 836.85 (28.80) Control 859.98 (29.29) 877.58 (29.60) 808.89 (28.42) 876.16 (29.61) 855.40 (29.23) 742.84 (27.23) 765.50 (27.66) 693.77 (26.34) 793.71 (28.18) 748.95 (27.35) 555.14 (23.42) 546.47 (23.34) 619.35 (24.89) 705.57 (26.56) 606.63 (24.55) 737.00 (27.04) Mean 892.06 (29.64) 933.08 (30.28) 968.33 (30.84) 1032.00 (31.88) 815.47 (28.25) 832.73 (28.53) 884.97 (29.43) 934.37 (30.31) 629.71 (24.85) 661.15 (25.41) 721.07 (26.50) 783.71 (27.76) *Mean of five replications Figures in parenthesis are √x+0.05 transformed values Overall CD (p=0.05) Treatment: 0.48; Concentration: 0.36; Concentration x Treatment: 0.96 Seed vigour is the sum total of all those properties of seeds which determine the potential level of performance and activity of a non-dormant seed during germination and seedling emergence [13]. It was observed that the seed vigour index-length was significantly influenced by aqueous extracts of all these plant species (Table 2). Overall highest seed vigour index-length (1289) was recorded in M. spicata followed by M. longifolia (1037), T. erecta (836.85), A. annua (736.60), M. azedarach (656.30) and the lowest in A. roxburghii (565.50) and all these were significantly different from one another. After 2nd , 4th and 6th month of seed treatment with aqueous plant extracts, the maximum seed vigour index-length was observed in seeds treated with aqueous extract of M. spicata (1445, 1345 and 1077, respectively) followed by M. longifolia (1122, 1065 and 922.25, respectively) and T. erecta (966.23, 836.60 and 680.74, respectively) as compared to control (855.40, 748.95 and 606.63, respectively). The least seed vigour was recorded in A. roxburghii (632.48, 554.44, and 509.57, respectively) at the end of 2nd , 4th and 6th month of seed storage. Seed vigour index-length was also observed to be the highest at lowest concentration (1%) of these plant extracts. The overall seed vigour index-mass (Table 3) was also higher (1861) in M. spicata treated seeds followed by M. longifolia (1671), T. erecta (1339), A. annua (1233), M. azedarach (1129). Minimum seed vigour index-mass was recorded when the seeds were treated with A. roxburghii (967.36) in comparison to control where it was 1305 and was significantly different. After 2nd month of seed treatment, the seed vigour index-mass was maximum in seeds
  • 4. Kiran Rana et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 07-11 AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 10 treated with aqueous extract of M. spicata (2176) followed by M. longifolia (1953) similarly after 4th month also, these two extracts resulted in higher seed vigour index- mass i.e. 2011 and 1696, respectively. Besides, the treatment with T. erecta (1384) and A. annua (1326) was also found to be superior over control (1214). After 6th month of storage, both the extracts of M. spicata (1395) and M. longifolia (1364) recorded significantly higher seed vigour index- mass while T. erecta (1041) and control (1044) were at par with each other. All other treatments resulted in low seed vigour index (Table 3). Table 3: Effect of aqueous plant extracts and storage period on Seed Vigour Index-Mass (SVI-M) of pea seeds Treatment *Mean SVI-M of treated pea seeds in the indicated months and concentration 2nd Month 4th Month 6th Month 6% 4% 2% 1% Mean 6% 4% 2% 1% Mean 6% 4% 2% 1% Mean overallMean Artemesia annua 1360.0 0 (36.83) 1504.0 0 (38.78) 1488.0 0 (38.58) 1552.0 0 (39.39) 1476.0 0 (38.39) 1213.0 0 (34.76) 1373.0 0 (37.05) 1337.0 0 (36.56) 1382.0 0 (37.16) 1326.0 0 (36.38) 761.65 (27.56) 906.72 (30.10) 938.43 (30.63) 957.73 (31.24) 895.63 (29.88) 1233.00 (34.89) Artemesia roxburghii 1065.0 0 (32.61) 1099.0 0 (33.12) 1185.0 0 (34.42) 1293.0 0 (35.96) 1160.0 0 (34.02) 884.05 (29.72) 930.26 (30.47) 987.52 (31.42) 1069.0 0 (32.70) 967.72 (31.08) 571.62 (23.90) 779.31 (27.88) 842.45 (29.02) 903.01 (30.05) 774.10 (27.71) 967.36 (30.94) Melia azedarach 1163.0 0 (34.09) 1357.0 0 (36.83) 1402.0 0 (37.45) 1473.0 0 (38.39) 1349.0 0 (36.69) 1060.0 0 (32.54) 1090.0 0 (32.98) 1195.0 0 (34.54) 1269.0 0 (35.63) 1153.0 0 (33.92) 863.52 (29.37) 790.03 (28.11) 897.73 (29.94) 983.18 (31.35) 883.61 (26.69) 1129.00 (35.43) Mentha longifolia 1835.0 0 (42.85) 1978.0 0 (44.48) 1997.0 0 (44.68) 2001.0 0 (44.74) 1953.0 0 (44.18) 1600.0 0 (39.99) 1673.0 0 (40.89) 1759.0 0 (41.94) 1751.0 0 (41.84) 1696.0 0 (41.17) 1304.0 0 (36.10) 1232.0 0 (35.09) 1451.0 0 (38.09) 1471.0 0 (38.35) 1364.0 0 (36.91) 1671.00 (40.75) Mentha spicata 2084.0 0 (45.62) 2094.0 0 (45.75) 2203.0 0 (46.94) 2321.0 0 (48.18) 2176.0 0 (46.62) 1973.0 0 (44.37) 1988.0 0 (44.58) 2011.0 0 (44.83) 2073.0 0 (45.50) 2011.0 0 (44.82) 1345.0 0 (36.66) 1389.0 0 (37.24) 1426.0 0 (37.75) 1418.0 0 (37.62) 1395.0 0 (37.32) 1861.00 (42.92) Tagetes erecta 1402.0 0 (37.43) 1629.0 0 (40.12) 1652.0 0 (40.62) 1682.0 0 (40.99) 1591.0 0 (39.79) 1181.0 0 (34.34) 1360.0 0 (36.69) 1473.0 0 (38.27) 1522.0 0 (38.95) 1384.0 0 (37.06) 913.00 (30.20) 864.11 (29.40) 1032.0 0 (32.12) 1355.0 0 (36.79) 1041.0 0 (32.13) 1339.00 (36.32) Control 1671.0 0 (40.87) 1594.0 0 (39.92) 1657.0 0 (40.70) 1710.0 0 (41.35) 1658.0 0 (40.71) 1290.0 0 (35.83) 1296.0 0 (35.96) 1134.0 0 (33.69) 1136.0 0 (33.70) 1214.0 0 (34.78) 1020.0 0 (31.92) 1136.0 0 (33.68) 1011.0 0 (31.81) 1010.0 0 (31.78) 1044.0 0 (32.30) 1305.00 (35.93) Mean 1511.0 0 (38.61) 1608.0 0 (39.86) 1655.0 0 (40.48) 1719.0 0 (41.28) 1315.0 0 (35.94) 1387.0 0 (36.94) 1414.0 0 (37.32) 1458.0 0 (37.92) 968.35 (30.82) 1014.0 0 (31.94) 1086.0 0 (32.77) 1159.0 0 (33.88) *Mean of five replications; Figures in parenthesis are √x+0.05 transformed values Overall CD (p=0.05) Treatment: 0.58; Concentration: 0.44; Concentration x Treatment: 1.17 Keshavulu and Krishnasamy recorded higher SVI-I and SVI-II with soybean coated with H. rosasinensis and polykote colours [14]. Mahesh Babu and Hunje reported higher germination, more seed length and more seeding weight with botanicals in soybean treated with botanicals [15]. These findings are more or less in agreement with the findings observed in the present studies. The beneficial effect of botanicals is known to occur due to induced reduction and lipid peroxidation and quantitative changes in biochemical activities and increased free sugars during germination [16]. The present studies thus revealed that there is a great scope of using botanicals like M. spicata, M. longifolia and T. erecta @1%/100g of seed in protecting and maintaining the viability of pea during storage under ambient conditions. IV. References [1] C.Park, S.I. Kim and Y.J. Ahn, Insecticidal activity of asarones identified in Acorus gramineus rhizome against three coleopteran stored-product insects. Journal of Stored Products Research, 39(3), 2003, 333-342. [2] R.T. Gahukar, Formulation of neem based products/pesticides. Pestology., 20, 1996: 44-45 [3] Anonymous. International rules for Seed testing. Seed Science Technology, 27, 1999: 25-30. [4] A.A. Abdul Baki and J.D. Anderson , Vigour determination in Soybean seed by multiple criteria. Crop Science, 13, 1973: 630-633. [5] D. S. Zibokere, Insecticidal potency of red pepper (Capsicum annum) on pulse beetle infesting cowpea (Vigna unguiculata) seeds during storage. Indian Journal of Agricultural Sciences, 64, 1994: 727-728. [6] V.George and J.R. Patel, Mint Mentha spicata-a promising botanical protectant for green gram against pulse beetle Callosobruchus analis. Indian Journal of Plant Protection, 20, 1992: 66-69. [7] S.M. Keita, C. Vincent, J. P. Schmit, J.T. Arnason and A. Belanger, Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). Journal of Stored Products Research, 37(4) , 2001, 339-349. [8] N. Raja, S. Albert, S. Ignacimuthu and S.Dorn, Effect of plant volatile oils in protecting stored cowpea Vigna unguiculata (L.) walpers against C. maculatus (F.) (Coleoptera: Bruchidae) infestation. Journal of Stored Products Research, 37(2), 2001,127-132.
  • 5. Kiran Rana et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(1), March-May 2014, pp. 07-11 AIJRFANS 14-208; © 2014, AIJRFANS All Rights Reserved Page 11 [9] A. Rahman and F.A. Talukder, Bio efficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus maculatus. Journal of Insect Science, 6(3),2006, 1-7. [10] V. Sathyaseelan, V. Baskaran and S. Mohan, Efficacy of some indigenous pesticidal plants against pulse beetle, Callosobruchus chinensis (L.) on green gram. Journal of Entomology, 5(2), 2008, 28-132. [11] M. Jayakumar, Oviposition deterrent and adult emergence activities of some plant aqueous extracts against Callosobruchus maculatus F. (Coleoptera: Bruchidae). Journal of Biopesticides, 3(1), 2010, 325-329. [12] C. B. Singh, M. Kumar, P. Singh, R. P. Vyas and V. P. Kanaujia, Relative efficacy of Neem based Bio-insecticides on Germination, seedling length and seed vigour index in pigeon pea (Cajanus cajan L.). Seed Research, 39 (1), 2011,54-57. [13] D. A. Perry, Report of the vigour test committee. Seed Science and Technolology, 6, 1978, 159-181. [14] K. Keshavulu and V. Krishnasamy, Effect of seed colouring on seed quality and bruchid damage in soybean. Seed Research, 33(2), 2005, 208-210. [15] H.M. Mahesh Babu and Hunje Ravi, Effect of seed treatment with botanicals on storability of Soyabean. Karnatka Journal of Agriculture Science, 21(3), 2008, 357-360. [16] M.M. Khan, N.M. Antherton and C.W.W. Walters, Free radical accumulation and lipid peroxidation in testas of rapidly aged soyabean seeds: alight promoted process. Seed Science Research, 6, 1996, 101-107.