SlideShare a Scribd company logo
A Probabilistic U-Net for Segmentation of
Ambiguous Images
Hwang seung hyun
Yonsei University Severance Hospital CCIDS
DeepMind, Division of Medical Image Computing, German
Cancer Research Center, Germany | NIPS 2018
2020.04.19
Introduction Related Work Methods and
Experiments
01 02 03
Conclusion
04
Yonsei Unversity Severance Hospital CCIDS
Contents
Probabilistic Unet
Introduction – Limitations of prior methods
• There exist ambiguities in segmentation task, especially in medical imaging applications
• A lesion might be clearly visible, but ground truth labels can vary depending on
radiologists.
• Most existing segmentation algorithms either provide only consistent hypothesis of a
pixel-wise probability(e.g. “each pixel is 50% cat, 50% dog)
• Pixel wise probabilities ignores all co-variances between the pixels.
• Existing methods are Ensemble Unet, dropout Unet, M heads model, etc.
Introduction / Related Work / Methods and Experiments / Conclusion
Probabilistic Unet
Introduction – Probabilistic Unet Architecture
• Probabilistic Unet provides multiple segmentation hypotheses for ambiguous images.
• Combines conditional variational auto encoder(CVAE), and U-Net
• First extract latent space and encodes the possible segmentation variants
• Random sample from the space is injected into the Unet to produce segmentation map.
Introduction / Related Work / Methods and Experiments / Conclusion
Probabilistic Unet
Introduction – Contributions
• Provides consistent segmentation maps instead of pixel-wise probabilities,
providing joint likelihood of modes.
• Able to learn calibrated probabilities of segmentation modes.
• Can produce diverse outputs for single image
Introduction / Related Work / Methods and Experiments / Conclusion
Related Work
CVAE (Conditional Variational Auto Encoder)
Introduction / Related Work / Methods and Experiments / Conclusion
• Encoder를 통해 도출된 latent coding Z를 가우시
안 분포로 나타내기 위해 분산과 평균을 이용함
• Label 정보를 추가로 넣어준다
Related Work
U-Net
Introduction / Related Work / Methods and Experiments / Conclusion
• Encoding Phase
Methods and Experiments
Network Architecture
Introduction / Related Work / Methods and Experiments / Conclusion
• Sampling Process • Training Process
Methods and Experiments
Sampling Process
Introduction / Related Work / Methods and Experiments / Conclusion
• Prior Net (Unet’s encoding phase + global average
pooling) produces Latent Space
• Each position in this space encodes a
segmentation variant
• Broadcast the sample to feature map with the
same shape as the segmentation map, and
concatenate this map to the las activation map of
U-Net
* P : prior probability distribution
* fcomb = three subsequent 1x1 convolutions
* S: segmentation map corresponding to point z in latent space
Methods and Experiments
Training Process
Introduction / Related Work / Methods and Experiments / Conclusion
• Introduce Posterior Net that learns to recognize a
useful segmentation variant
• Posterior Net and Prior Net are updated through the
standard training procedure for CVAE, by minimizing
variational lower bound
(Kullback-Leibler divergence)
• Cross-entropy loss penalizes differences between S
and Y
• KL loss pulls the posterior distribution and prior
distribution towards each other
• Eventually covers the space of all useful segmentation
variants for input image
21
Methods and Experiments
Sampling Process
Introduction / Related Work / Methods and Experiments / Conclusion
Output Samples
Visualization of the Latent Space
Methods and Experiments
Introduction / Related Work / Methods and Experiments / Conclusion
Performance Measures
• Generalized Energy Distance Matrix
• Not only compare deterministic prediction, but also compares
distributions of segmentations
* d: distance measure
* Y, Y’ : Independent samples from the ground truth distribution
* S, S’: independent samples from the predicted distribution
* d(x,y) = 1 - IOU(x,y)
Methods and Experiments
Introduction / Related Work / Methods and Experiments / Conclusion
Results
Methods and Experiments
Introduction / Related Work / Methods and Experiments / Conclusion
Results
• Energy Distance decreases as more samples are drawn indicating an improved
matching of the GT distribution, as well as enhanced sample diversity.
Conclusion
Introduction / Related Work / Methods and Experiments / Conclusion
• Each sample produced by probabilistic Unet is consistent segmentation
result that closely match the multi-modal GT distributions
• Employed energy distance matrix measures whether the model’s
individual samples are both coherent, and whether they are produced
with expected frequencies.
• Can be used to assess annotations with model
• Probabilistic U Net can replace the currently applied deterministic U
Nets in large field of studies, especially in the medical domain
• Guide steps to resolve ambiguities

More Related Content

What's hot

Object Detection & Instance Segmentationの論文紹介 | OHS勉強会#3
Object Detection & Instance Segmentationの論文紹介 | OHS勉強会#3Object Detection & Instance Segmentationの論文紹介 | OHS勉強会#3
Object Detection & Instance Segmentationの論文紹介 | OHS勉強会#3
Toshinori Hanya
 
【DL輪読会】StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-I...
【DL輪読会】StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-I...【DL輪読会】StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-I...
【DL輪読会】StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-I...
Deep Learning JP
 
マハラノビス距離を用いた異常値検知
マハラノビス距離を用いた異常値検知マハラノビス距離を用いた異常値検知
マハラノビス距離を用いた異常値検知
Yuto Mori
 
[DL輪読会]Learn What Not to Learn: Action Elimination with Deep Reinforcement Le...
[DL輪読会]Learn What Not to Learn: Action Elimination with Deep Reinforcement Le...[DL輪読会]Learn What Not to Learn: Action Elimination with Deep Reinforcement Le...
[DL輪読会]Learn What Not to Learn: Action Elimination with Deep Reinforcement Le...
Deep Learning JP
 
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
Deep Learning JP
 
The LabPQR Color Space
The LabPQR Color SpaceThe LabPQR Color Space
The LabPQR Color Space
Giordano Beretta
 
【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2
Hirokatsu Kataoka
 
【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution
【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution
【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution
Deep Learning JP
 
Dsp lab report- Analysis and classification of EMG signal using MATLAB.
Dsp lab report- Analysis and classification of EMG signal using MATLAB.Dsp lab report- Analysis and classification of EMG signal using MATLAB.
Dsp lab report- Analysis and classification of EMG signal using MATLAB.
Nurhasanah Shafei
 
文献紹介:X3D: Expanding Architectures for Efficient Video Recognition
文献紹介:X3D: Expanding Architectures for Efficient Video Recognition文献紹介:X3D: Expanding Architectures for Efficient Video Recognition
文献紹介:X3D: Expanding Architectures for Efficient Video Recognition
Toru Tamaki
 
[DL輪読会]Taskonomy: Disentangling Task Transfer Learning
[DL輪読会]Taskonomy: Disentangling Task Transfer Learning[DL輪読会]Taskonomy: Disentangling Task Transfer Learning
[DL輪読会]Taskonomy: Disentangling Task Transfer Learning
Deep Learning JP
 
Chenming hu ch6
Chenming hu ch6Chenming hu ch6
Chenming hu ch6
stefanv67
 
SSII2021 [OS1-01] 水産養殖 x IoT・AI ~持続可能な水産養殖を実現するセンシング/解析技術~
SSII2021 [OS1-01] 水産養殖 x IoT・AI ~持続可能な水産養殖を実現するセンシング/解析技術~SSII2021 [OS1-01] 水産養殖 x IoT・AI ~持続可能な水産養殖を実現するセンシング/解析技術~
SSII2021 [OS1-01] 水産養殖 x IoT・AI ~持続可能な水産養殖を実現するセンシング/解析技術~
SSII
 
[DL輪読会]Network Deconvolution
[DL輪読会]Network Deconvolution[DL輪読会]Network Deconvolution
[DL輪読会]Network Deconvolution
Deep Learning JP
 
論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models
Seiya Tokui
 
【ECCV 2022】NeDDF: Reciprocally Constrained Field for Distance and Density
【ECCV 2022】NeDDF: Reciprocally Constrained Field for Distance and Density【ECCV 2022】NeDDF: Reciprocally Constrained Field for Distance and Density
【ECCV 2022】NeDDF: Reciprocally Constrained Field for Distance and Density
cvpaper. challenge
 
Bones and cartilages tissue engineering
Bones and cartilages tissue engineeringBones and cartilages tissue engineering
Bones and cartilages tissue engineering
Institute of chemical Technology, Mumbai
 
第8回関西CV・PRML勉強会(Meanshift)
第8回関西CV・PRML勉強会(Meanshift)第8回関西CV・PRML勉強会(Meanshift)
第8回関西CV・PRML勉強会(Meanshift)
Yutaka Yamada
 
SIGNATE オフロードコンペ 精度認識部門 3rd Place Solution
SIGNATE オフロードコンペ 精度認識部門 3rd Place SolutionSIGNATE オフロードコンペ 精度認識部門 3rd Place Solution
SIGNATE オフロードコンペ 精度認識部門 3rd Place Solution
Yusuke Uchida
 
CVIM mean shift-3
CVIM mean shift-3CVIM mean shift-3
CVIM mean shift-3
正志 坪坂
 

What's hot (20)

Object Detection & Instance Segmentationの論文紹介 | OHS勉強会#3
Object Detection & Instance Segmentationの論文紹介 | OHS勉強会#3Object Detection & Instance Segmentationの論文紹介 | OHS勉強会#3
Object Detection & Instance Segmentationの論文紹介 | OHS勉強会#3
 
【DL輪読会】StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-I...
【DL輪読会】StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-I...【DL輪読会】StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-I...
【DL輪読会】StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-I...
 
マハラノビス距離を用いた異常値検知
マハラノビス距離を用いた異常値検知マハラノビス距離を用いた異常値検知
マハラノビス距離を用いた異常値検知
 
[DL輪読会]Learn What Not to Learn: Action Elimination with Deep Reinforcement Le...
[DL輪読会]Learn What Not to Learn: Action Elimination with Deep Reinforcement Le...[DL輪読会]Learn What Not to Learn: Action Elimination with Deep Reinforcement Le...
[DL輪読会]Learn What Not to Learn: Action Elimination with Deep Reinforcement Le...
 
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
 
The LabPQR Color Space
The LabPQR Color SpaceThe LabPQR Color Space
The LabPQR Color Space
 
【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2
 
【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution
【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution
【DL輪読会】Investigating Tradeoffs in Real-World Video Super-Resolution
 
Dsp lab report- Analysis and classification of EMG signal using MATLAB.
Dsp lab report- Analysis and classification of EMG signal using MATLAB.Dsp lab report- Analysis and classification of EMG signal using MATLAB.
Dsp lab report- Analysis and classification of EMG signal using MATLAB.
 
文献紹介:X3D: Expanding Architectures for Efficient Video Recognition
文献紹介:X3D: Expanding Architectures for Efficient Video Recognition文献紹介:X3D: Expanding Architectures for Efficient Video Recognition
文献紹介:X3D: Expanding Architectures for Efficient Video Recognition
 
[DL輪読会]Taskonomy: Disentangling Task Transfer Learning
[DL輪読会]Taskonomy: Disentangling Task Transfer Learning[DL輪読会]Taskonomy: Disentangling Task Transfer Learning
[DL輪読会]Taskonomy: Disentangling Task Transfer Learning
 
Chenming hu ch6
Chenming hu ch6Chenming hu ch6
Chenming hu ch6
 
SSII2021 [OS1-01] 水産養殖 x IoT・AI ~持続可能な水産養殖を実現するセンシング/解析技術~
SSII2021 [OS1-01] 水産養殖 x IoT・AI ~持続可能な水産養殖を実現するセンシング/解析技術~SSII2021 [OS1-01] 水産養殖 x IoT・AI ~持続可能な水産養殖を実現するセンシング/解析技術~
SSII2021 [OS1-01] 水産養殖 x IoT・AI ~持続可能な水産養殖を実現するセンシング/解析技術~
 
[DL輪読会]Network Deconvolution
[DL輪読会]Network Deconvolution[DL輪読会]Network Deconvolution
[DL輪読会]Network Deconvolution
 
論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models
 
【ECCV 2022】NeDDF: Reciprocally Constrained Field for Distance and Density
【ECCV 2022】NeDDF: Reciprocally Constrained Field for Distance and Density【ECCV 2022】NeDDF: Reciprocally Constrained Field for Distance and Density
【ECCV 2022】NeDDF: Reciprocally Constrained Field for Distance and Density
 
Bones and cartilages tissue engineering
Bones and cartilages tissue engineeringBones and cartilages tissue engineering
Bones and cartilages tissue engineering
 
第8回関西CV・PRML勉強会(Meanshift)
第8回関西CV・PRML勉強会(Meanshift)第8回関西CV・PRML勉強会(Meanshift)
第8回関西CV・PRML勉強会(Meanshift)
 
SIGNATE オフロードコンペ 精度認識部門 3rd Place Solution
SIGNATE オフロードコンペ 精度認識部門 3rd Place SolutionSIGNATE オフロードコンペ 精度認識部門 3rd Place Solution
SIGNATE オフロードコンペ 精度認識部門 3rd Place Solution
 
CVIM mean shift-3
CVIM mean shift-3CVIM mean shift-3
CVIM mean shift-3
 

Similar to A Probabilistic U-Net for Segmentation of Ambiguous Images

End-to-End Object Detection with Transformers
End-to-End Object Detection with TransformersEnd-to-End Object Detection with Transformers
End-to-End Object Detection with Transformers
Seunghyun Hwang
 
How useful is self-supervised pretraining for Visual tasks?
How useful is self-supervised pretraining for Visual tasks?How useful is self-supervised pretraining for Visual tasks?
How useful is self-supervised pretraining for Visual tasks?
Seunghyun Hwang
 
DeepStrip: High Resolution Boundary Refinement
DeepStrip: High Resolution Boundary RefinementDeepStrip: High Resolution Boundary Refinement
DeepStrip: High Resolution Boundary Refinement
Seunghyun Hwang
 
FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stoch...
FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stoch...FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stoch...
FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stoch...
Seunghyun Hwang
 
Declarative data analysis
Declarative data analysisDeclarative data analysis
Declarative data analysis
South West Data Meetup
 
Your Classifier is Secretly an Energy based model and you should treat it lik...
Your Classifier is Secretly an Energy based model and you should treat it lik...Your Classifier is Secretly an Energy based model and you should treat it lik...
Your Classifier is Secretly an Energy based model and you should treat it lik...
Seunghyun Hwang
 
Deep Generative model-based quality control for cardiac MRI segmentation
Deep Generative model-based quality control for cardiac MRI segmentation Deep Generative model-based quality control for cardiac MRI segmentation
Deep Generative model-based quality control for cardiac MRI segmentation
Seunghyun Hwang
 
Lec16: Medical Image Registration (Advanced): Deformable Registration
Lec16: Medical Image Registration (Advanced): Deformable RegistrationLec16: Medical Image Registration (Advanced): Deformable Registration
Lec16: Medical Image Registration (Advanced): Deformable Registration
Ulaş Bağcı
 
[20240603_LabSeminar_Huy]TransMOT: Spatial-Temporal Graph Transformer for Mul...
[20240603_LabSeminar_Huy]TransMOT: Spatial-Temporal Graph Transformer for Mul...[20240603_LabSeminar_Huy]TransMOT: Spatial-Temporal Graph Transformer for Mul...
[20240603_LabSeminar_Huy]TransMOT: Spatial-Temporal Graph Transformer for Mul...
thanhdowork
 
Fa19_P1.pptx
Fa19_P1.pptxFa19_P1.pptx
Fa19_P1.pptx
Md Abul Hayat
 
ResNeSt: Split-Attention Networks
ResNeSt: Split-Attention NetworksResNeSt: Split-Attention Networks
ResNeSt: Split-Attention Networks
Seunghyun Hwang
 
MEME – An Integrated Tool For Advanced Computational Experiments
MEME – An Integrated Tool For Advanced Computational ExperimentsMEME – An Integrated Tool For Advanced Computational Experiments
MEME – An Integrated Tool For Advanced Computational Experiments
GIScRG
 
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)
Nesma
 
Prototype-based classifiers and their applications in the life sciences
Prototype-based classifiers and their applications in the life sciencesPrototype-based classifiers and their applications in the life sciences
Prototype-based classifiers and their applications in the life sciences
University of Groningen
 
Learning Sparse Networks using Targeted Dropout
Learning Sparse Networks using Targeted DropoutLearning Sparse Networks using Targeted Dropout
Learning Sparse Networks using Targeted Dropout
Seunghyun Hwang
 
01.pdf
01.pdf01.pdf
01.pdf
Rakesh Kumar
 
crossvalidation.pptx
crossvalidation.pptxcrossvalidation.pptx
crossvalidation.pptx
PriyadharshiniG41
 
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Evaluation
Bridging the Gap: Machine Learning for Ubiquitous Computing -- EvaluationBridging the Gap: Machine Learning for Ubiquitous Computing -- Evaluation
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Evaluation
Thomas Ploetz
 
NEURAL Network Design Training
NEURAL Network Design  TrainingNEURAL Network Design  Training
NEURAL Network Design Training
ESCOM
 
Moving object detection in complex scene
Moving object detection in complex sceneMoving object detection in complex scene
Moving object detection in complex scene
Kumar Mayank
 

Similar to A Probabilistic U-Net for Segmentation of Ambiguous Images (20)

End-to-End Object Detection with Transformers
End-to-End Object Detection with TransformersEnd-to-End Object Detection with Transformers
End-to-End Object Detection with Transformers
 
How useful is self-supervised pretraining for Visual tasks?
How useful is self-supervised pretraining for Visual tasks?How useful is self-supervised pretraining for Visual tasks?
How useful is self-supervised pretraining for Visual tasks?
 
DeepStrip: High Resolution Boundary Refinement
DeepStrip: High Resolution Boundary RefinementDeepStrip: High Resolution Boundary Refinement
DeepStrip: High Resolution Boundary Refinement
 
FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stoch...
FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stoch...FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stoch...
FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stoch...
 
Declarative data analysis
Declarative data analysisDeclarative data analysis
Declarative data analysis
 
Your Classifier is Secretly an Energy based model and you should treat it lik...
Your Classifier is Secretly an Energy based model and you should treat it lik...Your Classifier is Secretly an Energy based model and you should treat it lik...
Your Classifier is Secretly an Energy based model and you should treat it lik...
 
Deep Generative model-based quality control for cardiac MRI segmentation
Deep Generative model-based quality control for cardiac MRI segmentation Deep Generative model-based quality control for cardiac MRI segmentation
Deep Generative model-based quality control for cardiac MRI segmentation
 
Lec16: Medical Image Registration (Advanced): Deformable Registration
Lec16: Medical Image Registration (Advanced): Deformable RegistrationLec16: Medical Image Registration (Advanced): Deformable Registration
Lec16: Medical Image Registration (Advanced): Deformable Registration
 
[20240603_LabSeminar_Huy]TransMOT: Spatial-Temporal Graph Transformer for Mul...
[20240603_LabSeminar_Huy]TransMOT: Spatial-Temporal Graph Transformer for Mul...[20240603_LabSeminar_Huy]TransMOT: Spatial-Temporal Graph Transformer for Mul...
[20240603_LabSeminar_Huy]TransMOT: Spatial-Temporal Graph Transformer for Mul...
 
Fa19_P1.pptx
Fa19_P1.pptxFa19_P1.pptx
Fa19_P1.pptx
 
ResNeSt: Split-Attention Networks
ResNeSt: Split-Attention NetworksResNeSt: Split-Attention Networks
ResNeSt: Split-Attention Networks
 
MEME – An Integrated Tool For Advanced Computational Experiments
MEME – An Integrated Tool For Advanced Computational ExperimentsMEME – An Integrated Tool For Advanced Computational Experiments
MEME – An Integrated Tool For Advanced Computational Experiments
 
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)Iwsm2014   cosmic approximate sizing using a fuzzy logic approach (alain abran)
Iwsm2014 cosmic approximate sizing using a fuzzy logic approach (alain abran)
 
Prototype-based classifiers and their applications in the life sciences
Prototype-based classifiers and their applications in the life sciencesPrototype-based classifiers and their applications in the life sciences
Prototype-based classifiers and their applications in the life sciences
 
Learning Sparse Networks using Targeted Dropout
Learning Sparse Networks using Targeted DropoutLearning Sparse Networks using Targeted Dropout
Learning Sparse Networks using Targeted Dropout
 
01.pdf
01.pdf01.pdf
01.pdf
 
crossvalidation.pptx
crossvalidation.pptxcrossvalidation.pptx
crossvalidation.pptx
 
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Evaluation
Bridging the Gap: Machine Learning for Ubiquitous Computing -- EvaluationBridging the Gap: Machine Learning for Ubiquitous Computing -- Evaluation
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Evaluation
 
NEURAL Network Design Training
NEURAL Network Design  TrainingNEURAL Network Design  Training
NEURAL Network Design Training
 
Moving object detection in complex scene
Moving object detection in complex sceneMoving object detection in complex scene
Moving object detection in complex scene
 

More from Seunghyun Hwang

An annotation sparsification strategy for 3D medical image segmentation via r...
An annotation sparsification strategy for 3D medical image segmentation via r...An annotation sparsification strategy for 3D medical image segmentation via r...
An annotation sparsification strategy for 3D medical image segmentation via r...
Seunghyun Hwang
 
Do wide and deep networks learn the same things? Uncovering how neural networ...
Do wide and deep networks learn the same things? Uncovering how neural networ...Do wide and deep networks learn the same things? Uncovering how neural networ...
Do wide and deep networks learn the same things? Uncovering how neural networ...
Seunghyun Hwang
 
Deep Learning-based Fully Automated Detection and Quantification of Acute Inf...
Deep Learning-based Fully Automated Detection and Quantification of Acute Inf...Deep Learning-based Fully Automated Detection and Quantification of Acute Inf...
Deep Learning-based Fully Automated Detection and Quantification of Acute Inf...
Seunghyun Hwang
 
Diagnosis of Maxillary Sinusitis in Water’s view based on Deep learning model
Diagnosis of Maxillary Sinusitis in Water’s view based on Deep learning model Diagnosis of Maxillary Sinusitis in Water’s view based on Deep learning model
Diagnosis of Maxillary Sinusitis in Water’s view based on Deep learning model
Seunghyun Hwang
 
Energy-based Model for Out-of-Distribution Detection in Deep Medical Image Se...
Energy-based Model for Out-of-Distribution Detection in Deep Medical Image Se...Energy-based Model for Out-of-Distribution Detection in Deep Medical Image Se...
Energy-based Model for Out-of-Distribution Detection in Deep Medical Image Se...
Seunghyun Hwang
 
Segmenting Medical MRI via Recurrent Decoding Cell
Segmenting Medical MRI via Recurrent Decoding CellSegmenting Medical MRI via Recurrent Decoding Cell
Segmenting Medical MRI via Recurrent Decoding Cell
Seunghyun Hwang
 
Progressive learning and Disentanglement of hierarchical representations
Progressive learning and Disentanglement of hierarchical representationsProgressive learning and Disentanglement of hierarchical representations
Progressive learning and Disentanglement of hierarchical representations
Seunghyun Hwang
 
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual RepresentationsA Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Seunghyun Hwang
 
Mix Conv: Mixed Depthwise Convolutional Kernels
Mix Conv: Mixed Depthwise Convolutional KernelsMix Conv: Mixed Depthwise Convolutional Kernels
Mix Conv: Mixed Depthwise Convolutional Kernels
Seunghyun Hwang
 
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image SynthesisLarge Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Seunghyun Hwang
 

More from Seunghyun Hwang (10)

An annotation sparsification strategy for 3D medical image segmentation via r...
An annotation sparsification strategy for 3D medical image segmentation via r...An annotation sparsification strategy for 3D medical image segmentation via r...
An annotation sparsification strategy for 3D medical image segmentation via r...
 
Do wide and deep networks learn the same things? Uncovering how neural networ...
Do wide and deep networks learn the same things? Uncovering how neural networ...Do wide and deep networks learn the same things? Uncovering how neural networ...
Do wide and deep networks learn the same things? Uncovering how neural networ...
 
Deep Learning-based Fully Automated Detection and Quantification of Acute Inf...
Deep Learning-based Fully Automated Detection and Quantification of Acute Inf...Deep Learning-based Fully Automated Detection and Quantification of Acute Inf...
Deep Learning-based Fully Automated Detection and Quantification of Acute Inf...
 
Diagnosis of Maxillary Sinusitis in Water’s view based on Deep learning model
Diagnosis of Maxillary Sinusitis in Water’s view based on Deep learning model Diagnosis of Maxillary Sinusitis in Water’s view based on Deep learning model
Diagnosis of Maxillary Sinusitis in Water’s view based on Deep learning model
 
Energy-based Model for Out-of-Distribution Detection in Deep Medical Image Se...
Energy-based Model for Out-of-Distribution Detection in Deep Medical Image Se...Energy-based Model for Out-of-Distribution Detection in Deep Medical Image Se...
Energy-based Model for Out-of-Distribution Detection in Deep Medical Image Se...
 
Segmenting Medical MRI via Recurrent Decoding Cell
Segmenting Medical MRI via Recurrent Decoding CellSegmenting Medical MRI via Recurrent Decoding Cell
Segmenting Medical MRI via Recurrent Decoding Cell
 
Progressive learning and Disentanglement of hierarchical representations
Progressive learning and Disentanglement of hierarchical representationsProgressive learning and Disentanglement of hierarchical representations
Progressive learning and Disentanglement of hierarchical representations
 
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual RepresentationsA Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
 
Mix Conv: Mixed Depthwise Convolutional Kernels
Mix Conv: Mixed Depthwise Convolutional KernelsMix Conv: Mixed Depthwise Convolutional Kernels
Mix Conv: Mixed Depthwise Convolutional Kernels
 
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image SynthesisLarge Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
 

Recently uploaded

HCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAUHCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAU
panagenda
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
kumardaparthi1024
 
Mariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceXMariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceX
Mariano Tinti
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
Uni Systems S.M.S.A.
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
Neo4j
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
Zilliz
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
DianaGray10
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
Claudio Di Ciccio
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
Pixlogix Infotech
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
Neo4j
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
Octavian Nadolu
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 

Recently uploaded (20)

HCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAUHCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAU
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
 
Mariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceXMariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceX
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 

A Probabilistic U-Net for Segmentation of Ambiguous Images

  • 1. A Probabilistic U-Net for Segmentation of Ambiguous Images Hwang seung hyun Yonsei University Severance Hospital CCIDS DeepMind, Division of Medical Image Computing, German Cancer Research Center, Germany | NIPS 2018 2020.04.19
  • 2. Introduction Related Work Methods and Experiments 01 02 03 Conclusion 04 Yonsei Unversity Severance Hospital CCIDS Contents
  • 3. Probabilistic Unet Introduction – Limitations of prior methods • There exist ambiguities in segmentation task, especially in medical imaging applications • A lesion might be clearly visible, but ground truth labels can vary depending on radiologists. • Most existing segmentation algorithms either provide only consistent hypothesis of a pixel-wise probability(e.g. “each pixel is 50% cat, 50% dog) • Pixel wise probabilities ignores all co-variances between the pixels. • Existing methods are Ensemble Unet, dropout Unet, M heads model, etc. Introduction / Related Work / Methods and Experiments / Conclusion
  • 4. Probabilistic Unet Introduction – Probabilistic Unet Architecture • Probabilistic Unet provides multiple segmentation hypotheses for ambiguous images. • Combines conditional variational auto encoder(CVAE), and U-Net • First extract latent space and encodes the possible segmentation variants • Random sample from the space is injected into the Unet to produce segmentation map. Introduction / Related Work / Methods and Experiments / Conclusion
  • 5. Probabilistic Unet Introduction – Contributions • Provides consistent segmentation maps instead of pixel-wise probabilities, providing joint likelihood of modes. • Able to learn calibrated probabilities of segmentation modes. • Can produce diverse outputs for single image Introduction / Related Work / Methods and Experiments / Conclusion
  • 6. Related Work CVAE (Conditional Variational Auto Encoder) Introduction / Related Work / Methods and Experiments / Conclusion • Encoder를 통해 도출된 latent coding Z를 가우시 안 분포로 나타내기 위해 분산과 평균을 이용함 • Label 정보를 추가로 넣어준다
  • 7. Related Work U-Net Introduction / Related Work / Methods and Experiments / Conclusion • Encoding Phase
  • 8. Methods and Experiments Network Architecture Introduction / Related Work / Methods and Experiments / Conclusion • Sampling Process • Training Process
  • 9. Methods and Experiments Sampling Process Introduction / Related Work / Methods and Experiments / Conclusion • Prior Net (Unet’s encoding phase + global average pooling) produces Latent Space • Each position in this space encodes a segmentation variant • Broadcast the sample to feature map with the same shape as the segmentation map, and concatenate this map to the las activation map of U-Net * P : prior probability distribution * fcomb = three subsequent 1x1 convolutions * S: segmentation map corresponding to point z in latent space
  • 10. Methods and Experiments Training Process Introduction / Related Work / Methods and Experiments / Conclusion • Introduce Posterior Net that learns to recognize a useful segmentation variant • Posterior Net and Prior Net are updated through the standard training procedure for CVAE, by minimizing variational lower bound (Kullback-Leibler divergence) • Cross-entropy loss penalizes differences between S and Y • KL loss pulls the posterior distribution and prior distribution towards each other • Eventually covers the space of all useful segmentation variants for input image 21
  • 11. Methods and Experiments Sampling Process Introduction / Related Work / Methods and Experiments / Conclusion Output Samples Visualization of the Latent Space
  • 12. Methods and Experiments Introduction / Related Work / Methods and Experiments / Conclusion Performance Measures • Generalized Energy Distance Matrix • Not only compare deterministic prediction, but also compares distributions of segmentations * d: distance measure * Y, Y’ : Independent samples from the ground truth distribution * S, S’: independent samples from the predicted distribution * d(x,y) = 1 - IOU(x,y)
  • 13. Methods and Experiments Introduction / Related Work / Methods and Experiments / Conclusion Results
  • 14. Methods and Experiments Introduction / Related Work / Methods and Experiments / Conclusion Results • Energy Distance decreases as more samples are drawn indicating an improved matching of the GT distribution, as well as enhanced sample diversity.
  • 15. Conclusion Introduction / Related Work / Methods and Experiments / Conclusion • Each sample produced by probabilistic Unet is consistent segmentation result that closely match the multi-modal GT distributions • Employed energy distance matrix measures whether the model’s individual samples are both coherent, and whether they are produced with expected frequencies. • Can be used to assess annotations with model • Probabilistic U Net can replace the currently applied deterministic U Nets in large field of studies, especially in the medical domain • Guide steps to resolve ambiguities