1) The document presents a method for detecting skin lesions using support vector machines (SVM). It involves preprocessing images, segmenting the skin lesion region, extracting features related to shape, color, and texture, and classifying lesions as melanoma or non-melanoma using an SVM classifier.
2) Features extracted include asymmetry, border irregularity, compactness, color ratios in HSV, RGB and LAB color spaces, and texture features from the gray-level co-occurrence matrix.
3) An SVM classifier is used for classification as it can accurately classify data by finding the optimal separating hyperplane that maximizes the margin between the classes. The method achieved efficient classification of lesions.