SlideShare a Scribd company logo
* GB780109 (A)
Description: GB780109 (A) ? 1957-07-31
Improvements in or relating to electronic time-base generators
Description of GB780109 (A)
A high quality text as facsimile in your desired language may be available
amongst the following family members:
FR1110000 (A)
FR1110000 (A) less
Translate this text into Tooltip
[79][(1)__Select language]
Translate this text into
The EPO does not accept any responsibility for the accuracy of data
and information originating from other authorities than the EPO; in
particular, the EPO does not guarantee that they are complete,
up-to-date or fit for specific purposes.
PATENT SPECIFICATION
7809109 Date of Application and filing Complete Specification: Aug.
10, 1955.
Application made in France on Aug. 19, 1954.
Complete Specification Published: July 31, 1957.
No. 23080/55.
Index at acceptance:-Class 40(6), P(1 Al:1 M5Al:1
M5B:2C2:2C4:3D:3E:3K:4T2).
International Classification:-HO3k.
COMPLETE SPECIFICATION
Improvements in or relating to Electronic Time-base Generators We,
METROPOLITAN-VICKERS ELECTRICAL COMPANY LIMITED, a British Company,
having its registered office at St. Paul's Corner, 1-3, St. Paul's
Churchyard, London, E.C.4, do hereby declare the invention, for which
we pray that a patent may be granted to us, and the method by which it
is to be performed, to be particularly described in and by the
following statement:-
This invention relates to electronic timebase or sweep generators as
used for energising a deflection coil (or coils) of a cathode ray tube
to produce a sweeping or scanning movement of the electron beam of
such tube, a deflection coil connected to be so energised being for
convenience termed a scanning coil hereinafter.
The invention is specially suitable for timebase generators intended
for use with oscil20loscopes employing cathode ray tubes of relatively
small diameter, but is also applicable in general to large screen
oscilloscopes and other cathode ray tube equipment.
The output from a time-base or sweep generator has usually a saw-tooth
or trapezoidal waveform the inclined portions of which correspond to
sweep periods of the electron beam. Especially for time-bases, it is
as a general rule desirable for these inclined portiofns of the
waveform to be as-nearly linear as possible in order that the time
scale shall also be substantially linear. The inclined portions of the
waveform are, however, often generated by the charging or discharging
of a capacitance and in the absence of correction tend to be
non-linear owing to the exponential charging or discharging
characteristic of the capacitance.
In accordance with the present invention, an electronic time-base or
sweep generator including means tending to correct non-linearity in
its output waveform, comprises a source of sweep voltage, a
cathode-follower valve connected effectively between said source and a
cathode ray tube scanning coil [Price 3/61 that is to be energised by
the generator, and negative feedback means including a differentiating
circuit connected to differentiate the voltage across the scanning
coil and during a sweep period to control accordingly 50 the extent of
conduction of a further, feedback valve effectively shunting the
source of sweep voltage, the arrangement being such as to tend to,
provide across the scanning coil a linearised voltage waveform
appropriate to producing a linearly varying current in the coil.
With such arrangement, the feedback means will have a correcting
effect tending to counteract non-linearity in the output 60 waveform
such as may be due for instance to the exponential charging or
discharging characteristic of a capacitance component of the generator
as previously indicated. It is also contemplated, as will appear
hereinafter, 65 that the scanning speed and/or the magnitude of the
sweep of the electron beam will depend on the control grid-cathode
bias of the feedback valve, and in order to provide a continuously
variable scanning speed or 70 sweep magnitude control means may
accordingly be provided for varying this bias.
In order to give a fuller understanding of the invention an embodiment
thereof suitable for use with an oscilloscope providing a panoramic
display in an electro-magnetic detection system will now be described
with reference to the accompanying drawings in which:Fig. 1 is a
circuit diagram of a time-base 80 generator in accordance with the
invention, and Fig. 2 gives various curves showing the variation with
time of the potentials at different points in the circuit of Fig. 1.
85 Referring to Fig. 1, a deflection coil 1 constituting a scanning
coil for the oscilloscope, not shown, is connected in series in the
cathode circuit- of a pentode valve 2 connected as a cathode-follower
and having its 90 j1 11.1cny780,109 screen grid maintained at a fixed
potential with respect to the cathode by any appropriate means
symbolised by the battery 3.
The anode of the valve 2 is connected to the positive terminal B+, of
a source of high tension through a resistance 4, while the control
grid of the valve 2 is connected to the terminal B'1 through a
resistance 6 of relatively high value and to earth through a
capacitance 7.
The anode of a triode valve 5 constituting the output valve of a
source of sweep voltage is connected to the control grid of the valve
2, while the control grid of the valve 5 is connected to the normally
non-conducting valve of a pair of valves (not shown) constituting a
monostable trigger circuit (flipflop) indicated by the rectangle 8.
This latter is synchronised by the tripping impulses of the
electromagnetic detection system.
When the trigger circuit 8 is in its stable state, the potential of
the grid of the valve is sufficiently high for this valve to become
conducting and grid current to flow. Under these conditions the
potential of the anode of the valve 5 (potential of the point A), and
consequently that of the control grid of the valve 2, becomes negative
with respect to the cathode potential of the latter valve; the anode
current of the valve 2 is therefore cut off at this time. When the
trigger circuit 8 is in its unstable state, the valve 5 is blocked and
the potential of its anode tends to increase according to an
exponential law de35termined by the time constant of the circuit
constituted by the resistance 6 and capacitance 7. The potential of
the control grid of the valve 2 rises above the cut-off value and the
valve 2 then becomes conducting.
A negative feedback circuit is provided including a triode valve 9 the
anode of which is connected to the -control grid of the valve 2 while
its cathode is connected to the terminal B-2 of the high tension
source through a resistance 11 and potentiometer 12 in series.
The control grid of the valve 9 is connected to the slider of the
potentiometer 12 through a resistance 10. Finally a capacitance 13 is
connected between the cathode of the valve 2 and the grid of the valve
9.
The curves VA, VB and Vc of Fig. 2 show the variation, as function of
the time t, of the potentials of the points A, B and C of the circuit
of Fig. 1. The upper (chain dotted) part of the curve VA (above the
point b) represents what would be the variation of the potential of
the point A in the absence of the feedback valve 9.
When, with the valve 5 blocked, the po60tential of the point A (curve
VA) increases and promotes unblocking of the valve 2 at point a, the
potential of the cathode of the valve 2 (curve Ve, point a) rises
abruptly.
This variation of potential is transmitted to the grid of the valve 9
(curve VB, point J) by the resistance-capacity circuit 14 constituted
by the resistance 10, a part of the potentiometer 12 and the
capacitance 13. As soon as the potential of the point B rises above
the cut-off potential UI, the valve 9 delivers 70 current and the
increase of the potential of the point A is strongly opposed. The
valve 9 thereafter conducts for the whole duration of the sweep
period.
The elements 10 and 13 are so chosen that 75 they constitute a
differentiating circuit, resulting in a trapezoidal voltage being
applied to the grid of the valve 9 at the point B (part fghi of the
curve Vn). This variation of the potential of the point B causes a
corresponding variation of the anode current of the valve 9 and an
inverse variation of the potential of the point A, thus tending to
linearise the resultant variation of the latter (part bc of the curves
VA and Vc, here being approximately coincident). A waveform is thus
obtained comprising a saw-tooth bed superimposed on a substantially
rectangular impulse a'bde, and it will be seen that the voltage
produced across the coil 1 has then the 90 necessary trapezoidal form
to obtain a correct scanning deflection of the oscilloscope electron
beam. The amplitude cd of this sawtooth is proportional to that (ed)
of the rectangular impulse and is determined by the 95 effective
cut-off voltage of the valve 9, which in turn is determined by the
effective bias on this valve as set by the position of the slider of
the potentiometer 12. The speed of displacement of the spot on the
sreen of 100 the oscilloscope (scanning speed) and the scale of the
image reproduced on the screen can thus be controlled by the
potentiometer 12.
* Sitemap
* Accessibility
* Legal notice
* Terms of use
* Last updated: 08.04.2015
* Worldwide Database
* 5.8.23.4; 93p

More Related Content

What's hot

780010
780010780010
780010
j1075017
 
780060
780060780060
780060
j1075017
 
780060
780060780060
780060
j1075017
 
780060
780060780060
780060
780060780060
780060
j1075017
 
Knee point & primary current injection test
Knee point & primary current injection testKnee point & primary current injection test
Knee point & primary current injection test
Basudev patra
 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverter
ZunAib Ali
 
Iaetsd reactive power compensation using fuzzy
Iaetsd reactive power compensation using fuzzyIaetsd reactive power compensation using fuzzy
Iaetsd reactive power compensation using fuzzy
Iaetsd Iaetsd
 
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
ZunAib Ali
 
Svpwm
SvpwmSvpwm
SVM Simulation for three level inverter
SVM Simulation for three level inverterSVM Simulation for three level inverter
SVM Simulation for three level inverter
ZunAib Ali
 
780197
780197780197
Knee-Point Voltage Determination for Current Transformer Functional Identific...
Knee-Point Voltage Determination for Current Transformer Functional Identific...Knee-Point Voltage Determination for Current Transformer Functional Identific...
Knee-Point Voltage Determination for Current Transformer Functional Identific...
IJERD Editor
 
COBEP_2007
COBEP_2007COBEP_2007
5476 5480.output
5476 5480.output5476 5480.output
5476 5480.output
Иван Иванов
 
5476 5480.output
5476 5480.output5476 5480.output
5476 5480.output
Иван Иванов
 
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
emredurna
 
Project
ProjectProject
Project
Peter Sinko
 
4626 4630.output
4626 4630.output4626 4630.output
4626 4630.output
j1075017
 
Nav sea curso de electronica eimb elex_circuits_1980
Nav sea curso de electronica eimb elex_circuits_1980Nav sea curso de electronica eimb elex_circuits_1980
Nav sea curso de electronica eimb elex_circuits_1980
mseoane
 

What's hot (20)

780010
780010780010
780010
 
780060
780060780060
780060
 
780060
780060780060
780060
 
780060
780060780060
780060
 
780060
780060780060
780060
 
Knee point & primary current injection test
Knee point & primary current injection testKnee point & primary current injection test
Knee point & primary current injection test
 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverter
 
Iaetsd reactive power compensation using fuzzy
Iaetsd reactive power compensation using fuzzyIaetsd reactive power compensation using fuzzy
Iaetsd reactive power compensation using fuzzy
 
Multi phase Star Rectifier
Multi phase Star Rectifier Multi phase Star Rectifier
Multi phase Star Rectifier
 
Svpwm
SvpwmSvpwm
Svpwm
 
SVM Simulation for three level inverter
SVM Simulation for three level inverterSVM Simulation for three level inverter
SVM Simulation for three level inverter
 
780197
780197780197
780197
 
Knee-Point Voltage Determination for Current Transformer Functional Identific...
Knee-Point Voltage Determination for Current Transformer Functional Identific...Knee-Point Voltage Determination for Current Transformer Functional Identific...
Knee-Point Voltage Determination for Current Transformer Functional Identific...
 
COBEP_2007
COBEP_2007COBEP_2007
COBEP_2007
 
5476 5480.output
5476 5480.output5476 5480.output
5476 5480.output
 
5476 5480.output
5476 5480.output5476 5480.output
5476 5480.output
 
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
Space Vector Modulation in Voltage Sourced Three Level Neutral Point Clamped ...
 
Project
ProjectProject
Project
 
4626 4630.output
4626 4630.output4626 4630.output
4626 4630.output
 
Nav sea curso de electronica eimb elex_circuits_1980
Nav sea curso de electronica eimb elex_circuits_1980Nav sea curso de electronica eimb elex_circuits_1980
Nav sea curso de electronica eimb elex_circuits_1980
 

Viewers also liked

780179
780179780179
780100
780100780100
780087
780087780087
780084
780084780084
780165
780165780165
780135
780135780135
780118
780118780118
780155
780155780155
780076
780076780076
780104
780104780104
780064
780064780064
780143
780143780143
780148
780148780148
780070
780070780070
780134
780134780134
780078
780078780078
780158
780158780158
780129
780129780129

Viewers also liked (19)

780179
780179780179
780179
 
780100
780100780100
780100
 
780087
780087780087
780087
 
780084
780084780084
780084
 
780165
780165780165
780165
 
780117
780117780117
780117
 
780135
780135780135
780135
 
780118
780118780118
780118
 
780155
780155780155
780155
 
780076
780076780076
780076
 
780104
780104780104
780104
 
780064
780064780064
780064
 
780143
780143780143
780143
 
780148
780148780148
780148
 
780070
780070780070
780070
 
780134
780134780134
780134
 
780078
780078780078
780078
 
780158
780158780158
780158
 
780129
780129780129
780129
 

Similar to 780109

5486 5490.output
5486 5490.output5486 5490.output
5486 5490.output
Иван Иванов
 
5486 5490.output
5486 5490.output5486 5490.output
5486 5490.output
Иван Иванов
 
780139
780139780139
780139
780139780139
780139
j1075017
 
5341 5345.output
5341 5345.output5341 5345.output
5341 5345.output
Иван Иванов
 
5341 5345.output
5341 5345.output5341 5345.output
5341 5345.output
Иван Иванов
 
780138
780138780138
780138
780138780138
780138
j1075017
 
780063
780063780063
780063
j1075017
 
780063
780063780063
780063
j1075017
 
780063
780063780063
780063
j1075017
 
780063
780063780063
780024
780024780024
780024
j1075017sss
 
780024
780024780024
780024
780024780024
780024
j1075017sss
 
780024
780024780024
780024
j1075017
 
US3153766.pdf
US3153766.pdfUS3153766.pdf
US3153766.pdf
oldjanus
 
5131 5135.output
5131 5135.output5131 5135.output
5131 5135.output
j1075017
 
international-patents.pdf
international-patents.pdfinternational-patents.pdf
international-patents.pdf
Daniel Donatelli
 
780174
780174780174

Similar to 780109 (20)

5486 5490.output
5486 5490.output5486 5490.output
5486 5490.output
 
5486 5490.output
5486 5490.output5486 5490.output
5486 5490.output
 
780139
780139780139
780139
 
780139
780139780139
780139
 
5341 5345.output
5341 5345.output5341 5345.output
5341 5345.output
 
5341 5345.output
5341 5345.output5341 5345.output
5341 5345.output
 
780138
780138780138
780138
 
780138
780138780138
780138
 
780063
780063780063
780063
 
780063
780063780063
780063
 
780063
780063780063
780063
 
780063
780063780063
780063
 
780024
780024780024
780024
 
780024
780024780024
780024
 
780024
780024780024
780024
 
780024
780024780024
780024
 
US3153766.pdf
US3153766.pdfUS3153766.pdf
US3153766.pdf
 
5131 5135.output
5131 5135.output5131 5135.output
5131 5135.output
 
international-patents.pdf
international-patents.pdfinternational-patents.pdf
international-patents.pdf
 
780174
780174780174
780174
 

More from Иван Иванов

Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Иван Иванов
 
Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.
Иван Иванов
 
Психология семейно-брачных отношений
Психология семейно-брачных отношенийПсихология семейно-брачных отношений
Психология семейно-брачных отношений
Иван Иванов
 
Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)
Иван Иванов
 
Кодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применениеКодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применение
Иван Иванов
 
US2003165637A1
US2003165637A1US2003165637A1
US2003165637A1
Иван Иванов
 
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБМЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
Иван Иванов
 
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
Иван Иванов
 
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связиМикропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Иван Иванов
 
1
11
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатацииЗаковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Иван Иванов
 
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Иван Иванов
 
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводомЯсенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
Иван Иванов
 
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Иван Иванов
 
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
Иван Иванов
 
Sdewsdweddes
SdewsdweddesSdewsdweddes
Sdewsdweddes
Иван Иванов
 
Us873655
Us873655Us873655
5301 5305.output
5301 5305.output5301 5305.output
5301 5305.output
Иван Иванов
 
5296 5300.output
5296 5300.output5296 5300.output
5296 5300.output
Иван Иванов
 
5306 5310.output
5306 5310.output5306 5310.output
5306 5310.output
Иван Иванов
 

More from Иван Иванов (20)

Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
Сытник В. С. Основы расчета и анализа точности геодезических измерений в стро...
 
Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.Новые эффективные материалы и изделия из древесного сырья за рубежом.
Новые эффективные материалы и изделия из древесного сырья за рубежом.
 
Психология семейно-брачных отношений
Психология семейно-брачных отношенийПсихология семейно-брачных отношений
Психология семейно-брачных отношений
 
Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)Poialkova v.m. -_lifter-akademiia_(2007)
Poialkova v.m. -_lifter-akademiia_(2007)
 
Кодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применениеКодирующие электронно-лучевые трубки и их применение
Кодирующие электронно-лучевые трубки и их применение
 
US2003165637A1
US2003165637A1US2003165637A1
US2003165637A1
 
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБМЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
МЕТОДЫ И СРЕДСТВА ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АКУСТИЧЕСКОГО КОНТРОЛЯ ТРУБ
 
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
ЗЕРКАЛЬНО-ТЕНЕВОЙ МЕТОД КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ЭЛЕК...
 
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связиМикропроцессоры и микроЭВМ в системах технического обслуживания средств связи
Микропроцессоры и микроЭВМ в системах технического обслуживания средств связи
 
1
11
1
 
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатацииЗаковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
Заковряшин А. И. Конструирование РЭА с учетом особенностей эксплуатации
 
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
Юньков М.Г. и др. Унифицированные системы тиристорного электропривода постоян...
 
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводомЯсенев Н.Д. Аппараты управления автоматизированным электроприводом
Ясенев Н.Д. Аппараты управления автоматизированным электроприводом
 
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
Танский Е.А., Дроздов В.Н., Новиков В.Г. и др. Система стабилизации скорости ...
 
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С ФАЗНЫМИ ЭЛЕКТРОДВИГАТЕЛЯМИ
 
Sdewsdweddes
SdewsdweddesSdewsdweddes
Sdewsdweddes
 
Us873655
Us873655Us873655
Us873655
 
5301 5305.output
5301 5305.output5301 5305.output
5301 5305.output
 
5296 5300.output
5296 5300.output5296 5300.output
5296 5300.output
 
5306 5310.output
5306 5310.output5306 5310.output
5306 5310.output
 

780109

  • 1. * GB780109 (A) Description: GB780109 (A) ? 1957-07-31 Improvements in or relating to electronic time-base generators Description of GB780109 (A) A high quality text as facsimile in your desired language may be available amongst the following family members: FR1110000 (A) FR1110000 (A) less Translate this text into Tooltip [79][(1)__Select language] Translate this text into The EPO does not accept any responsibility for the accuracy of data and information originating from other authorities than the EPO; in particular, the EPO does not guarantee that they are complete, up-to-date or fit for specific purposes. PATENT SPECIFICATION 7809109 Date of Application and filing Complete Specification: Aug. 10, 1955. Application made in France on Aug. 19, 1954. Complete Specification Published: July 31, 1957. No. 23080/55. Index at acceptance:-Class 40(6), P(1 Al:1 M5Al:1 M5B:2C2:2C4:3D:3E:3K:4T2). International Classification:-HO3k. COMPLETE SPECIFICATION Improvements in or relating to Electronic Time-base Generators We, METROPOLITAN-VICKERS ELECTRICAL COMPANY LIMITED, a British Company, having its registered office at St. Paul's Corner, 1-3, St. Paul's Churchyard, London, E.C.4, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the
  • 2. following statement:- This invention relates to electronic timebase or sweep generators as used for energising a deflection coil (or coils) of a cathode ray tube to produce a sweeping or scanning movement of the electron beam of such tube, a deflection coil connected to be so energised being for convenience termed a scanning coil hereinafter. The invention is specially suitable for timebase generators intended for use with oscil20loscopes employing cathode ray tubes of relatively small diameter, but is also applicable in general to large screen oscilloscopes and other cathode ray tube equipment. The output from a time-base or sweep generator has usually a saw-tooth or trapezoidal waveform the inclined portions of which correspond to sweep periods of the electron beam. Especially for time-bases, it is as a general rule desirable for these inclined portiofns of the waveform to be as-nearly linear as possible in order that the time scale shall also be substantially linear. The inclined portions of the waveform are, however, often generated by the charging or discharging of a capacitance and in the absence of correction tend to be non-linear owing to the exponential charging or discharging characteristic of the capacitance. In accordance with the present invention, an electronic time-base or sweep generator including means tending to correct non-linearity in its output waveform, comprises a source of sweep voltage, a cathode-follower valve connected effectively between said source and a cathode ray tube scanning coil [Price 3/61 that is to be energised by the generator, and negative feedback means including a differentiating circuit connected to differentiate the voltage across the scanning coil and during a sweep period to control accordingly 50 the extent of conduction of a further, feedback valve effectively shunting the source of sweep voltage, the arrangement being such as to tend to, provide across the scanning coil a linearised voltage waveform appropriate to producing a linearly varying current in the coil. With such arrangement, the feedback means will have a correcting effect tending to counteract non-linearity in the output 60 waveform such as may be due for instance to the exponential charging or discharging characteristic of a capacitance component of the generator as previously indicated. It is also contemplated, as will appear hereinafter, 65 that the scanning speed and/or the magnitude of the sweep of the electron beam will depend on the control grid-cathode bias of the feedback valve, and in order to provide a continuously variable scanning speed or 70 sweep magnitude control means may accordingly be provided for varying this bias. In order to give a fuller understanding of the invention an embodiment thereof suitable for use with an oscilloscope providing a panoramic
  • 3. display in an electro-magnetic detection system will now be described with reference to the accompanying drawings in which:Fig. 1 is a circuit diagram of a time-base 80 generator in accordance with the invention, and Fig. 2 gives various curves showing the variation with time of the potentials at different points in the circuit of Fig. 1. 85 Referring to Fig. 1, a deflection coil 1 constituting a scanning coil for the oscilloscope, not shown, is connected in series in the cathode circuit- of a pentode valve 2 connected as a cathode-follower and having its 90 j1 11.1cny780,109 screen grid maintained at a fixed potential with respect to the cathode by any appropriate means symbolised by the battery 3. The anode of the valve 2 is connected to the positive terminal B+, of a source of high tension through a resistance 4, while the control grid of the valve 2 is connected to the terminal B'1 through a resistance 6 of relatively high value and to earth through a capacitance 7. The anode of a triode valve 5 constituting the output valve of a source of sweep voltage is connected to the control grid of the valve 2, while the control grid of the valve 5 is connected to the normally non-conducting valve of a pair of valves (not shown) constituting a monostable trigger circuit (flipflop) indicated by the rectangle 8. This latter is synchronised by the tripping impulses of the electromagnetic detection system. When the trigger circuit 8 is in its stable state, the potential of the grid of the valve is sufficiently high for this valve to become conducting and grid current to flow. Under these conditions the potential of the anode of the valve 5 (potential of the point A), and consequently that of the control grid of the valve 2, becomes negative with respect to the cathode potential of the latter valve; the anode current of the valve 2 is therefore cut off at this time. When the trigger circuit 8 is in its unstable state, the valve 5 is blocked and the potential of its anode tends to increase according to an exponential law de35termined by the time constant of the circuit constituted by the resistance 6 and capacitance 7. The potential of the control grid of the valve 2 rises above the cut-off value and the valve 2 then becomes conducting. A negative feedback circuit is provided including a triode valve 9 the anode of which is connected to the -control grid of the valve 2 while its cathode is connected to the terminal B-2 of the high tension source through a resistance 11 and potentiometer 12 in series. The control grid of the valve 9 is connected to the slider of the potentiometer 12 through a resistance 10. Finally a capacitance 13 is connected between the cathode of the valve 2 and the grid of the valve 9.
  • 4. The curves VA, VB and Vc of Fig. 2 show the variation, as function of the time t, of the potentials of the points A, B and C of the circuit of Fig. 1. The upper (chain dotted) part of the curve VA (above the point b) represents what would be the variation of the potential of the point A in the absence of the feedback valve 9. When, with the valve 5 blocked, the po60tential of the point A (curve VA) increases and promotes unblocking of the valve 2 at point a, the potential of the cathode of the valve 2 (curve Ve, point a) rises abruptly. This variation of potential is transmitted to the grid of the valve 9 (curve VB, point J) by the resistance-capacity circuit 14 constituted by the resistance 10, a part of the potentiometer 12 and the capacitance 13. As soon as the potential of the point B rises above the cut-off potential UI, the valve 9 delivers 70 current and the increase of the potential of the point A is strongly opposed. The valve 9 thereafter conducts for the whole duration of the sweep period. The elements 10 and 13 are so chosen that 75 they constitute a differentiating circuit, resulting in a trapezoidal voltage being applied to the grid of the valve 9 at the point B (part fghi of the curve Vn). This variation of the potential of the point B causes a corresponding variation of the anode current of the valve 9 and an inverse variation of the potential of the point A, thus tending to linearise the resultant variation of the latter (part bc of the curves VA and Vc, here being approximately coincident). A waveform is thus obtained comprising a saw-tooth bed superimposed on a substantially rectangular impulse a'bde, and it will be seen that the voltage produced across the coil 1 has then the 90 necessary trapezoidal form to obtain a correct scanning deflection of the oscilloscope electron beam. The amplitude cd of this sawtooth is proportional to that (ed) of the rectangular impulse and is determined by the 95 effective cut-off voltage of the valve 9, which in turn is determined by the effective bias on this valve as set by the position of the slider of the potentiometer 12. The speed of displacement of the spot on the sreen of 100 the oscilloscope (scanning speed) and the scale of the image reproduced on the screen can thus be controlled by the potentiometer 12. * Sitemap * Accessibility * Legal notice * Terms of use * Last updated: 08.04.2015 * Worldwide Database