SlideShare a Scribd company logo
Internal Combustion
AOSC 658D
2012
RUSSELL R. DICKERSON
IV. GASEOUS POLLUTION AND
PHOTOCHEMICAL SMOG
b. Formation
I. The Automobile Internal Combustion (Otto cycle)
Seinfeld Chapt. 3
Wark and Warner Chapt. 10
Main cause of L.A. type smog
Main source of CO, NMHC, NOx, and Pb in developing countries.
Mobile sources much stronger source than stationary sources for all
but NOx.
Image
INTAKE - Downward motion draws in air/fuel
mixture
COMPRESSION - For higher efficiency
POWER - Combustion initiated by spark plug
EXHAUST - Push out burned hydrocarbons
Four-Stroke Engine
Four Strokes of an Engine
Two-Stroke
Engine
Exhaust is not the only source of air pollutants. In an unregulated auto:
Image
Gas tank 10%
Carburetor 10%
Crankcase* 25%
Exhaust 55%
Total 100%
Hydrocarbon Sources in an Unregulated Auto
* Called "Blowby"
Evaporation from gas tank and carburetor are easy to control, but essentially all
of the NOx, CO, and Pb comes from the exhaust.
Image
Recirculation System
• Engine off - vapors onto charcoal
• Engine on - intake sucks air and HC out of charcoal
• Positive crankcase ventilation
• Without controls 3% of the fuel would be lost
II. How to Tune a Car
Equilibrium calculation told us to burn lean and at high compression to produce
less CO. High compression also ups thermodynamic efficiency; Carnot cycle
efficiency is defined from the ratio of cold to hot temperatures:
A. Air-Fuel-Ratio
Best power at AFR of 12.5 (rich)
Best mileage at 15.5 (lean)
ARF above 17 causes misfiring
ARF below 10 causes flooding and plug fouling
ARF of about 14.5 ( = 1.0) is stoichiometric
•Automobiles: Otto cycle the cycle used in spark-ignition internal
combustion engines run on gasoline. Its theoretical efficiency depends on
the compression ratio r of the engine and the specific heat ratio (Cp/Cv = γ)
of the gas in the combustion chamber.
The higher the compression ratio, the higher the temperature in the
cylinder as the fuel burns and so the higher the efficiency. The
maximum compression ratio usable is limited by the need to prevent
preignition (knocking), where the fuel ignites by compression before
the spark plug fires. The specific heat ratio of the air-fuel mixture γ
~1.40. Compression ratios for gasoline powered cars range from 10:1
to 14:1 for racing engines. Alcohol powered cars have 15:1; Diesel
14:1 to 23:1.
B. Compression
Higher compression means higher power
•Problem - Detonation occurs when the fuel beyond the flame front initiated by
the sparkplug burns. This is also called autoignition or knocking.
•Octane rating proportional to the detonation temperature.
•Higher octane allows higher compression.
•An enormous search found lead, in the form of tetraethyl lead, Pb(C2H5)4,
inhibits detonation. More on this later.
C. Timing
Definition of Crank angle, advance vs. retard
Image
• Combustion takes time, about 5 ms.
• Combustion should occur at Top Dead Center (TDC), therefore
spark must precede piston.
• The higher the engine speed (RPM's) the more advanced the
spark must be. Vacuum or centrifugal advance.
• As lower octane fuel is used, the spark must be retarded. Effectively
reduces compression thus reducing power and fuel economy.
• Retarding the spark reduces the maximum and end temperatures
of combustion and thus reduces both CO and NO formation.
Image
D. Fuel
An octane rating of 100 means the same antiknock properties as isooctane (2,3,4-
trimethyl-pentane). Without lead in the fuel more aromatic and branched HC must
be mixed into the fuel. But these species are more reactive with respect to
photochemical O3 formation.
Fuel Lead
To produce higher octane gasoline from n-heptane (cheap gasoline) add the
following:
0.8 g Pb per gal. produces 100 octane fuel
0.4 g Pb per gal. produces 90 octane fuel
In the United States, lead in gasoline has been phased out altogether, but some of
the developing world still uses lead. Lead forms a solid oxide ash after
combustion, and fouls sparkplugs. To prevent the formation of ash on the plugs,
scavengers such as 1,2-dibromoethane (CH2Br-CBrH2) were added to the fuel.
These cause the burned lead to form halides such as Pb(Br) 2 which stay in the
vapor phase longer, and can act as a valve lubricant for some older cars.
Unfortunately, 1,2-dibromoethane is carcinogenic.
Where does the lead go?
•At 20 MPH 90 % of the lead goes onto the exhaust system; 10 % is expelled out
the tailpipe.
•At 70 MPH 90 % of the lead is expelled.
•Most of the lead falls as particles to the ground within 100m of roadways.
Lead is an insidious, cumulative poison. High serum (blood) lead has
been linked to reduced intellect, although the research is controversial.
Symptoms are hard to distinguish because they include anemia,
constipation, and abdominal pain, in short the malaise of modern man.
In California cities in 1974 the atmospheric lead concentration was
about 1.5 g/m3. The clean air background is about 0.01 g/m3.
Essentially all the lead in the air was from automobiles. By 1987 most
American cities had a lead content below 1 g/m3; the ambient air
quality standard is 1.5 g/m3 for an annual average.
Diesel Engines
There are no sparkplugs in a diesel engine. The fuel is injected at the
time of maximum compression (near TDC) and the heat of compression
causes combustion.
Diesel Engines have no throttle on the air.
Detonation impossible.
Low octane, "cheap," fuel may be used.
Compression must be higher (ca. 18:1 vs. 9:1 for Otto cycle).
Improved efficiency, but bigger and heavier engine block required.
Fuel mix is leaner, i.e.  < 1.0.
Low CO and HC, but high NOx.
Lots of particles including soot and PAH.
III. Exhaust Emissions
a) Hydrocarbons
Some fuel remains unburned even after combustion; why? The
Temperature at the time of combustion is 2500 - 3000 C, but the walls of
the cylinder are around 200 C. The exhaust starts at 1000 C, but cools
quickly.
Poor mixing and absorption of HC into oil on walls creates a quench
zone.
HC are concentrated in the first and last components of the exhaust.
The NO profile is opposite.
To control HC emissions from the quench zone, the surface to volume
ratio should be kept to a minimum, but that reduces stroke and
compression.
b) Carbon Monoxide
CO2  CO + 1/2 O2
Keq = e(-G/RT)
The process becomes kinetically limited as expansion occurs. The
formation of CO is quick, but the removal is slower, especially at
temperatures below about 1000 K. Thus the [CO] is close to the [CO]
calculated by the above equilibrium method based on the temperature of
the exhaust gases at the end of expansion.
Image
Diesel Engine
Model Diesel Engine
Major advantages, cont.
* Diesel fuel (longer HC chains) is safer than gasoline in many applications. Although
diesel fuel will burn in open air using a wick, it will not explode and does not release a
large amount of flammable vapor. The low vapor pressure of diesel is especially
advantageous in marine applications, where the accumulation of explosive fuel-air
mixtures is a particular hazard. For the same reason, diesel engines are immune to vapor
lock.
* For any given partial load the fuel efficiency (mass burned per energy produced) of a
diesel engine remains nearly constant, as opposed to petrol and turbine engines which use
proportionally more fuel with partial power outputs.
* They generate less waste heat in cooling and exhaust.
* Diesel engines can accept super- or turbo-charging pressure without any natural limit,
constrained only by the strength of engine components. This is unlike petrol engines,
which inevitably suffer detonation at higher pressure.
* The carbon monoxide content of the exhaust is minimal.
* Biodiesel is an easily synthesized, non-petroleum-based fuel (through
transesterification) which can run directly in many diesel engines, while gasoline engines
either need adaptation to run synthetic fuels or else use them as an additive to gasoline e.g.,
ethanol added.
Diesel engines, Major disadvantages:
• Diesel engines are larger, heavier and more expensive than spark ignited engines.
• Tolerances on valves and rings stricter due to higher compression.
• Noise
• Greater NOx and soot generation
Take Home Messages for Internal Combustion Engines.
1.Generate most of the CO and NOx in N America.
2.Four stroke spark ignited engines generate a lot of CO and
substantial NOx.
3.Two-stroke spark ignited engines generate aerosols, CO,
VOC’s, but little NOx.
4.Diesel engines run hot and lean and generate NOx and soot,
but little CO.
The Role of Internal Combustion in gaseous
pollution and Photochemical Smog
Formation
The Automobile
Seinfeld Chapt. 3
Wark and Warner Chapt. 10
4. Exhaust Emissions
c) Nitric Oxide, NO
The formation of NO is controlled by kinetics, not thermodynamic
equilibrium. High temperatures favor the formation of NO, and as the
exhaust gases cool the NO is frozen out because the reformation of N2 and
O2 is slow. See Wark and Warner section 8.4. Our objective here is to
derive an expression for the rate at which [NO] approaches the
equilibrium concentration, [NO]eq .
The Zeldovich Mechanism (1946)
N2 + O2 ↔ 2NO
Derive an expression for the rate of NO formation.
Equilibrium Calculation
Keq = exp(-G /RT) = (PNO )2/(PN2 PO2)
The limit to the formation of NO is the slow rate of N2 dissociation, which
is hindered by a large positive G. Oxygen dissociates more readily.
N2  2N Go = +217.8 kcal/mole
Keq = 10-158
O2  2O Go = +110.8 kcal/mole
Keq = 10-81
We can represent the formation of NO as a two step process.
O + N2 ↔ NO + N (1)
N + O2 ↔ NO + O (2)
----------------------
N2 + O2 ↔ 2NO (NET)
d[NO]/dt = k1[O][N2] - k-1 [NO][N] + k2 [N][O2] - k-2 [NO][O] (I)
We will assume that N is in steady state. This is not the same as assuming it
is in thermodynamic equilibrium.
Yakov Borisovich Zel'dovich
Awarded the Order of Lenin (1949)
d[N]/dt = k1[O] [N2] - k-1 [NO][N] - k2[N][O2] + k-2 [NO][O]
k1[O] [N2] + k-2[NO][O]
[N]ss = --------------------------------
k-1[NO] + k2[O2]
[O] { k1[N2] + k-2[NO] }
[N]ss = --------------------------------- (II)
k-1[NO] + k2[O2]
From I and II
2[O]k1[N2] - (k-1 k-2[NO]2/ k2[O2])
d[NO]/dt = ---------------------------------------------- (III)
1 + (k-1[NO] / k-2[O2])
Where:
k1 = 1.3E-10 exp (-38000/T) cm3 s-1 k1 (2400 K) = 1.7E-17 cm3 s-1
k-1 = 3.4E-11 cm3 s-1 k-1 (240K) = 3.4E -11 cm3 s-1
k2 = 1.5E-11 exp(-3600/T) cm3 s-1 k2 (2400 K) = 3.3E-12 cm3 s-1
k-2 = 2.5E -15 T exp(-19500/T) cm3 s-1 k-2 (2400 K) = 2E-15 cm3 s-1
In a qualitative sense, at combustion temperature Reaction 1 is fast;
Reaction 2 is fast if there is any O2 around, and Reactions -1 and -2 are
slow. So the formation of NO is much faster than the destruction. As the
temperature drops, O atoms react with each other to reform O2, preventing
Reaction -2 from removing much NO:
O + O + M  O2 + M†
The superscript dagger represents translational kinetic energy.
In deriving a quantitative expression for the rate of formation of NO,
the following relations will prove useful. Remember that rate constants
are much harder to measure than thermodynamic properties, thus
thermodynamic data are generally better (more accurate) than kinetic data.
Anywhere we can substitute Keq for k, we will.
K1 K2 = (k1 /k-1)(k2/k-2 ) = (PNO )2/{ PN2 PO2} (IV)
2k1[O][N2] {1 - ([NO]2 / Keq [N2] [O2])}
d[NO]/dt = -------------------------------------------------
1 + (k1[NO] / k2 [O2])
For a given temperature, Equation IV can be integrated to yield an
expression for the concentration of NO as a function of time, but this is a
tedious process. See Wark and Warner, p. 384. The result is:
[NO]t = [NO]eq ( 1 - (exp(-Mt))1/2 )
Where [NO]eq is the equilibrium concentration of NO and
M = 5.7E15 T -1 P1/2 exp(-58400/T) s-1
Note that M is a strong function of temperature, but not pressure. We have
assumed that Reactions 1 and 2 control, that the temperature is constant
throughout the process, and that N2 and O2 are present at a ratio of 40:1. The
actual process is very complicated because the temperature does not remain
constant.
CONCLUSIONS Tuning to Reduce Automotive Pollution Emissions
The kinetics of CO formation and destruction are rapid. The emission of
CO follows thermodynamic equilibrium, and is regulated by the temperature at
the end of combustion. With slow kinetics, NO is seldom in thermodynamic
equilibrium, and the emission is regulated more by the maximum combustion
temperature.
A) Air-Fuel-Mixture
AFR POWER ECONOMY CO/HC NOx
LEAN LOW HIGH LOW HIGH
RICH HIGH LOW HIGH LOW
B) Compression
Increases power and reduces CO, but puts structural demands on the
engine, and requires higher octane fuel to prevent knocking. Higher octane
fuel cannot be produced with lead or the catalytic converters will be poisoned.
High octane fuel without lead is more reactive with respect to photochemical
ozone formation.
C) Timing
For maximum power, combustion should take place at the point of
maximum compression, therefore the spark is usually advanced, and occurs
before top dead center. But if a low octane fuel is used with an engine that has
the spark advanced for maximum power, knocking occurs. By retarding the
spark, the octane demand of the engine is reduced. Retarding the spark also
lowers both the maximum temperature and the end temperature of combustion,
reducing both NO and CO production.
D) Exhaust gas Recycling
Adding exhaust, rich in relatively inert CO2, N2O and N2, to
the combustion mixture reduces the temperature enough to
help reduce NO production.

More Related Content

Similar to 637InternalComb.ppt

Experimental investigation of the effect of hydrogen addition on combustion p...
Experimental investigation of the effect of hydrogen addition on combustion p...Experimental investigation of the effect of hydrogen addition on combustion p...
Experimental investigation of the effect of hydrogen addition on combustion p...
Amiya K. Sahoo
 
ME6016 ADVANCED I.C ENGINES UNIT III
ME6016 ADVANCED I.C ENGINES UNIT IIIME6016 ADVANCED I.C ENGINES UNIT III
ME6016 ADVANCED I.C ENGINES UNIT III
BIBIN CHIDAMBARANATHAN
 
ADVANCED IC ENGINES-UNIT-3.pptx
ADVANCED IC ENGINES-UNIT-3.pptxADVANCED IC ENGINES-UNIT-3.pptx
ADVANCED IC ENGINES-UNIT-3.pptx
Maniyarasan M
 
F013162735
F013162735F013162735
F013162735
IOSR Journals
 
AICE- UNIT-3.pptx
AICE- UNIT-3.pptxAICE- UNIT-3.pptx
AICE- UNIT-3.pptx
GunaSekaran958261
 
advanced engine automobile EMISSION CONTROL
advanced engine automobile EMISSION  CONTROLadvanced engine automobile EMISSION  CONTROL
advanced engine automobile EMISSION CONTROL
samy709581
 
UNIT-3 EMISSION FORMATION AND CONTROL.pptx
UNIT-3 EMISSION FORMATION AND CONTROL.pptxUNIT-3 EMISSION FORMATION AND CONTROL.pptx
UNIT-3 EMISSION FORMATION AND CONTROL.pptx
Dr.G.Saravanan
 
Advanced Ic engines unit 3
Advanced Ic engines unit 3Advanced Ic engines unit 3
Advanced Ic engines unit 3
Ravi Rajan
 
Ic engine emissions
Ic engine emissionsIc engine emissions
Ic engine emissions
arivazhaganrajangam
 
Chemistry in automobiles
Chemistry in automobilesChemistry in automobiles
Chemistry in automobiles
Rushikesh Kulkarni
 
Pollutant formation and control in engine
 Pollutant formation and control in engine Pollutant formation and control in engine
Pollutant formation and control in engine
Kunal Chauhan
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
SuperTech Genius Of Tank - Boutros Noun 3
SuperTech Genius Of Tank - Boutros Noun 3SuperTech Genius Of Tank - Boutros Noun 3
SuperTech Genius Of Tank - Boutros Noun 3
Pierre Noun
 
Complete presentation Low res
Complete presentation Low resComplete presentation Low res
Complete presentation Low resElie Haykal
 
Unit 5.pdf
Unit 5.pdfUnit 5.pdf
Unit 5.pdf
anilakumara
 
mcl345-40.ppt
mcl345-40.pptmcl345-40.ppt
mcl345-40.ppt
ssuser10ff2e
 
Engine Emissions at Various Cetane Numbers with Exhaust Gas Recirculation
Engine Emissions at Various Cetane Numbers with Exhaust Gas RecirculationEngine Emissions at Various Cetane Numbers with Exhaust Gas Recirculation
Engine Emissions at Various Cetane Numbers with Exhaust Gas Recirculation
IOSR Journals
 
Stages of combustion
Stages of combustionStages of combustion
Stages of combustion
Rahul Sam
 

Similar to 637InternalComb.ppt (20)

Experimental investigation of the effect of hydrogen addition on combustion p...
Experimental investigation of the effect of hydrogen addition on combustion p...Experimental investigation of the effect of hydrogen addition on combustion p...
Experimental investigation of the effect of hydrogen addition on combustion p...
 
ME6016 ADVANCED I.C ENGINES UNIT III
ME6016 ADVANCED I.C ENGINES UNIT IIIME6016 ADVANCED I.C ENGINES UNIT III
ME6016 ADVANCED I.C ENGINES UNIT III
 
ADVANCED IC ENGINES-UNIT-3.pptx
ADVANCED IC ENGINES-UNIT-3.pptxADVANCED IC ENGINES-UNIT-3.pptx
ADVANCED IC ENGINES-UNIT-3.pptx
 
F013162735
F013162735F013162735
F013162735
 
AICE- UNIT-3.pptx
AICE- UNIT-3.pptxAICE- UNIT-3.pptx
AICE- UNIT-3.pptx
 
advanced engine automobile EMISSION CONTROL
advanced engine automobile EMISSION  CONTROLadvanced engine automobile EMISSION  CONTROL
advanced engine automobile EMISSION CONTROL
 
UNIT-3 EMISSION FORMATION AND CONTROL.pptx
UNIT-3 EMISSION FORMATION AND CONTROL.pptxUNIT-3 EMISSION FORMATION AND CONTROL.pptx
UNIT-3 EMISSION FORMATION AND CONTROL.pptx
 
Advanced Ic engines unit 3
Advanced Ic engines unit 3Advanced Ic engines unit 3
Advanced Ic engines unit 3
 
Ic engine emissions
Ic engine emissionsIc engine emissions
Ic engine emissions
 
Chemistry in automobiles
Chemistry in automobilesChemistry in automobiles
Chemistry in automobiles
 
Pollutant formation and control in engine
 Pollutant formation and control in engine Pollutant formation and control in engine
Pollutant formation and control in engine
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
SuperTech Genius Of Tank - Boutros Noun 3
SuperTech Genius Of Tank - Boutros Noun 3SuperTech Genius Of Tank - Boutros Noun 3
SuperTech Genius Of Tank - Boutros Noun 3
 
Complete presentation Low res
Complete presentation Low resComplete presentation Low res
Complete presentation Low res
 
Gasoline
GasolineGasoline
Gasoline
 
Gasoline
GasolineGasoline
Gasoline
 
Unit 5.pdf
Unit 5.pdfUnit 5.pdf
Unit 5.pdf
 
mcl345-40.ppt
mcl345-40.pptmcl345-40.ppt
mcl345-40.ppt
 
Engine Emissions at Various Cetane Numbers with Exhaust Gas Recirculation
Engine Emissions at Various Cetane Numbers with Exhaust Gas RecirculationEngine Emissions at Various Cetane Numbers with Exhaust Gas Recirculation
Engine Emissions at Various Cetane Numbers with Exhaust Gas Recirculation
 
Stages of combustion
Stages of combustionStages of combustion
Stages of combustion
 

More from WasifRazzaq2

Otto cycle
Otto cycle Otto cycle
Otto cycle
WasifRazzaq2
 
1619509828-lecture-4-smog.pptx
1619509828-lecture-4-smog.pptx1619509828-lecture-4-smog.pptx
1619509828-lecture-4-smog.pptx
WasifRazzaq2
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.ppt
WasifRazzaq2
 
I._Introduction_to_Rheology.ppt
I._Introduction_to_Rheology.pptI._Introduction_to_Rheology.ppt
I._Introduction_to_Rheology.ppt
WasifRazzaq2
 
Lecture32.pptx
Lecture32.pptxLecture32.pptx
Lecture32.pptx
WasifRazzaq2
 
Foundation Part 1- Polymers and MW.ppt
Foundation Part 1- Polymers and MW.pptFoundation Part 1- Polymers and MW.ppt
Foundation Part 1- Polymers and MW.ppt
WasifRazzaq2
 
ap physics b lesson 68 heat engines and the carnot cycle.ppt
ap physics b lesson 68 heat engines and the carnot cycle.pptap physics b lesson 68 heat engines and the carnot cycle.ppt
ap physics b lesson 68 heat engines and the carnot cycle.ppt
WasifRazzaq2
 
Ch3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.pptCh3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.ppt
WasifRazzaq2
 
2013Microfluidics-converted.pptx
2013Microfluidics-converted.pptx2013Microfluidics-converted.pptx
2013Microfluidics-converted.pptx
WasifRazzaq2
 
Psychrometrics
Psychrometrics Psychrometrics
Psychrometrics
WasifRazzaq2
 
MOOC certificate.pdf
MOOC certificate.pdfMOOC certificate.pdf
MOOC certificate.pdf
WasifRazzaq2
 
Lecture I.1.pptx
Lecture I.1.pptxLecture I.1.pptx
Lecture I.1.pptx
WasifRazzaq2
 

More from WasifRazzaq2 (12)

Otto cycle
Otto cycle Otto cycle
Otto cycle
 
1619509828-lecture-4-smog.pptx
1619509828-lecture-4-smog.pptx1619509828-lecture-4-smog.pptx
1619509828-lecture-4-smog.pptx
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.ppt
 
I._Introduction_to_Rheology.ppt
I._Introduction_to_Rheology.pptI._Introduction_to_Rheology.ppt
I._Introduction_to_Rheology.ppt
 
Lecture32.pptx
Lecture32.pptxLecture32.pptx
Lecture32.pptx
 
Foundation Part 1- Polymers and MW.ppt
Foundation Part 1- Polymers and MW.pptFoundation Part 1- Polymers and MW.ppt
Foundation Part 1- Polymers and MW.ppt
 
ap physics b lesson 68 heat engines and the carnot cycle.ppt
ap physics b lesson 68 heat engines and the carnot cycle.pptap physics b lesson 68 heat engines and the carnot cycle.ppt
ap physics b lesson 68 heat engines and the carnot cycle.ppt
 
Ch3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.pptCh3- Refrigeration Systems-2.ppt
Ch3- Refrigeration Systems-2.ppt
 
2013Microfluidics-converted.pptx
2013Microfluidics-converted.pptx2013Microfluidics-converted.pptx
2013Microfluidics-converted.pptx
 
Psychrometrics
Psychrometrics Psychrometrics
Psychrometrics
 
MOOC certificate.pdf
MOOC certificate.pdfMOOC certificate.pdf
MOOC certificate.pdf
 
Lecture I.1.pptx
Lecture I.1.pptxLecture I.1.pptx
Lecture I.1.pptx
 

Recently uploaded

Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 

Recently uploaded (20)

Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 

637InternalComb.ppt

  • 2. IV. GASEOUS POLLUTION AND PHOTOCHEMICAL SMOG b. Formation I. The Automobile Internal Combustion (Otto cycle) Seinfeld Chapt. 3 Wark and Warner Chapt. 10 Main cause of L.A. type smog Main source of CO, NMHC, NOx, and Pb in developing countries. Mobile sources much stronger source than stationary sources for all but NOx.
  • 3. Image INTAKE - Downward motion draws in air/fuel mixture COMPRESSION - For higher efficiency POWER - Combustion initiated by spark plug EXHAUST - Push out burned hydrocarbons
  • 4.
  • 5.
  • 7. Four Strokes of an Engine
  • 9.
  • 10.
  • 11. Exhaust is not the only source of air pollutants. In an unregulated auto: Image Gas tank 10% Carburetor 10% Crankcase* 25% Exhaust 55% Total 100% Hydrocarbon Sources in an Unregulated Auto * Called "Blowby"
  • 12. Evaporation from gas tank and carburetor are easy to control, but essentially all of the NOx, CO, and Pb comes from the exhaust. Image Recirculation System • Engine off - vapors onto charcoal • Engine on - intake sucks air and HC out of charcoal • Positive crankcase ventilation • Without controls 3% of the fuel would be lost
  • 13. II. How to Tune a Car Equilibrium calculation told us to burn lean and at high compression to produce less CO. High compression also ups thermodynamic efficiency; Carnot cycle efficiency is defined from the ratio of cold to hot temperatures: A. Air-Fuel-Ratio Best power at AFR of 12.5 (rich) Best mileage at 15.5 (lean) ARF above 17 causes misfiring ARF below 10 causes flooding and plug fouling ARF of about 14.5 ( = 1.0) is stoichiometric
  • 14. •Automobiles: Otto cycle the cycle used in spark-ignition internal combustion engines run on gasoline. Its theoretical efficiency depends on the compression ratio r of the engine and the specific heat ratio (Cp/Cv = γ) of the gas in the combustion chamber. The higher the compression ratio, the higher the temperature in the cylinder as the fuel burns and so the higher the efficiency. The maximum compression ratio usable is limited by the need to prevent preignition (knocking), where the fuel ignites by compression before the spark plug fires. The specific heat ratio of the air-fuel mixture γ ~1.40. Compression ratios for gasoline powered cars range from 10:1 to 14:1 for racing engines. Alcohol powered cars have 15:1; Diesel 14:1 to 23:1.
  • 15. B. Compression Higher compression means higher power •Problem - Detonation occurs when the fuel beyond the flame front initiated by the sparkplug burns. This is also called autoignition or knocking. •Octane rating proportional to the detonation temperature. •Higher octane allows higher compression. •An enormous search found lead, in the form of tetraethyl lead, Pb(C2H5)4, inhibits detonation. More on this later.
  • 16. C. Timing Definition of Crank angle, advance vs. retard Image • Combustion takes time, about 5 ms. • Combustion should occur at Top Dead Center (TDC), therefore spark must precede piston. • The higher the engine speed (RPM's) the more advanced the spark must be. Vacuum or centrifugal advance. • As lower octane fuel is used, the spark must be retarded. Effectively reduces compression thus reducing power and fuel economy. • Retarding the spark reduces the maximum and end temperatures of combustion and thus reduces both CO and NO formation.
  • 17. Image D. Fuel An octane rating of 100 means the same antiknock properties as isooctane (2,3,4- trimethyl-pentane). Without lead in the fuel more aromatic and branched HC must be mixed into the fuel. But these species are more reactive with respect to photochemical O3 formation. Fuel Lead To produce higher octane gasoline from n-heptane (cheap gasoline) add the following: 0.8 g Pb per gal. produces 100 octane fuel 0.4 g Pb per gal. produces 90 octane fuel
  • 18. In the United States, lead in gasoline has been phased out altogether, but some of the developing world still uses lead. Lead forms a solid oxide ash after combustion, and fouls sparkplugs. To prevent the formation of ash on the plugs, scavengers such as 1,2-dibromoethane (CH2Br-CBrH2) were added to the fuel. These cause the burned lead to form halides such as Pb(Br) 2 which stay in the vapor phase longer, and can act as a valve lubricant for some older cars. Unfortunately, 1,2-dibromoethane is carcinogenic. Where does the lead go? •At 20 MPH 90 % of the lead goes onto the exhaust system; 10 % is expelled out the tailpipe. •At 70 MPH 90 % of the lead is expelled. •Most of the lead falls as particles to the ground within 100m of roadways.
  • 19. Lead is an insidious, cumulative poison. High serum (blood) lead has been linked to reduced intellect, although the research is controversial. Symptoms are hard to distinguish because they include anemia, constipation, and abdominal pain, in short the malaise of modern man. In California cities in 1974 the atmospheric lead concentration was about 1.5 g/m3. The clean air background is about 0.01 g/m3. Essentially all the lead in the air was from automobiles. By 1987 most American cities had a lead content below 1 g/m3; the ambient air quality standard is 1.5 g/m3 for an annual average.
  • 20. Diesel Engines There are no sparkplugs in a diesel engine. The fuel is injected at the time of maximum compression (near TDC) and the heat of compression causes combustion. Diesel Engines have no throttle on the air. Detonation impossible. Low octane, "cheap," fuel may be used. Compression must be higher (ca. 18:1 vs. 9:1 for Otto cycle). Improved efficiency, but bigger and heavier engine block required. Fuel mix is leaner, i.e.  < 1.0. Low CO and HC, but high NOx. Lots of particles including soot and PAH.
  • 21. III. Exhaust Emissions a) Hydrocarbons Some fuel remains unburned even after combustion; why? The Temperature at the time of combustion is 2500 - 3000 C, but the walls of the cylinder are around 200 C. The exhaust starts at 1000 C, but cools quickly. Poor mixing and absorption of HC into oil on walls creates a quench zone. HC are concentrated in the first and last components of the exhaust. The NO profile is opposite. To control HC emissions from the quench zone, the surface to volume ratio should be kept to a minimum, but that reduces stroke and compression.
  • 22. b) Carbon Monoxide CO2  CO + 1/2 O2 Keq = e(-G/RT) The process becomes kinetically limited as expansion occurs. The formation of CO is quick, but the removal is slower, especially at temperatures below about 1000 K. Thus the [CO] is close to the [CO] calculated by the above equilibrium method based on the temperature of the exhaust gases at the end of expansion. Image
  • 23.
  • 24.
  • 25.
  • 26.
  • 29. Major advantages, cont. * Diesel fuel (longer HC chains) is safer than gasoline in many applications. Although diesel fuel will burn in open air using a wick, it will not explode and does not release a large amount of flammable vapor. The low vapor pressure of diesel is especially advantageous in marine applications, where the accumulation of explosive fuel-air mixtures is a particular hazard. For the same reason, diesel engines are immune to vapor lock. * For any given partial load the fuel efficiency (mass burned per energy produced) of a diesel engine remains nearly constant, as opposed to petrol and turbine engines which use proportionally more fuel with partial power outputs. * They generate less waste heat in cooling and exhaust. * Diesel engines can accept super- or turbo-charging pressure without any natural limit, constrained only by the strength of engine components. This is unlike petrol engines, which inevitably suffer detonation at higher pressure. * The carbon monoxide content of the exhaust is minimal. * Biodiesel is an easily synthesized, non-petroleum-based fuel (through transesterification) which can run directly in many diesel engines, while gasoline engines either need adaptation to run synthetic fuels or else use them as an additive to gasoline e.g., ethanol added.
  • 30. Diesel engines, Major disadvantages: • Diesel engines are larger, heavier and more expensive than spark ignited engines. • Tolerances on valves and rings stricter due to higher compression. • Noise • Greater NOx and soot generation
  • 31. Take Home Messages for Internal Combustion Engines. 1.Generate most of the CO and NOx in N America. 2.Four stroke spark ignited engines generate a lot of CO and substantial NOx. 3.Two-stroke spark ignited engines generate aerosols, CO, VOC’s, but little NOx. 4.Diesel engines run hot and lean and generate NOx and soot, but little CO.
  • 32. The Role of Internal Combustion in gaseous pollution and Photochemical Smog Formation The Automobile Seinfeld Chapt. 3 Wark and Warner Chapt. 10 4. Exhaust Emissions c) Nitric Oxide, NO The formation of NO is controlled by kinetics, not thermodynamic equilibrium. High temperatures favor the formation of NO, and as the exhaust gases cool the NO is frozen out because the reformation of N2 and O2 is slow. See Wark and Warner section 8.4. Our objective here is to derive an expression for the rate at which [NO] approaches the equilibrium concentration, [NO]eq .
  • 33. The Zeldovich Mechanism (1946) N2 + O2 ↔ 2NO Derive an expression for the rate of NO formation. Equilibrium Calculation Keq = exp(-G /RT) = (PNO )2/(PN2 PO2) The limit to the formation of NO is the slow rate of N2 dissociation, which is hindered by a large positive G. Oxygen dissociates more readily. N2  2N Go = +217.8 kcal/mole Keq = 10-158 O2  2O Go = +110.8 kcal/mole Keq = 10-81
  • 34. We can represent the formation of NO as a two step process. O + N2 ↔ NO + N (1) N + O2 ↔ NO + O (2) ---------------------- N2 + O2 ↔ 2NO (NET) d[NO]/dt = k1[O][N2] - k-1 [NO][N] + k2 [N][O2] - k-2 [NO][O] (I) We will assume that N is in steady state. This is not the same as assuming it is in thermodynamic equilibrium.
  • 35. Yakov Borisovich Zel'dovich Awarded the Order of Lenin (1949) d[N]/dt = k1[O] [N2] - k-1 [NO][N] - k2[N][O2] + k-2 [NO][O] k1[O] [N2] + k-2[NO][O] [N]ss = -------------------------------- k-1[NO] + k2[O2] [O] { k1[N2] + k-2[NO] } [N]ss = --------------------------------- (II) k-1[NO] + k2[O2]
  • 36. From I and II 2[O]k1[N2] - (k-1 k-2[NO]2/ k2[O2]) d[NO]/dt = ---------------------------------------------- (III) 1 + (k-1[NO] / k-2[O2]) Where: k1 = 1.3E-10 exp (-38000/T) cm3 s-1 k1 (2400 K) = 1.7E-17 cm3 s-1 k-1 = 3.4E-11 cm3 s-1 k-1 (240K) = 3.4E -11 cm3 s-1 k2 = 1.5E-11 exp(-3600/T) cm3 s-1 k2 (2400 K) = 3.3E-12 cm3 s-1 k-2 = 2.5E -15 T exp(-19500/T) cm3 s-1 k-2 (2400 K) = 2E-15 cm3 s-1
  • 37. In a qualitative sense, at combustion temperature Reaction 1 is fast; Reaction 2 is fast if there is any O2 around, and Reactions -1 and -2 are slow. So the formation of NO is much faster than the destruction. As the temperature drops, O atoms react with each other to reform O2, preventing Reaction -2 from removing much NO: O + O + M  O2 + M† The superscript dagger represents translational kinetic energy. In deriving a quantitative expression for the rate of formation of NO, the following relations will prove useful. Remember that rate constants are much harder to measure than thermodynamic properties, thus thermodynamic data are generally better (more accurate) than kinetic data. Anywhere we can substitute Keq for k, we will.
  • 38. K1 K2 = (k1 /k-1)(k2/k-2 ) = (PNO )2/{ PN2 PO2} (IV) 2k1[O][N2] {1 - ([NO]2 / Keq [N2] [O2])} d[NO]/dt = ------------------------------------------------- 1 + (k1[NO] / k2 [O2])
  • 39. For a given temperature, Equation IV can be integrated to yield an expression for the concentration of NO as a function of time, but this is a tedious process. See Wark and Warner, p. 384. The result is: [NO]t = [NO]eq ( 1 - (exp(-Mt))1/2 ) Where [NO]eq is the equilibrium concentration of NO and M = 5.7E15 T -1 P1/2 exp(-58400/T) s-1 Note that M is a strong function of temperature, but not pressure. We have assumed that Reactions 1 and 2 control, that the temperature is constant throughout the process, and that N2 and O2 are present at a ratio of 40:1. The actual process is very complicated because the temperature does not remain constant.
  • 40. CONCLUSIONS Tuning to Reduce Automotive Pollution Emissions The kinetics of CO formation and destruction are rapid. The emission of CO follows thermodynamic equilibrium, and is regulated by the temperature at the end of combustion. With slow kinetics, NO is seldom in thermodynamic equilibrium, and the emission is regulated more by the maximum combustion temperature. A) Air-Fuel-Mixture AFR POWER ECONOMY CO/HC NOx LEAN LOW HIGH LOW HIGH RICH HIGH LOW HIGH LOW
  • 41. B) Compression Increases power and reduces CO, but puts structural demands on the engine, and requires higher octane fuel to prevent knocking. Higher octane fuel cannot be produced with lead or the catalytic converters will be poisoned. High octane fuel without lead is more reactive with respect to photochemical ozone formation. C) Timing For maximum power, combustion should take place at the point of maximum compression, therefore the spark is usually advanced, and occurs before top dead center. But if a low octane fuel is used with an engine that has the spark advanced for maximum power, knocking occurs. By retarding the spark, the octane demand of the engine is reduced. Retarding the spark also lowers both the maximum temperature and the end temperature of combustion, reducing both NO and CO production.
  • 42. D) Exhaust gas Recycling Adding exhaust, rich in relatively inert CO2, N2O and N2, to the combustion mixture reduces the temperature enough to help reduce NO production.