Weijiu Liu
Department of Mathematics
University of Central Arkansas
Introduction to Partial Differential Equations
1/19/2023 2
Overview
1/19/2023 3
What are PDEs?
2 2
2 2
sin cos
u u u u u u
x y u xyt
t x y x x y
     
    
     
An equation containing an unknown function and its
partial derivatives:
1/19/2023 4
Three Big Classes of Equations
2 2
2 2
u u u
k
t x y
 
  
 
 
  
 
1. Parabolic equations. Two simple example:
• Heat (diffusion) equation describing heat conduction:
1/19/2023 5
   
2 2
1 2 2 2
, , , ,
u u u u u
v x y t v x y t k
t x y x y
 
    
   
 
    
 
• Convection-diffusion equation describing chemical diffusion
and convection:
Convection Diffusoin
1/19/2023 6
2 2
2
2 2
u u
c
t x
 

 
2. Hyperbolic equations: Wave equation describing
the string vibration
1/19/2023 7
2 2 2
2 2 2
0
u u u
x y z
  
  
  
3. Elliptic equations: Laplace’s equation
1/19/2023 8
What we want to do about the equations
• Find an exact solution
• Find a numerical solution
• Study their well-posedness
• Study their stability
• Design a control law to force their solution
to your desired one
• More …
1/19/2023 9
What are methods to find a solution
• Separation of variables
• Fourier series
• Fourier transformation
• Laplace transformation
• Method of characteristics
• Green functions
• D’Alembert’s formulas
• Symmetry analysis
• More …
1/19/2023 10
Tentative schedule
• Derivation of the heat equation, 1 week
• Separation of variables for solving the heat
equation and Laplace’s equation, 2 weeks
• Fourier series, 3 weeks
• Derivation of the wave equation, 1 week
• Separation of variables for solving the wave
equation, 1week
• High dimensional equations, 3 weeks
• Non-homogeneous problems, 2 weeks
• Equations on infinite domains, 1 week
1/19/2023 11
Equilibrium
1/19/2023 12
Dirichlet Boundary Conditions
2
2
0.1
(0, ) 0, (1, ) 1
( ,0) sin( ).
u u
t x
u t u t
u x x

 
 
 
 

2
2
0
(0) 0, (1) 1
w
x
w w



 
Steady equation
1/19/2023 13
Neumann Boundary Conditions
2
2
3
0.1
(0, ) 0, (1, ) 0
( ,0) .
u u
t x
u u
t t
x x
u x x
 
 
 
 
 
 

2
2
0
(0) 0, (1) 0
w
x
w w
x x



 
 
 
Steady equation

14321773.ppt

  • 1.
    Weijiu Liu Department ofMathematics University of Central Arkansas Introduction to Partial Differential Equations
  • 2.
  • 3.
    1/19/2023 3 What arePDEs? 2 2 2 2 sin cos u u u u u u x y u xyt t x y x x y                  An equation containing an unknown function and its partial derivatives:
  • 4.
    1/19/2023 4 Three BigClasses of Equations 2 2 2 2 u u u k t x y               1. Parabolic equations. Two simple example: • Heat (diffusion) equation describing heat conduction:
  • 5.
    1/19/2023 5    2 2 1 2 2 2 , , , , u u u u u v x y t v x y t k t x y x y                     • Convection-diffusion equation describing chemical diffusion and convection: Convection Diffusoin
  • 6.
    1/19/2023 6 2 2 2 22 u u c t x      2. Hyperbolic equations: Wave equation describing the string vibration
  • 7.
    1/19/2023 7 2 22 2 2 2 0 u u u x y z          3. Elliptic equations: Laplace’s equation
  • 8.
    1/19/2023 8 What wewant to do about the equations • Find an exact solution • Find a numerical solution • Study their well-posedness • Study their stability • Design a control law to force their solution to your desired one • More …
  • 9.
    1/19/2023 9 What aremethods to find a solution • Separation of variables • Fourier series • Fourier transformation • Laplace transformation • Method of characteristics • Green functions • D’Alembert’s formulas • Symmetry analysis • More …
  • 10.
    1/19/2023 10 Tentative schedule •Derivation of the heat equation, 1 week • Separation of variables for solving the heat equation and Laplace’s equation, 2 weeks • Fourier series, 3 weeks • Derivation of the wave equation, 1 week • Separation of variables for solving the wave equation, 1week • High dimensional equations, 3 weeks • Non-homogeneous problems, 2 weeks • Equations on infinite domains, 1 week
  • 11.
  • 12.
    1/19/2023 12 Dirichlet BoundaryConditions 2 2 0.1 (0, ) 0, (1, ) 1 ( ,0) sin( ). u u t x u t u t u x x           2 2 0 (0) 0, (1) 1 w x w w      Steady equation
  • 13.
    1/19/2023 13 Neumann BoundaryConditions 2 2 3 0.1 (0, ) 0, (1, ) 0 ( ,0) . u u t x u u t t x x u x x              2 2 0 (0) 0, (1) 0 w x w w x x          Steady equation