SlideShare a Scribd company logo
1 of 30
Download to read offline
DISAIN JEMBATAN RANGKA BAJA




              2 SIPIL 1 PAGI
      UNTUK MELENGKAPI TUGAS BAJA



                 OLEH:
            GILANG ADITYA.P
            DANIEL HASIBUAN
           SADDAM FIRGIAWAN




           DEPOK,15 JUNI 2010
PEMODELAN STRUKTUR




                              TAMPAK DEPAN




                              TAMPAK ATAS


       SEPESIFIKASI JEMBATAN
-Jembatan rangka baja
-Panjang bentang 24 meter
-Lebar jembatan 8 meter
-Tinggi jembatan 3 meter

       PERHITUNGAN GAYA-GAYA DALAM

*Reaksi Perletakan


= Ravx24 –
=
24Rav = 72P
Rav = 3P

Rav = Rbv     maka Rbv = 3P
*Gaya-Gaya Batang




BUHUL A
∑V = 0
  1                                          ∑H =0
− P − S1.0, 6 + 3P = 0
  2                                          S1SIN 53 + S 2 = 0
       −2,5P                                 S 2 = −4,17 P.0,8
− S1 =
        0, 6                                 S 2 = −3,33P
S1 − 4,17 P




BUHUL B

                                             ∑H =0
       ∑V = 0
                                             − S1SIN 53 + S 6COS14 = 0
       S1COS 53 + S 3 + S 6SIN14 = 0
                                             −4,17.0,8P + S 6.0,97 = 0
       4,17 P.0, 6 + S 3 + 3, 44.0, 24 = 0
                                                  3,33P
       S 3 = −3,33P                          S6 =       = 3, 44 P
                                                   0,97
BUHUL C
∑V = 0
                                        ∑H =0
− P − S 3 − S 5SIN 26,6 = 0
                                        − S 2 + S 4 + S 5COS 26, 6 = 0
− P + 3,33P − S 50, 45 = 0
                                        3,33P + S 4 + 5,18P.0,89 = 0
      −2,33P
S5 =                                    S 4 = −7,96 P
       −0, 45
S 5 = 5,18 P




BUHUL D
∑V = 0
                                        ∑H =0
S 7 + S 5COS 63, 4 − S 6COS 76 = 0
                                        S10 − S 5SIN 63, 4 − S 6SIN 76 = 0
S 7 + 5,18P.0, 45 − 3, 44 P.0, 24 = 0
                                        S10 − 5,18P.0,89 − 3, 44 P.0,97 = 0
S 7 = −1,5 P
                                        S10 = 7,97 P
BUHUL E


∑V = 0                        ∑H =0
− P − S 7 − S 9SIN 26,6 = 0   − S 4 + S 8 + S 9COS 26, 6 = 0
− P + 1,5P − S 9.0, 45 = 0    7,96 P + S 8 + 1,11P.0,89 = 0
        0,5                   S 8 = −9 P
S9 =         = 1,11P
       0, 45




BUHUL F

∑V = 0
− P − S11 = 0
S11 = − P
TABEL GAYA BATANG
  BEBAN MATI ,HIDUP DAN BERJALAN


        TABEL BEBAN HIDUP DAN BEBAN MATI


NO.BATANG            GAYA            JENIS


   S1                4,17P           TARIK

   S2                -3,33P          TEKAN

   S3                -3,33P          TEKAN

   S4                -7,96P          TEKAN

   S5                5,18P           TARIK

   S6                3,44P           TARIK

   S7                -1,5P           TEKAN

   S8                 -9P            TEKAN

   S9                1,11P           TARIK

   S10               7,97P           TARIK

   S11                -P             TEKAN
GAYA YANG BEKERJA




   GAYA AXIAL




   GAYA GESER




     MOMEN
TABEL BEBAN BERJALAN
GRAFIK BEBAN BERJALAN
TOTAL GAYA YANG BEKERJA DISETIAP BATANG




                    PERENCANAAN RANGKA UTAMA

Tebal trotoar           = 20 cm
Lebar trotoar           = 100 cm
Panjang segmen          =4m
Tinggi rangka           =3m
Lebar jembatan          =8m
Beban jalur             = 9 kN/m
Beban garis             = 49 kN/m


PEMBEBANAN PADA DIAFRAGMA
∴ Beban mati
− Berat per ker asan = 24 x 4 x0,5 = 24kN / m
− Berat aspal         = 22 x 4 x0, 05 = 4, 4kN / m
                qdl = 28, 4kN / m
           1
M max = x 28, 4 x82 = 227, 2kN .m
           8
Mu = 1, 4 xM max = 1, 4 x 227, 2 = 318,1kN .m
BEBAN MATI
   B.mati +diafragma = RA x factor beban
                      = 113.6 x 1.1                    =124,96 kN
   B.trotoar = Bj beton x t x I x λ x factor beban
             = 24 x 0,2 x 1 x 4 x 1,3                  =24,96kN      +

                                         PDl           = 149,92 kN
   BEBAN HIDUP
   B.lajur = 9 x 6 x 4 x 2 x 0,5          = 216 kN
   B.pejalan kaki = 5 x 1 x 4 x2          = 40 kN
   B.genangan air = 0,5 x 6 x 4 x 1 x 0,5 = 6 kN
                                                       +
                                 qll       = 262 kN
   BEBAN BERJALAN
   B.garis (KEL) = 49 x 6 x 1,4 x 2 x 0,5 = 411,6 kN

DISAIN BATANG TARIK

Pu        = 4014,11 kN (s10)
φ tarik   = 0,9
φ fraktur = 0,75

Fy = 290Mpa = 290 N / mm 2 = 0, 29kN / mm 2 = 29kN / cm 2
Fu = 500Mpa = 500 N / mm 2 = 0,5kN / mm2 = 50kN / cm2
φ baut = 50mm = 5cm

   Preliminary disain ;
   Pu ≤ φ Pn
   Pu = φ .Fy. Ag
           Pu 4380, 74
   Ag =       =
          φ Fy 0,9 x 29
   Ag = 167,8cm2

   Dicoba menggunakan profil IWF 400x400
         Tw     = 13 mm
         Tf     = 21 mm
         R      = 22 mm
         Ag     = 218,7 cm2
          Ix    = 66600cm4
         Iy     = 22400 cm4
         ix     = 17,5 cm
         iy= r min= 10,1cm
         Sx     =3330 cm3
         Zx     = 3672,35 cm3
Cek kuat leleh tarik
   Pu ≤ φ Pn
   4380,74 ≤ 0,9 xFy. Ag
   4380,74 ≤ 0,9 x 29 x 218, 7
   4380,74 ≤ 5708,07 kN .........(OK )

   Cek kuat leleh fraktur

Pu ≤ φ Pn
φ Pn = 0, 75 xFu. Ag                      φ Pn = φ FuxAe
An = Ag − 4(luas lub ang )                φ Pn = 0, 75 x0,5 x15714
An = 21870 − 10(21x(20 + 1))              φ Pn = 5892,75kN
An = 17460mm 2                            Pu ≤ φ Pn
Ae = AnxU                                 4380,74 ≤ 5892, 75kN .............(OK )
Ae = 17460 x0,9 = 15714


 DISAIN BATANG TEKAN

 Nu = −4942, 08kN .......( s8)
 φTekan = 0,85
  Fy = 290Mpa = 290 N / mm2 = 0, 29kN / mm 2 = 29kN / cm 2
  Fu = 500Mpa = 500 N / mm2 = 0,5kN / mm 2 = 50kN / cm 2
  kc = 0, 7
  L = 4m = 400cm
  E = 200.000 Mpa
  Fr = 70Mpa

   Dicoba menggunakan profil IWF 400x400

          Tw     = 13 mm
          Tf     = 21 mm
          R      = 22 mm
          Ag     = 218,7 cm2
           Ix    = 66600cm4
          Iy     = 22400 cm4
          ix     = 17,5 cm
          iy= r min= 10,1cm
          Sx     =3330 cm3
          Zx     = 3672,35 cm3
Cek kelangsingan penampang

 kc.L
        ≤ 140
r min
0, 7 x 400
           ≤ 140
   10,1
27, 7 ≤ 140.........(OK )

Cek local buckling

     b    400
λ=      =      = 9,52
   2.tf 2 x 21
      170    170
λp =      =       = 9,98
       Fy     290
         370       370
λr =            =          = 24,9
        Fy − Fr   290 − 70
∴ λ < λ p........ ⇒ Penampang kompak

Cek lateral buckling

   H − 2tf − 2r 400 − 2 x 21 − 2 x 22
λ=              =                     = 24,15
        tw               13
     1680 1680
λp =      =       = 98,65
       Fy     290
        2550       2550
λr =            =          = 171,9
        Fy − Fr   290 − 70
∴ λ < λ p.......... ⇒ Penampang kompak

Cek kuat tekan nominal

         kc.L     Fy
λc =
       r min .π   E
       0, 7 x 400 290
λc =
      10,1x3,14 200000
λ c = 8,83x0, 038
λ c = 0,33 < 1,5
Maka;
Nu ≤ φ Nn
                            2
4942, 08kN ≤ φ (0, 66λ c ) Ag.Fy
                                2
4942, 08kN ≤ 0,85(0, 660,33 )218, 7 x 29kN
4942, 08kN ≤ 5152, 45kN ...........(OK )
DISAIN SAMBUNGAN DENGAN BAUT

 BUHUL A
  Pu = 2289,38kN = 2289380 N .....( s1)
  Dbaut = 20mm
  Abaut = 1256mm2
  Jumlah baut :
  S1 = 40mm
  S 2 = 140mm
  S = 40mm
 t. pelat = 20mm
 tf = 21mm
 φ f = 0.75
  Fu = 410Mpa


  Sambungan tipe tumpu
  Rd = 2, 4.φ f .d .tp.Fu.n
  Rd = 2, 4 x0,75 x 20 x(20 x 2) x 410.n
       2289380
  n=           = 3,8 ⇒ 4 Baut
       590400

 BUHUL B
Pu = 4376,5kN = 4376500 N .....( s 4)
Dbaut = 20mm
Abaut = 1256mm 2
Jumlah baut :
S1 = 40mm
S 2 = 140mm
S = 40mm
t. pelat = 20mm
tf = 21mm
φ f = 0.75
Fu = 410Mpa


Sambungan tipe tumpu
Rd = 2, 4.φ f .d .tp.Fu.n
Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n
     4376500
n=           = 7, 4 ⇒ 8 Baut
     590400
BUHUL C
Pu = 4942, 08kN = 4942080 N .....( s 4)
Dbaut = 20mm
Abaut = 1256mm 2
Jumlah baut :
S1 = 40mm
S 2 = 140mm
S = 40mm
t. pelat = 20mm
tf = 21mm
φ f = 0.75
Fu = 410Mpa


Sambungan tipe tumpu
Rd = 2, 4.φ f .d .tp.Fu.n
Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n
     4942080
n=           = 8, 4 ⇒ 10 Baut
     590400

 BUHUL D
Pu = 4942, 08kN = 4942080 N .....( s8)
Dbaut = 20mm
Abaut = 1256mm 2
Jumlah baut :
S1 = 40mm
S 2 = 140mm
S = 40mm
t. pelat = 20mm
tf = 21mm
φ f = 0.75
Fu = 410Mpa


Sambungan tipe tumpu
Rd = 2, 4.φ f .d .tp.Fu.n
Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n
     4942080
n=           = 8, 4 ⇒ 10 Baut
     590400
BUHUL H
Pu = 2289,38kN = 2289380 N .....( s1)
Dbaut = 20mm
Abaut = 1256mm2
Jumlah baut :
S1 = 40mm
S 2 = 140mm
S = 40mm
t. pelat = 20mm
tf = 21mm
φ f = 0.75
Fu = 410Mpa


Sambungan tipe tumpu
Rd = 2, 4.φ f .d .tp.Fu.n
Rd = 2, 4 x0,75 x 20 x(20 x 2) x 410.n
     2289380
n=           = 3,8 ⇒ 4 Baut
     590400

 BUHUL       I
Pu = 4380, 62kN = 4380620 N .....( s10)
Dbaut = 20mm
Abaut = 1256mm 2
Jumlah baut :
S1 = 40mm
S 2 = 140mm
S = 40mm
t. pelat = 20mm
tf = 21mm
φ f = 0.75
Fu = 410Mpa


Sambungan tipe tumpu
Rd = 2, 4.φ f .d .tp.Fu.n
Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n
     4380620
n=           = 7, 4 ⇒ 8 Baut
     590400
BUHUL J
  Pu = 4380, 62kN = 4380620 N .....( s10)
  Dbaut = 20mm
  Abaut = 1256mm 2
  Jumlah baut :
  S1 = 40mm
  S 2 = 140mm
  S = 40mm
  t. pelat = 20mm
  tf = 21mm
 φ f = 0.75
  Fu = 410Mpa


  Sambungan tipe tumpu
  Rd = 2, 4.φ f .d .tp.Fu.n
  Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n
       4380620
  n=           = 7, 4 ⇒ 8 Baut
       590400

• CEK BLOCK SHEAR
Agt = 4.S .tf = 4.40.21 = 3360mm 2
                  D lub ang
Ant = 4.S .tf − 4           tf
                      2
                    21
   = 4 x 40 x 21 − 4 21 = 2478mm 2
                     2
Ags = 4( S1 + 3S 2).tf = 4(40 + 3.140).21 = 38640mm 2
Ans = 4( S1 + 3S 2).tf − 4 x3,5 D lub ang.tf
     = 38640 − 4 x3,5 x 21x 21 = 32466mm2
FuAnt = 500 x 2478 = 1239000 Mpa = 1239kN
0, 6 FuAns = 0,6 x500 x32466 = 9739800Mpa = 9739,8kN
        0, 6 FuAns > FuAnt....... ⇒ RETAK GESER − LELEH TARIK
φ Pn = φ ( FyAgt + 0, 6 FuAns)
       = 0, 75(0, 29 x3360 + 9739,8)
       = 0, 75 x10714, 2kN
       = 8035, 65kN ................(OK )
Cek kuat leleh fraktur

Pu ≤ φ Pn
φ Pn = 0, 75 xFu. Ag
An = Ag − 10(luas lub ang )
An = 21870 − 10(21x(20 + 1))
An = 17460mm 2
Ae = AnxU
Ae = 17460 x0,9 = 15714

φ Pn = φ FuxAe
φ Pn = 0, 75 x0,5 x15714
φ Pn = 5892,75kN
Pu ≤ φ Pn
4380,74 ≤ 5892, 75kN .............(OK )
LAMPIRAN 1




             GAMBAR DETAIL SAMBUNGAN
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya

More Related Content

What's hot

Building structures final
Building structures finalBuilding structures final
Building structures finalJamie Lee
 
Solution to-2nd-semester-soil-mechanics-2015-2016
Solution to-2nd-semester-soil-mechanics-2015-2016Solution to-2nd-semester-soil-mechanics-2015-2016
Solution to-2nd-semester-soil-mechanics-2015-2016chener Qadr
 
Morehead vs. NOLA Comparison
Morehead vs. NOLA ComparisonMorehead vs. NOLA Comparison
Morehead vs. NOLA Comparisonfergusong07
 
Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)Make Mannan
 
load carrying capacity of pile foundation
load carrying capacity of pile foundationload carrying capacity of pile foundation
load carrying capacity of pile foundationAnjneya Srivastava
 
Desain sengkang struktur beton bertulang
Desain sengkang struktur beton bertulangDesain sengkang struktur beton bertulang
Desain sengkang struktur beton bertulangShaleh Afif Hasibuan
 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stressMalika khalil
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Make Mannan
 
1 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam21 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam2Malika khalil
 
Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)Make Mannan
 
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Make Mannan
 
02 fluid models
02 fluid models02 fluid models
02 fluid modelsTino Lc
 
Volvo Service Center - Structural & Geotechnical Technical report # 4
Volvo Service Center - Structural & Geotechnical Technical report # 4Volvo Service Center - Structural & Geotechnical Technical report # 4
Volvo Service Center - Structural & Geotechnical Technical report # 4Adnan Lazem
 
Basics of punching_tool
Basics of punching_toolBasics of punching_tool
Basics of punching_toolNguyễn Toán
 
Structures load calculations shelters
Structures load calculations   sheltersStructures load calculations   shelters
Structures load calculations sheltersvigyanashram
 

What's hot (20)

Building structures final
Building structures finalBuilding structures final
Building structures final
 
X10706 (me8651)
X10706 (me8651)X10706 (me8651)
X10706 (me8651)
 
Solution to-2nd-semester-soil-mechanics-2015-2016
Solution to-2nd-semester-soil-mechanics-2015-2016Solution to-2nd-semester-soil-mechanics-2015-2016
Solution to-2nd-semester-soil-mechanics-2015-2016
 
Morehead vs. NOLA Comparison
Morehead vs. NOLA ComparisonMorehead vs. NOLA Comparison
Morehead vs. NOLA Comparison
 
Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)
 
load carrying capacity of pile foundation
load carrying capacity of pile foundationload carrying capacity of pile foundation
load carrying capacity of pile foundation
 
Desain sengkang struktur beton bertulang
Desain sengkang struktur beton bertulangDesain sengkang struktur beton bertulang
Desain sengkang struktur beton bertulang
 
đồ áN chi tiết máy tính toán động học
đồ áN chi tiết máy tính toán động họcđồ áN chi tiết máy tính toán động học
đồ áN chi tiết máy tính toán động học
 
One way slab load calculation
One way slab load calculation One way slab load calculation
One way slab load calculation
 
Unit i
Unit iUnit i
Unit i
 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stress
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
 
1 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam21 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam2
 
Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)
 
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
Numerical problem bearing capacity terzaghi , group pile capacity (usefulsear...
 
02 fluid models
02 fluid models02 fluid models
02 fluid models
 
Volvo Service Center - Structural & Geotechnical Technical report # 4
Volvo Service Center - Structural & Geotechnical Technical report # 4Volvo Service Center - Structural & Geotechnical Technical report # 4
Volvo Service Center - Structural & Geotechnical Technical report # 4
 
Basics of punching_tool
Basics of punching_toolBasics of punching_tool
Basics of punching_tool
 
Ay 2020 2021 fe supply qp
Ay 2020 2021 fe supply qpAy 2020 2021 fe supply qp
Ay 2020 2021 fe supply qp
 
Structures load calculations shelters
Structures load calculations   sheltersStructures load calculations   shelters
Structures load calculations shelters
 

Viewers also liked

Standar perencanaan struktur baja untuk jembatan
Standar perencanaan struktur baja untuk jembatanStandar perencanaan struktur baja untuk jembatan
Standar perencanaan struktur baja untuk jembatanardi nasir
 
perhitungan jembatan
perhitungan jembatanperhitungan jembatan
perhitungan jembatanFarid Thahura
 
Analisis kapasitas dan perencanaan perkuatan jembatan rangka baja tumpuen
Analisis kapasitas dan perencanaan perkuatan jembatan rangka baja tumpuenAnalisis kapasitas dan perencanaan perkuatan jembatan rangka baja tumpuen
Analisis kapasitas dan perencanaan perkuatan jembatan rangka baja tumpuenIqlal Suriansyah
 
Witness Reports concerning Perendev Magnetic Motor Systems
Witness Reports concerning Perendev Magnetic Motor SystemsWitness Reports concerning Perendev Magnetic Motor Systems
Witness Reports concerning Perendev Magnetic Motor SystemsMichael James Brady
 
Analisa koefisien gesek pipa acrylic
Analisa koefisien gesek pipa acrylicAnalisa koefisien gesek pipa acrylic
Analisa koefisien gesek pipa acrylicRonny wisanggeni
 
konstruksi bahan bangunan : baja
konstruksi bahan bangunan : bajakonstruksi bahan bangunan : baja
konstruksi bahan bangunan : bajanabila amalia
 
Electromagnetism
ElectromagnetismElectromagnetism
ElectromagnetismFiq Syafiq
 
Materi Struktur Baja I Pertemuan ke-2
Materi Struktur Baja I Pertemuan ke-2Materi Struktur Baja I Pertemuan ke-2
Materi Struktur Baja I Pertemuan ke-2Lampung University
 
Struktur baja ii
Struktur baja iiStruktur baja ii
Struktur baja iinizar amody
 
Jurnal jembatan rangka baja
Jurnal jembatan rangka bajaJurnal jembatan rangka baja
Jurnal jembatan rangka bajaE Sanjani
 
Tugas dinamika israaa
Tugas dinamika israaaTugas dinamika israaa
Tugas dinamika israaamadeserver
 
Menghitung Respon Spektrum Gempa
Menghitung Respon Spektrum GempaMenghitung Respon Spektrum Gempa
Menghitung Respon Spektrum GempaRafi Perdana Setyo
 

Viewers also liked (20)

STRUKTUR JEMBATAN
STRUKTUR JEMBATANSTRUKTUR JEMBATAN
STRUKTUR JEMBATAN
 
Standar perencanaan struktur baja untuk jembatan
Standar perencanaan struktur baja untuk jembatanStandar perencanaan struktur baja untuk jembatan
Standar perencanaan struktur baja untuk jembatan
 
perhitungan jembatan
perhitungan jembatanperhitungan jembatan
perhitungan jembatan
 
Tipe tipe jembatan
Tipe tipe jembatanTipe tipe jembatan
Tipe tipe jembatan
 
Abutment jembatan
Abutment jembatanAbutment jembatan
Abutment jembatan
 
Analisis kapasitas dan perencanaan perkuatan jembatan rangka baja tumpuen
Analisis kapasitas dan perencanaan perkuatan jembatan rangka baja tumpuenAnalisis kapasitas dan perencanaan perkuatan jembatan rangka baja tumpuen
Analisis kapasitas dan perencanaan perkuatan jembatan rangka baja tumpuen
 
Witness Reports concerning Perendev Magnetic Motor Systems
Witness Reports concerning Perendev Magnetic Motor SystemsWitness Reports concerning Perendev Magnetic Motor Systems
Witness Reports concerning Perendev Magnetic Motor Systems
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Analisa koefisien gesek pipa acrylic
Analisa koefisien gesek pipa acrylicAnalisa koefisien gesek pipa acrylic
Analisa koefisien gesek pipa acrylic
 
konstruksi bahan bangunan : baja
konstruksi bahan bangunan : bajakonstruksi bahan bangunan : baja
konstruksi bahan bangunan : baja
 
Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Materi Struktur Baja I Pertemuan ke-2
Materi Struktur Baja I Pertemuan ke-2Materi Struktur Baja I Pertemuan ke-2
Materi Struktur Baja I Pertemuan ke-2
 
Struktur Atap gedung
Struktur Atap gedungStruktur Atap gedung
Struktur Atap gedung
 
Struktur baja ii
Struktur baja iiStruktur baja ii
Struktur baja ii
 
Tugas Gempa 1#
Tugas Gempa 1#Tugas Gempa 1#
Tugas Gempa 1#
 
Jurnal jembatan rangka baja
Jurnal jembatan rangka bajaJurnal jembatan rangka baja
Jurnal jembatan rangka baja
 
Tugas dinamika israaa
Tugas dinamika israaaTugas dinamika israaa
Tugas dinamika israaa
 
Menghitung Respon Spektrum Gempa
Menghitung Respon Spektrum GempaMenghitung Respon Spektrum Gempa
Menghitung Respon Spektrum Gempa
 
Rekayasa gempa
Rekayasa gempaRekayasa gempa
Rekayasa gempa
 
Tugas Teknik Gempa 2
Tugas Teknik Gempa 2Tugas Teknik Gempa 2
Tugas Teknik Gempa 2
 

Similar to 33406960 manual-desain-jembatan-baja-oleh-gilang-aditya

ANALISA STRUKTUR RANGKA BATANG.ppt
ANALISA STRUKTUR RANGKA BATANG.pptANALISA STRUKTUR RANGKA BATANG.ppt
ANALISA STRUKTUR RANGKA BATANG.pptKrishhh2
 
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...Hossam Shafiq II
 
07 uniaxialpersegibulat
07 uniaxialpersegibulat07 uniaxialpersegibulat
07 uniaxialpersegibulatTony Wang
 
Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamTurja Deb
 
COL_BRESLER Y CONTORNO CARGA.pdf
COL_BRESLER Y CONTORNO  CARGA.pdfCOL_BRESLER Y CONTORNO  CARGA.pdf
COL_BRESLER Y CONTORNO CARGA.pdfCONSTRUCTORA AURAZO
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMira Pemayun
 
Kuzey soğutma kulesi̇ basinç kaybi
Kuzey soğutma kulesi̇ basinç kaybiKuzey soğutma kulesi̇ basinç kaybi
Kuzey soğutma kulesi̇ basinç kaybimertdemir1461
 
Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Dr.Costas Sachpazis
 
Contohh Soal Analisis Struktur Kremona.pptx
Contohh Soal Analisis Struktur Kremona.pptxContohh Soal Analisis Struktur Kremona.pptx
Contohh Soal Analisis Struktur Kremona.pptxmuzzammilmuje11
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricasJhayson Carvalho
 
PERHITUNGAN TULANGAN LONGITUDINAL BALOK BETON BERTULANG RANGKAP
PERHITUNGAN TULANGAN LONGITUDINAL BALOK BETON BERTULANG RANGKAPPERHITUNGAN TULANGAN LONGITUDINAL BALOK BETON BERTULANG RANGKAP
PERHITUNGAN TULANGAN LONGITUDINAL BALOK BETON BERTULANG RANGKAPSumarno Feriyal
 
Physics of Solar Cells
Physics of Solar Cells Physics of Solar Cells
Physics of Solar Cells Enrico Castro
 

Similar to 33406960 manual-desain-jembatan-baja-oleh-gilang-aditya (20)

Appendix b
Appendix bAppendix b
Appendix b
 
Maths book2 Text book answer
Maths book2 Text book answerMaths book2 Text book answer
Maths book2 Text book answer
 
Sambungan baut & las
Sambungan baut & lasSambungan baut & las
Sambungan baut & las
 
ANALISA STRUKTUR RANGKA BATANG.ppt
ANALISA STRUKTUR RANGKA BATANG.pptANALISA STRUKTUR RANGKA BATANG.ppt
ANALISA STRUKTUR RANGKA BATANG.ppt
 
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
10-Design of Tension Member with Bolted Connection (Steel Structural Design &...
 
07 uniaxialpersegibulat
07 uniaxialpersegibulat07 uniaxialpersegibulat
07 uniaxialpersegibulat
 
Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beam
 
COL_BRESLER Y CONTORNO CARGA.pdf
COL_BRESLER Y CONTORNO  CARGA.pdfCOL_BRESLER Y CONTORNO  CARGA.pdf
COL_BRESLER Y CONTORNO CARGA.pdf
 
Shi20396 ch07
Shi20396 ch07Shi20396 ch07
Shi20396 ch07
 
Shi20396 ch13
Shi20396 ch13Shi20396 ch13
Shi20396 ch13
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANG
 
Kuzey soğutma kulesi̇ basinç kaybi
Kuzey soğutma kulesi̇ basinç kaybiKuzey soğutma kulesi̇ basinç kaybi
Kuzey soğutma kulesi̇ basinç kaybi
 
Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2
 
Contohh Soal Analisis Struktur Kremona.pptx
Contohh Soal Analisis Struktur Kremona.pptxContohh Soal Analisis Struktur Kremona.pptx
Contohh Soal Analisis Struktur Kremona.pptx
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricas
 
PERHITUNGAN TULANGAN LONGITUDINAL BALOK BETON BERTULANG RANGKAP
PERHITUNGAN TULANGAN LONGITUDINAL BALOK BETON BERTULANG RANGKAPPERHITUNGAN TULANGAN LONGITUDINAL BALOK BETON BERTULANG RANGKAP
PERHITUNGAN TULANGAN LONGITUDINAL BALOK BETON BERTULANG RANGKAP
 
طه
طهطه
طه
 
Capítulo 13 engrenagens
Capítulo 13   engrenagensCapítulo 13   engrenagens
Capítulo 13 engrenagens
 
Physics of Solar Cells
Physics of Solar Cells Physics of Solar Cells
Physics of Solar Cells
 
Struc lecture
Struc lectureStruc lecture
Struc lecture
 

33406960 manual-desain-jembatan-baja-oleh-gilang-aditya

  • 1. DISAIN JEMBATAN RANGKA BAJA 2 SIPIL 1 PAGI UNTUK MELENGKAPI TUGAS BAJA OLEH: GILANG ADITYA.P DANIEL HASIBUAN SADDAM FIRGIAWAN DEPOK,15 JUNI 2010
  • 2. PEMODELAN STRUKTUR TAMPAK DEPAN TAMPAK ATAS SEPESIFIKASI JEMBATAN -Jembatan rangka baja -Panjang bentang 24 meter -Lebar jembatan 8 meter -Tinggi jembatan 3 meter PERHITUNGAN GAYA-GAYA DALAM *Reaksi Perletakan = Ravx24 – = 24Rav = 72P Rav = 3P Rav = Rbv maka Rbv = 3P
  • 3. *Gaya-Gaya Batang BUHUL A ∑V = 0 1 ∑H =0 − P − S1.0, 6 + 3P = 0 2 S1SIN 53 + S 2 = 0 −2,5P S 2 = −4,17 P.0,8 − S1 = 0, 6 S 2 = −3,33P S1 − 4,17 P BUHUL B ∑H =0 ∑V = 0 − S1SIN 53 + S 6COS14 = 0 S1COS 53 + S 3 + S 6SIN14 = 0 −4,17.0,8P + S 6.0,97 = 0 4,17 P.0, 6 + S 3 + 3, 44.0, 24 = 0 3,33P S 3 = −3,33P S6 = = 3, 44 P 0,97
  • 4. BUHUL C ∑V = 0 ∑H =0 − P − S 3 − S 5SIN 26,6 = 0 − S 2 + S 4 + S 5COS 26, 6 = 0 − P + 3,33P − S 50, 45 = 0 3,33P + S 4 + 5,18P.0,89 = 0 −2,33P S5 = S 4 = −7,96 P −0, 45 S 5 = 5,18 P BUHUL D ∑V = 0 ∑H =0 S 7 + S 5COS 63, 4 − S 6COS 76 = 0 S10 − S 5SIN 63, 4 − S 6SIN 76 = 0 S 7 + 5,18P.0, 45 − 3, 44 P.0, 24 = 0 S10 − 5,18P.0,89 − 3, 44 P.0,97 = 0 S 7 = −1,5 P S10 = 7,97 P
  • 5. BUHUL E ∑V = 0 ∑H =0 − P − S 7 − S 9SIN 26,6 = 0 − S 4 + S 8 + S 9COS 26, 6 = 0 − P + 1,5P − S 9.0, 45 = 0 7,96 P + S 8 + 1,11P.0,89 = 0 0,5 S 8 = −9 P S9 = = 1,11P 0, 45 BUHUL F ∑V = 0 − P − S11 = 0 S11 = − P
  • 6. TABEL GAYA BATANG BEBAN MATI ,HIDUP DAN BERJALAN TABEL BEBAN HIDUP DAN BEBAN MATI NO.BATANG GAYA JENIS S1 4,17P TARIK S2 -3,33P TEKAN S3 -3,33P TEKAN S4 -7,96P TEKAN S5 5,18P TARIK S6 3,44P TARIK S7 -1,5P TEKAN S8 -9P TEKAN S9 1,11P TARIK S10 7,97P TARIK S11 -P TEKAN
  • 7. GAYA YANG BEKERJA GAYA AXIAL GAYA GESER MOMEN
  • 10. TOTAL GAYA YANG BEKERJA DISETIAP BATANG PERENCANAAN RANGKA UTAMA Tebal trotoar = 20 cm Lebar trotoar = 100 cm Panjang segmen =4m Tinggi rangka =3m Lebar jembatan =8m Beban jalur = 9 kN/m Beban garis = 49 kN/m PEMBEBANAN PADA DIAFRAGMA ∴ Beban mati − Berat per ker asan = 24 x 4 x0,5 = 24kN / m − Berat aspal = 22 x 4 x0, 05 = 4, 4kN / m qdl = 28, 4kN / m 1 M max = x 28, 4 x82 = 227, 2kN .m 8 Mu = 1, 4 xM max = 1, 4 x 227, 2 = 318,1kN .m
  • 11. BEBAN MATI B.mati +diafragma = RA x factor beban = 113.6 x 1.1 =124,96 kN B.trotoar = Bj beton x t x I x λ x factor beban = 24 x 0,2 x 1 x 4 x 1,3 =24,96kN + PDl = 149,92 kN BEBAN HIDUP B.lajur = 9 x 6 x 4 x 2 x 0,5 = 216 kN B.pejalan kaki = 5 x 1 x 4 x2 = 40 kN B.genangan air = 0,5 x 6 x 4 x 1 x 0,5 = 6 kN + qll = 262 kN BEBAN BERJALAN B.garis (KEL) = 49 x 6 x 1,4 x 2 x 0,5 = 411,6 kN DISAIN BATANG TARIK Pu = 4014,11 kN (s10) φ tarik = 0,9 φ fraktur = 0,75 Fy = 290Mpa = 290 N / mm 2 = 0, 29kN / mm 2 = 29kN / cm 2 Fu = 500Mpa = 500 N / mm 2 = 0,5kN / mm2 = 50kN / cm2 φ baut = 50mm = 5cm Preliminary disain ; Pu ≤ φ Pn Pu = φ .Fy. Ag Pu 4380, 74 Ag = = φ Fy 0,9 x 29 Ag = 167,8cm2 Dicoba menggunakan profil IWF 400x400 Tw = 13 mm Tf = 21 mm R = 22 mm Ag = 218,7 cm2 Ix = 66600cm4 Iy = 22400 cm4 ix = 17,5 cm iy= r min= 10,1cm Sx =3330 cm3 Zx = 3672,35 cm3
  • 12. Cek kuat leleh tarik Pu ≤ φ Pn 4380,74 ≤ 0,9 xFy. Ag 4380,74 ≤ 0,9 x 29 x 218, 7 4380,74 ≤ 5708,07 kN .........(OK ) Cek kuat leleh fraktur Pu ≤ φ Pn φ Pn = 0, 75 xFu. Ag φ Pn = φ FuxAe An = Ag − 4(luas lub ang ) φ Pn = 0, 75 x0,5 x15714 An = 21870 − 10(21x(20 + 1)) φ Pn = 5892,75kN An = 17460mm 2 Pu ≤ φ Pn Ae = AnxU 4380,74 ≤ 5892, 75kN .............(OK ) Ae = 17460 x0,9 = 15714 DISAIN BATANG TEKAN Nu = −4942, 08kN .......( s8) φTekan = 0,85 Fy = 290Mpa = 290 N / mm2 = 0, 29kN / mm 2 = 29kN / cm 2 Fu = 500Mpa = 500 N / mm2 = 0,5kN / mm 2 = 50kN / cm 2 kc = 0, 7 L = 4m = 400cm E = 200.000 Mpa Fr = 70Mpa Dicoba menggunakan profil IWF 400x400 Tw = 13 mm Tf = 21 mm R = 22 mm Ag = 218,7 cm2 Ix = 66600cm4 Iy = 22400 cm4 ix = 17,5 cm iy= r min= 10,1cm Sx =3330 cm3 Zx = 3672,35 cm3
  • 13. Cek kelangsingan penampang kc.L ≤ 140 r min 0, 7 x 400 ≤ 140 10,1 27, 7 ≤ 140.........(OK ) Cek local buckling b 400 λ= = = 9,52 2.tf 2 x 21 170 170 λp = = = 9,98 Fy 290 370 370 λr = = = 24,9 Fy − Fr 290 − 70 ∴ λ < λ p........ ⇒ Penampang kompak Cek lateral buckling H − 2tf − 2r 400 − 2 x 21 − 2 x 22 λ= = = 24,15 tw 13 1680 1680 λp = = = 98,65 Fy 290 2550 2550 λr = = = 171,9 Fy − Fr 290 − 70 ∴ λ < λ p.......... ⇒ Penampang kompak Cek kuat tekan nominal kc.L Fy λc = r min .π E 0, 7 x 400 290 λc = 10,1x3,14 200000 λ c = 8,83x0, 038 λ c = 0,33 < 1,5 Maka; Nu ≤ φ Nn 2 4942, 08kN ≤ φ (0, 66λ c ) Ag.Fy 2 4942, 08kN ≤ 0,85(0, 660,33 )218, 7 x 29kN 4942, 08kN ≤ 5152, 45kN ...........(OK )
  • 14. DISAIN SAMBUNGAN DENGAN BAUT BUHUL A Pu = 2289,38kN = 2289380 N .....( s1) Dbaut = 20mm Abaut = 1256mm2 Jumlah baut : S1 = 40mm S 2 = 140mm S = 40mm t. pelat = 20mm tf = 21mm φ f = 0.75 Fu = 410Mpa Sambungan tipe tumpu Rd = 2, 4.φ f .d .tp.Fu.n Rd = 2, 4 x0,75 x 20 x(20 x 2) x 410.n 2289380 n= = 3,8 ⇒ 4 Baut 590400 BUHUL B Pu = 4376,5kN = 4376500 N .....( s 4) Dbaut = 20mm Abaut = 1256mm 2 Jumlah baut : S1 = 40mm S 2 = 140mm S = 40mm t. pelat = 20mm tf = 21mm φ f = 0.75 Fu = 410Mpa Sambungan tipe tumpu Rd = 2, 4.φ f .d .tp.Fu.n Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n 4376500 n= = 7, 4 ⇒ 8 Baut 590400
  • 15. BUHUL C Pu = 4942, 08kN = 4942080 N .....( s 4) Dbaut = 20mm Abaut = 1256mm 2 Jumlah baut : S1 = 40mm S 2 = 140mm S = 40mm t. pelat = 20mm tf = 21mm φ f = 0.75 Fu = 410Mpa Sambungan tipe tumpu Rd = 2, 4.φ f .d .tp.Fu.n Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n 4942080 n= = 8, 4 ⇒ 10 Baut 590400 BUHUL D Pu = 4942, 08kN = 4942080 N .....( s8) Dbaut = 20mm Abaut = 1256mm 2 Jumlah baut : S1 = 40mm S 2 = 140mm S = 40mm t. pelat = 20mm tf = 21mm φ f = 0.75 Fu = 410Mpa Sambungan tipe tumpu Rd = 2, 4.φ f .d .tp.Fu.n Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n 4942080 n= = 8, 4 ⇒ 10 Baut 590400
  • 16. BUHUL H Pu = 2289,38kN = 2289380 N .....( s1) Dbaut = 20mm Abaut = 1256mm2 Jumlah baut : S1 = 40mm S 2 = 140mm S = 40mm t. pelat = 20mm tf = 21mm φ f = 0.75 Fu = 410Mpa Sambungan tipe tumpu Rd = 2, 4.φ f .d .tp.Fu.n Rd = 2, 4 x0,75 x 20 x(20 x 2) x 410.n 2289380 n= = 3,8 ⇒ 4 Baut 590400 BUHUL I Pu = 4380, 62kN = 4380620 N .....( s10) Dbaut = 20mm Abaut = 1256mm 2 Jumlah baut : S1 = 40mm S 2 = 140mm S = 40mm t. pelat = 20mm tf = 21mm φ f = 0.75 Fu = 410Mpa Sambungan tipe tumpu Rd = 2, 4.φ f .d .tp.Fu.n Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n 4380620 n= = 7, 4 ⇒ 8 Baut 590400
  • 17. BUHUL J Pu = 4380, 62kN = 4380620 N .....( s10) Dbaut = 20mm Abaut = 1256mm 2 Jumlah baut : S1 = 40mm S 2 = 140mm S = 40mm t. pelat = 20mm tf = 21mm φ f = 0.75 Fu = 410Mpa Sambungan tipe tumpu Rd = 2, 4.φ f .d .tp.Fu.n Rd = 2, 4 x0, 75 x 20 x(20 x 2) x 410.n 4380620 n= = 7, 4 ⇒ 8 Baut 590400 • CEK BLOCK SHEAR Agt = 4.S .tf = 4.40.21 = 3360mm 2 D lub ang Ant = 4.S .tf − 4 tf 2 21 = 4 x 40 x 21 − 4 21 = 2478mm 2 2 Ags = 4( S1 + 3S 2).tf = 4(40 + 3.140).21 = 38640mm 2 Ans = 4( S1 + 3S 2).tf − 4 x3,5 D lub ang.tf = 38640 − 4 x3,5 x 21x 21 = 32466mm2 FuAnt = 500 x 2478 = 1239000 Mpa = 1239kN 0, 6 FuAns = 0,6 x500 x32466 = 9739800Mpa = 9739,8kN 0, 6 FuAns > FuAnt....... ⇒ RETAK GESER − LELEH TARIK φ Pn = φ ( FyAgt + 0, 6 FuAns) = 0, 75(0, 29 x3360 + 9739,8) = 0, 75 x10714, 2kN = 8035, 65kN ................(OK )
  • 18. Cek kuat leleh fraktur Pu ≤ φ Pn φ Pn = 0, 75 xFu. Ag An = Ag − 10(luas lub ang ) An = 21870 − 10(21x(20 + 1)) An = 17460mm 2 Ae = AnxU Ae = 17460 x0,9 = 15714 φ Pn = φ FuxAe φ Pn = 0, 75 x0,5 x15714 φ Pn = 5892,75kN Pu ≤ φ Pn 4380,74 ≤ 5892, 75kN .............(OK )
  • 19. LAMPIRAN 1 GAMBAR DETAIL SAMBUNGAN