SlideShare a Scribd company logo
1 of 27
Download to read offline
Chapter 13 
13-1 
dP = 17/8 = 2.125 in 
dG = N2 
N3 
dP = 1120 
544 
(2.125) = 4.375 in 
NG = PdG = 8(4.375) = 35 teeth Ans. 
C = (2.125 + 4.375)/2 = 3.25 in Ans. 
13-2 
nG = 1600(15/60) = 400 rev/min Ans. 
p = πm = 3π mm Ans. 
C = [3(15 + 60)]/2 = 112.5 mm Ans. 
13-3 
NG = 20(2.80) = 56 teeth Ans. 
dG = NGm = 56(4) = 224 mm Ans. 
dP = NPm = 20(4) = 80 mm Ans. 
C = (224 + 80)/2 = 152 mm Ans. 
13-4 Mesh: a = 1/P = 1/3 = 0.3333 in Ans. 
b = 1.25/P = 1.25/3 = 0.4167 in Ans. 
c = b − a = 0.0834 in Ans. 
p = π/P = π/3 = 1.047 in Ans. 
t = p/2 = 1.047/2 = 0.523 in Ans. 
Pinion Base-Circle: d1 = N1/P = 21/3 = 7 in 
d1b = 7 cos 20° = 6.578 in Ans. 
Gear Base-Circle: d2 = N2/P = 28/3 = 9.333 in 
d2b = 9.333 cos 20° = 8.770 in Ans. 
Base pitch: pb = pc cos φ = (π/3) cos 20° = 0.984 in Ans. 
Contact Ratio: mc = Lab/pb = 1.53/0.984 = 1.55 Ans. 
See the next page for a drawing of the gears and the arc lengths.
334 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
13-5 
(a) AO = 
 
2.333 
2 
2 
A B 
+ 
P 
14 12.6 
 
5.333 
2 
2 
1/2 
= 2.910 in Ans. 
(b) γ = tan−1(14/32) = 23.63° Ans. 
 = tan−1(32/14) = 66.37° Ans. 
(c) dP = 14/6 = 2.333 in, 
dG = 32/6 = 5.333 in Ans. 
(d) From Table 13-3, 0.3AO = 0.873 in and 10/P = 10/6 = 1.67 
0.873  1.67 ∴ F = 0.873 in Ans. 
13-6 
(a) pn = π/5 = 0.6283 in 
30 
P G 
pt = pn/cosψ = 0.6283/cos 30° = 0.7255 in 
px = pt/tanψ = 0.7255/tan 30° = 1.25 in 
21 
3 
 
51 
3 
 
AO 
 
 
10.5 
Arc of approach  0.87 in Ans. 
Arc of recess  0.77 in Ans. 
Arc of action  1.64 in Ans. 
Lab  1.53 in 
10 
O2 
O1
Chapter 13 335 
(b) pnb = pn cos φn = 0.6283 cos 20° = 0.590 in Ans. 
(c) Pt = Pn cosψ = 5 cos 30° = 4.33 teeth/in 
φt = tan−1(tan φn/cosψ) = tan−1(tan 20°/cos 30◦) = 22.8° Ans. 
(d) Table 13-4: 
a = 1/5 = 0.200 in Ans. 
b = 1.25/5 = 0.250 in Ans. 
dP = 17 
5 cos 30° 
= 3.926 in Ans. 
dG = 34 
5 cos 30° 
= 7.852 in Ans. 
13-7 
φn = 14.5°, Pn = 10 teeth/in 
(a) pn = π/10 = 0.3142 in Ans. 
pt = pn 
cosψ 
= 0.3142 
cos 20° 
= 0.3343 in Ans. 
px = pt 
tanψ 
= 0.3343 
tan 20° 
= 0.9185 in Ans. 
(b) Pt = Pn cosψ = 10 cos 20° = 9.397 teeth/in 
φt = tan−1 
 
tan 14.5° 
cos 20° 
 
= 15.39° Ans. 
(c) a = 1/10 = 0.100 in Ans. 
b = 1.25/10 = 0.125 in Ans. 
dP = 19 
10 cos 20° 
= 2.022 in Ans. 
dG = 57 
10 cos 20° 
= 6.066 in Ans. 
G 
20 
P
336 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
13-8 From Ex. 13-1, a 16-tooth spur pinion meshes with a 40-tooth gear, mG = 40/16 = 2.5. 
Equations (13-10) through (13-13) apply. 
(a) The smallest pinion tooth count that will run with itself is found from Eq. (13-10) 
NP ≥ 4k 
6 sin2 φ 
 
1 + 
 
1 + 3 sin2 φ 
 
≥ 4(1) 
6 sin2 20° 
 
1 + 
 
 
1 + 3 sin2 20° 
≥ 12.32→13 teeth Ans. 
(b) The smallest pinion that will mesh with a gear ratio of mG = 2.5, from Eq. (13-11) is 
NP ≥ 2(1) 
[1 + 2(2.5)] sin2 20° 
	 
2.5 + 

 
 
2.52 + [1 + 2(2.5)] sin2 20° 
≥ 14.64→15 pinion teeth Ans. 
(c) The smallest pinion that will mesh with a rack, from Eq. (13-12) 
NP ≥ 4k 
2 sin2 φ 
= 4(1) 
2 sin2 20° 
≥ 17.097→18 teeth Ans. 
(d) The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-13) is 
NG ≤ 
N2P 
sin2 φ − 4k2 
4k − 2NP sin2 φ 
≤ 132 sin2 20° − 4(1)2 
4(1) − 2(13) sin2 20° 
≤ 16.45→16 teeth Ans. 
13-9 From Ex. 13-2, a 20° pressure angle, 30° helix angle, pt = 6 teeth/in pinion with 18 full 
depth teeth, and φt = 21.88°. 
(a) The smallest tooth count that will mesh with a like gear, from Eq. (13-21), is 
NP ≥ 4k cosψ 
6 sin2 φt 
 
1 + 
 
1 + 3 sin2 φt 
 
≥ 4(1) cos 30° 
6 sin2 21.88° 
 
1 + 
 
 
1 + 3 sin2 21.88° 
≥ 9.11→10 teeth Ans. 
(b) The smallest pinion-tooth count that will run with a rack, from Eq. (13-23), is 
NP ≥ 4k cosψ 
2 sin2 φt 
≥ 4(1) cos 30◦ 
2 sin2 21.88° 
≥ 12.47→13 teeth Ans.
Chapter 13 337 
(c) The largest gear tooth possible, from Eq. (13-24) is 
NG ≤ 
N2P 
sin2 φt − 4k2 cos2 ψ 
4k cosψ − 2NP sin2 φt 
≤ 102 sin2 21.88° − 4(12) cos2 30° 
4(1) cos 30° − 2(10) sin2 21.88° 
≤ 15.86→15 teeth Ans. 
13-10 Pressure Angle: φt = tan−1 
 
tan 20° 
cos 30° 
 
= 22.796° 
Program Eq. (13-24) on a computer using a spreadsheet or code and increment NP. The 
first value of NP that can be doubled is NP = 10 teeth, where NG ≤ 26.01 teeth. So NG = 
20 teeth will work. Higher tooth counts will work also, for example 11:22, 12:24, etc. 
Use 10:20 Ans. 
13-11 Refer to Prob. 13-10 solution. The first value of NP that can be multiplied by 6 is 
NP = 11 teeth where NG ≤ 93.6 teeth. So NG = 66 teeth. 
Use 11:66 Ans. 
13-12 Begin with the more general relation, Eq. (13-24), for full depth teeth. 
NG = 
N2P 
sin2 φt − 4 cos2 ψ 
4 cosψ − 2NP sin2 φt 
Set the denominator to zero 
4 cosψ − 2NP sin2 φt = 0 
From which 
sin φt = 
 
2 cosψ 
NP 
φt = sin−1 
 
2 cosψ 
NP 
For NP = 9 teeth and cosψ = 1 
φt = sin−1
2(1) 
9 
= 28.126° Ans. 
13-13 
18T 32T 
  25, n  20, m  3 mm 
(a) pn = πmn = 3π mm Ans. 
pt = 3π/cos 25° = 10.4 mm Ans. 
px = 10.4/tan 25° = 22.3 mm Ans.
338 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
(b) mt = 10.4/π = 3.310 mm Ans. 
φt = tan−1 tan 20° 
cos 25° 
= 21.88° Ans. 
(c) dP = 3.310(18) = 59.58 mm Ans. 
dG = 3.310(32) = 105.92 mm Ans. 
13-14 (a) The axial force of 2 on shaft a is in the negative direction. The axial force of 3 on 
shaft b is in the positive direction of z. Ans. 
b 
a 
3 
z 
2 
The axial force of gear 4 on shaft b is in the positive z-direction. The axial force of 
gear 5 on shaft c is in the negative z-direction. Ans. 
(b) nc = n5 = 14 
54 
 
16 
36 
5 
4 
c 
b 
z 
 
(900) = +103.7 rev/min ccw Ans. 
(c) dP2 = 14/(10 cos 30°) = 1.6166 in 
dG3 = 54/(10 cos 30°) = 6.2354 in 
Cab = 1.6166 + 6.2354 
2 
= 3.926 in Ans. 
dP4 = 16/(6 cos 25°) = 2.9423 in 
dG5 = 36/(6 cos 25°) = 6.6203 in 
Cbc = 4.781 in Ans. 
13-15 e = 20 
40 
 
8 
17 
 
20 
60 
 
= 4 
51 
nd = 4 
51 
(600) = 47.06 rev/min cw Ans.
Chapter 13 339 
13-16 
e = 6 
10 
 
18 
38 
 
20 
48 
 
3 
36 
 
= 3 
304 
na = 3 
304 
(1200) = 11.84 rev/min cw Ans. 
13-17 
(a) nc = 12 
40 
· 1 
1 
(540) = 162 rev/min cw about x. Ans. 
(b) dP = 12/(8 cos 23°) = 1.630 in 
dG = 40/(8 cos 23°) = 5.432 in 
dP + dG 
2 
= 3.531 in Ans. 
(c) d = 32 
4 
= 8 in at the large end of the teeth. Ans. 
13-18 (a) The planet gears act as keys and the wheel speeds are the same as that of the ring gear. 
Thus 
nA = n3 = 1200(17/54) = 377.8 rev/min Ans. 
(b) nF = n5 = 0, nL = n6, e = −1 
−1 = n6 − 377.8 
0 − 377.8 
377.8 = n6 − 377.8 
n6 = 755.6 rev/min Ans. 
Alternatively, the velocity of the center of gear 4 is v4c ∝ N6n3 . The velocity of the 
left edge of gear 4 is zero since the left wheel is resting on the ground. Thus, the ve-locity 
of the right edge of gear 4 is 2v4c ∝ 2N6n3. This velocity, divided by the radius 
of gear 6 ∝ N6, is angular velocity of gear 6–the speed of wheel 6. 
∴ n6 = 2N6n3 
N6 
= 2n3 = 2(377.8) = 755.6 rev/min Ans. 
(c) The wheel spins freely on icy surfaces, leaving no traction for the other wheel. The 
car is stalled. Ans. 
13-19 (a) The motive power is divided equally among four wheels instead of two. 
(b) Locking the center differential causes 50 percent of the power to be applied to the 
rear wheels and 50 percent to the front wheels. If one of the rear wheels, rests on 
a slippery surface such as ice, the other rear wheel has no traction. But the front 
wheels still provide traction, and so you have two-wheel drive. However, if the rear 
differential is locked, you have 3-wheel drive because the rear-wheel power is now 
distributed 50-50.
340 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
13-20 Let gear 2 be first, then nF = n2 = 0. Let gear 6 be last, then nL = n6 = −12 rev/min. 
e = 20 
30 
 
16 
34 
 
= 16 
51 
, e = nL − nA 
nF − nA 
(0 − nA) 
16 
51 
= −12 − nA 
nA = 
−12 
35/51 
= −17.49 rev/min (negative indicates cw) Ans. 
Alternatively, since N ∝ r , let v = Nn (crazy units). 
v = N6n6 N6 = 20 + 30 − 16 = 34 teeth 
vA 
= v 
⇒ = N4N6n6 
vA N4 
N4 − N5 
N4 − N5 
nA = vA 
N2 + N4 
= N4N6n6 
(N2 + N4)(N4 − N5) 
= 30(34)(12) 
(20 + 30)(30 − 16) 
= 17.49 rev/min cw Ans. 
13-21 Let gear 2 be first, then nF = n2 = 180 rev/min. Let gear 6 be last, then nL = n6 = 0. 
e = 20 
30 
 
16 
34 
 
= 16 
51 
, e = nL − nA 
nF − nA 
(180 − nA) 
16 
51 
= (0 − nA) 
nA = 
 
−16 
35 
 
180 = −82.29 rev/min 
The negative sign indicates opposite n2 ∴ nA = 82.29 rev/min cw Ans. 
Alternatively, since N ∝ r , let v = Nn (crazy units). 
vA 
N5 
= v 
N4 − N5 
= N2n2 
N4 − N5 
vA = N5N2n2 
N4 − N5 
nA = vA 
N2 + N4 
= N5N2n2 
(N2 + N4)(N4 − N5) 
= 16(20)(180) 
(20 + 30)(30 − 16) 
= 82.29 rev/min cw Ans. 
5 4 
v  0 
v  N2n2 
N2 
vA 
2 
4 
5 
v 
v  0 
vA 
2
Chapter 13 341 
13-22 N5 = 12 + 2(16) + 2(12) = 68 teeth Ans. 
Let gear 2 be first, nF = n2 = 320 rev/min. Let gear 5 be last, nL = n5 = 0 
e = 12 
16 
 
16 
12 
 
12 
68 
 
= 3 
17 
, e = nL − nA 
nF − nA 
320 − nA = 17 
3 
(0 − nA) 
nA = − 3 
14 
(320) = −68.57 rev/min 
The negative sign indicates opposite of n2 ∴ nA = 68.57 rev/min cw Ans. 
Alternatively, 
nA = n2N2 
nA(N2  2N3  N4) 
2(N3 + N4) 
= 320(12) 
2(16 + 12) 
= 68.57 rev/min cw Ans. 
13-23 Let nF = n2 then nL = n7 = 0. 
e = −24 
18 
 
18 
30 
 
36 
54 
 
= − 8 
15 
e = nL − n5 
nF − n5 
= − 8 
15 
0 − 5 
n2 − 5 
= − 8 
15 
⇒ n2 = 5 + 15 
8 
(5) = 14.375 turns in same direction 
13-24 (a) Let nF = n2 = 0, then nL = n5. 
e = 99 
100 
 
101 
100 
 
= 9999 
10 000 
, e = nL − nA 
nF − nA 
= nL − nA 
0 − nA 
nL − nA = −enA 
nL = nA(−e + 1) 
nL 
nA 
= 1 − e = 1 − 9999 
10 000 
= 1 
10 000 
= 0.0001 Ans. 
(b) d4 = N4 
P 
= 101 
10 
= 10.1 in 
d5 = 100 
10 
= 10 in 
dhousing  2 
 
d4 + d5 
2 
 
= 2 
 
10.1 + 10 
2 
 
= 30.2 in Ans. 
v  0 
nA(N2  N3) 
v  n2N2 
2nA(N2  2N3  N4)  n2N2  2nA(N2  N3) 
2nA(N2  2N3  N4)  2nA(N2  N3)  n2N2
342 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
13-25 n2 = nb = nF, nA = na, nL = n5 = 0 
e = − 21 
444 
= nL − nA 
nF − nA 
− 21 
444 
(nF − nA) = 0 − nA 
With shaft b as input 
− 21 
444 
nF + 21 
444 
nA + 444 
444 
nA = 0 
nA 
nF 
= na 
nb 
= 21 
465 
na = 21 
465 
nb, inthe same direction as shaft b, the input. Ans. 
Alternatively, 
vA 
N4 
= n2N2 
N3 + N4 
vA = n2N2N4 
N3 + N4 
na = nA = vA 
N2 + N3 
= n2N2N4 
(N2 + N3)(N3 + N4) 
= 18(21)(nb) 
(18 + 72)(72 + 21) 
= 21 
465 
nb in the same direction as b Ans. 
v  0 
13-26 nF = n2 = na, nL = n6 = 0 
e = −24 
18 
 
22 
64 
 
= −11 
24 
, e = nL − nA 
nF − nA 
= 0 − nb 
na − nb 
−11 
24 
= 0 − nb 
na − nb 
⇒ nb 
na 
= 11 
35 
Ans. 
Yes, both shafts rotate in the same direction. Ans. 
Alternatively, 
vA 
N5 
= n2N2 
N3 + N5 
= N2 
N3 + N5 
na, vA = N2N5 
N3 + N5 
na 
nA = nb = vA 
N2 + N3 
= N2N5 
(N2 + N3)(N3 + N5) 
na 
nb 
na 
= 24(22) 
(24 + 18)(22 + 18) 
= 11 
35 
Ans. 
nb rotates ccw ∴ Yes Ans. 
13-27 n2 = nF = 0, nL = n5 = nb, nA = na 
e = +20 
24 
 
20 
24 
 
= 25 
36 
3 
5 
v  0 
vA 
n2N2 
2 
3 
4 
2 
vA 
n2N2
Chapter 13 343 
25 
36 
= nb − na 
0 − na 
nb 
na 
= 11 
36 
Ans. 
Same sense, therefore shaft b rotates in the same direction as a. Ans. 
Alternatively, 
v5 
N3 − N4 
= (N2 + N3)na 
N3 
v5 = (N2 + N3)(N3 − N4)n 
N3 
nb = v5 
N5 
= (N2 + N3)(N3 − N4)na 
N3N5 
nb 
na 
= (20 + 24)(24 − 20) 
24(24) 
= 11 
36 
same sense Ans. 
13-28 (a) ω = 2πn/60 
H = Tω = 2πTn/60 (T in N · m, H in W) 
So T = 60H(103) 
2πn 
= 9550H/n (H in kW, n in rev/min) 
Ta = 9550(75) 
1800 
= 398 N · m 
r2 = mN2 
2 
= 5(17) 
2 
= 42.5 mm 
So 
Ft 
32 
= Ta 
r2 
= 398 
42.5 
= 9.36 kN 
9.36 
2 
a 
F3b = −Fb3 = 2(9.36) = 18.73 kN in the positive x-direction. Ans. 
See the figure in part (b) on the following page. 
Ta2 
398 N•m 
Ft 
32 
3 
4 
v5 
v  0 
(N2  N3)na
344 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
(b) r4 = mN4 
2 
= 5(51) 
2 
= 127.5 mm 
Ft 
43 
Tc4 = 9.36(127.5) = 1193 N · m ccw 
∴ T4c = 1193 N · m cw Ans. 
Note: The solution is independent of the pressure angle. 
13-29 
d = N 
6 
2 4 
d2 = 4 in, d4 = 4 in, d5 = 6 in, d6 = 24 in 
e = 24 
24 
 
24 
36 
 
36 
144 
 
= 1/6, nP = n2 = 1000 rev/min 
nL = n6 = 0 
e = nL − nA 
nF − nA 
= 0 − nA 
1000 − nA 
nA = −200 rev/min 
5 
6 
9.36 
4 
c 
Tc4  1193 
b 
9.36 
O 
3 
9.36 
18.73 
Ft 
23 
Fb3
Chapter 13 345 
Input torque: T2 = 63 025H 
n 
T2 = 63 025(25) 
1000 
= 1576 lbf · in 
For 100 percent gear efficiency 
Tarm = 63 025(25) 
200 
= 7878 lbf · in 
Gear 2 
Wt = 1576 
2 
= 788 lbf 
Fr 
32 
= 788 tan 20° = 287 lbf 
Ft 
a2 
n T2  1576 lbf • in 2 
Fr 
a2 Fr 
2 
Gear 4 
FA4 = 2Wt = 2(788) = 1576 lbf 
Wt 
42 
Wt Wt 
Fr Fr 
n4 
Gear 5 
Arm 
Fr  287 lbf 
2Wt  1576 lbf 
5 Wt  788 lbf 
Wt 
Fr 
Tout = 1576(9) − 1576(4) = 7880 lbf · in Ans. 
FA4 
1576 lbf 
4 
   
4 5 
1576 lbf 
Tout 
13-30 Given: P = 2 teeth/in, nP = 1800 rev/min cw, N2 = 18T, N3 = 32T, N4 = 18T, 
N5 = 48T. 
Pitch Diameters: d2 = 18/2 = 9 in; d3 = 32/2 = 16 in; d4 = 18/2 = 9 in; d5 = 
48/2 = 24 in.
346 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
Gear 2 
Ta2 = 63 025(200)/1800 = 7003 lbf · in 
Wt = 7003/4.5 = 1556 lbf 
Wr = 1556 tan 20° = 566 lbf 
2 
Wr  566 lbf 
a 
Wt  1556 lbf 
Ta2  7003 lbf•in 
Gears 3 and 4 
Wt(4.5) = 1556(8), Wt = 2766 lbf 
Wr = 2766 tan 20◦ = 1007 lbf 
Ans. 
b 
3 
4 
y 
x 
Wt  2766 lbf 
Wr  1007 lbf 
Wr  566 lbf 
Wt  1556 lbf 
13-31 Given: P = 5 teeth/in, N2 = 18T, N3 = 45T, φn = 20°, H = 32 hp, n2 = 
1800 rev/min. 
Gear 2 
Tin = 63 025(32) 
1800 
= 1120 lbf · in 
dP = 18 
5 
= 3.600 in 
dG = 45 
5 
= 9.000 in 
Wt 
32 
= 1120 
3.6/2 
= 622 lbf 
Wr 
32 
= 622 tan 20° = 226 lbf 
Fta 
2 
= Wt 
32 
= 622 lbf, Fr 
a2 
= Wr 
32 
= 226 lbf 
Fa2 = (6222 + 2262)1/2 = 662 lbf 
2 
Wr 
a 
Tin 
Wt 
32 
32 
Fr 
a2 
Ft 
a2 
Each bearing on shaft a has the same radial load of RA = RB = 662/2 = 331 lbf.
Chapter 13 347 
Gear 3 
Wt 
23 
= Wt 
32 
= 622 lbf 
Wr 
23 
= Wr 
32 
= 226 lbf 
Fb3 = Fb2 = 662 lbf 
RC = RD = 662/2 = 331 lbf 
r 
3 
Fb 
Each bearing on shaft b has the same radial load which is equal to the radial load of bear-ings, 
A and B. Thus, all four bearings have the same radial load of 331 lbf. Ans. 
13-32 Given: P = 4 teeth/in, φn = 20◦, NP = 20T, n2 = 900 rev/min. 
d2 = NP 
P 
= 20 
4 
= 5.000 in 
Tin = 63 025(30)(2) 
900 
= 4202 lbf · in 
Wt 
32 
= Tin/(d2/2) = 4202/(5/2) = 1681 lbf 
Wr 
32 
= 1681 tan 20◦ = 612 lbf 
4202 lbf•in 
y Equivalent 
Wr 
32  612 lbf 
The motor mount resists the equivalent forces and torque. The radial force due to torque 
Fr = 4202 
14(2) 
= 150 lbf 
Forces reverse with rotational 
sense as torque reverses. 
C 
D 
A 
B 
150 
14 
150 
150 
150 4202 lbf • in 
y 
2 612 lbf 
1681 lbf 
z 
z 2 
Wt 
32  1681 lbf 
Load on 2 
due to 3 
3 
2 
y 
x 
y 
z 
3 
Tout  Wt 
23r3 
 2799 lbf•in 
b Fb t 
3 
Wt 
23 
Wr 
23
348 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
The compressive loads at A and D are absorbed by the base plate, not the bolts. For Wt 
32 , 
the tensions in C and D are 

 
MAB = 0 1681(4.875 + 15.25) − 2F(15.25) = 0 F = 1109 lbf 
If Wt 
F 
F 
32 reverses, 15.25 in changes to 13.25 in, 4.815 in changes to 2.875 in, and the forces 
change direction. For A and B, 
1681(2.875) − 2F1(13.25) = 0 ⇒ F1 = 182.4 lbf 
For Wr 
32 
F F2 2 
M = 612(4.875 + 11.25/2) = 6426 lbf · in 
a = 
 
(14/2)2 + (11.25/2)2 = 8.98 in 
F2 = 6426 
4(8.98) 
= 179 lbf 
At C and D, the shear forces are: 
FS1 = 
 
[153 + 179(5.625/8.98)]2 + [179(7/8.98)]2 
= 300 lbf 
At A and B, the shear forces are: 
FS2 = 
 
[153 − 179(5.625/8.98)]2 + [179(7/8.98)]2 
= 145 lbf 
C 
a 
D 
153 lbf 
153 lbf 
F2 
F2 
612 
4  153 lbf 
4.875 
11.25 
14 
612 lbf 
153 lbf 
B 
C 
15.25 4.875 1681 lbf 
D 
F1 
F1 
A
Chapter 13 349 
The shear forces are independent of the rotational sense. 
The bolt tensions and the shear forces for cw rotation are, 
Tension (lbf) Shear (lbf) 
A 0 145 
B 0 145 
C 1109 300 
D 1109 300 
For ccw rotation, 
Tension (lbf) Shear (lbf) 
A 182 145 
B 182 145 
C 0 300 
D 0 300 
13-33 Tin = 63 025H/n = 63 025(2.5)/240 = 656.5 lbf · in 
Wt = T/r = 656.5/2 = 328.3 lbf 
γ = tan−1(2/4) = 26.565° 
 = tan−1(4/2) = 63.435° 
a = 2 + (1.5 cos 26.565°)/2 = 2.67 in 
Wr = 328.3 tan 20° cos 26.565° = 106.9 lbf 
Wa = 328.3 tan 20° sin 26.565° = 53.4 lbf 
W = 106.9i − 53.4j + 328.3k lbf 
RAG = −2i + 5.17j, RAB = 2.5j 

 
M4 = RAG ×W+ RAB × FB + T = 0 
Wa 
a 
FzB 
Fx 
B 
z x 
Solving gives 
RAB × FB = 2.5FzB 
i − 2.5FxB 
k 
RAG ×W = 1697i + 656.6j − 445.9k 
So 
(1697i + 656.6j − 445.9k) + 
 
2.5FzB 
i − 2.5FxB 
 
= 0 
k + T j 
FzB 
= −1697/2.5 = −678.8 lbf 
T = −656.6 lbf · in 
FxB 
= −445.9/2.5 = −178.4 lbf 
y 
2 
2 
1 
2 
B 
A 
G 
W Wt r 
Tin 
Not to scale 
Fy 
A 
FzA 
Fx 
A
350 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
So 
FB = [(−678.8)2 + (−178.4)2]1/2 = 702 lbf Ans. 
FA = −(FB +W) 
= −(−178.4i − 678.8k + 106.9i − 53.4j + 328.3k) 
= 71.5i + 53.4j + 350.5k 
FA (radial) = (71.52 + 350.52)1/2 = 358 lbf Ans. 
FA (thrust) = 53.4 lbf Ans. 
13-34 
d2 = 15/10 = 1.5 in, Wt = 30 lbf, d3 = 25 
10 
= 2.5 in 
γ = tan−1 0.75 
1.25 
= 30.96°,  = 59.04° 
DE = 9 
16 
+ 0.5 cos 59.04° = 0.8197 in 
Wr = 30 tan 20° cos 59.04° = 5.617 lbf 
Wa = 30 tan 20° sin 59.04° = 9.363 lbf 
W = −5.617i − 9.363j + 30k 
RDG = 0.8197j + 1.25i 
RDC = −0.625j 

 
MD = RDG ×W+ RDC × FC + T = 0 
RDG ×W = 24.591i − 37.5j − 7.099k 
RDC × FC = −0.625FzC 
i + 0.625FxC 
k 
T = 37.5 lbf · in Ans. 
FC = 11.4i + 39.3k lbf Ans. 
FC = (11.42 + 39.32)1/2 = 40.9 lbf Ans. 

 
F =0 FD = −5.78i + 9.363j − 69.3k lbf 
FD (radial) = [(−5.78)2 + (−69.3)2]1/2 = 69.5 lbf Ans. 
FD (thrust) = Wa = 9.363 lbf Ans. 
Wr 
Wa 
Wt 
z 
0.8197 
FxD 
D 
C 
E 
G 
x 
y 
5 
8 
1.25 
Not to scale 
FzD 
FxC 
FzC 
Fy 
D 
1.25 
0.75
Chapter 13 351 
13-35 Sketch gear 2 pictorially. 
Pt = Pn cosψ = 4 cos 30° = 3.464 teeth/in 
φt = tan−1 tan φn 
cosψ 
= tan−1 tan 20° 
cos 30° 
= 22.80° 
Sketch gear 3 pictorially, 
dP = 18 
3.464 
z y 
= 5.196 in 
Pinion (Gear 2) 
Wr = Wt tan φt = 800 tan 22.80° = 336 lbf 
Wa = Wt tanψ = 800 tan 30° = 462 lbf 
W = −336i − 462j + 800k lbf Ans. 
W = [(−336)2 + (−462)2 + 8002]1/2 = 983 lbf Ans. 
Gear 3 
W = 336i + 462j − 800k lbf Ans. 
W = 983 lbf Ans. 
dG = 32 
3.464 
= 9.238 in 
TG = Wtr = 800(9.238) = 7390 lbf · in 
13-36 From Prob. 13-35 solution, 
3 462 
336 336 
462 
Notice that the idler shaft reaction contains a couple tending to turn the shaft end-over-end. 
Also the idler teeth are bent both ways. Idlers are more severely loaded than other 
gears, belying their name. Thus be cautious. 
800 
336 
462 
4 
800 800 
462 
800 
2 
336 
Wa 
TG 
Wr 
Wt 
x 
3 
Wa 
Wr 
T 
Wt 
x 
y 
z 
2
352 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
13-37 
Gear 3: 
Pt = Pn cosψ = 7 cos 30° = 6.062 teeth/in 
tan φt = tan 20° 
cos 30° 
= 0.4203, φt = 22.8° 
d3 = 54 
6.062 
= 8.908 in 
Wt = 500 lbf 
Wa = 500 tan 30° = 288.7 lbf 
Wr = 500 tan 22.8° = 210.2 lbf 
W3 = 210.2i + 288.7j − 500k lbf Ans. 
Gear 4: 
Wr 
d4 = 14 
6.062 
= 2.309 in 
Wt = 500 
8.908 
2.309 
= 1929 lbf 
Wa = 1929 tan 30° = 1114 lbf 
Wr = 1929 tan 22.8° = 811 lbf 
W4 = −811i + 1114j − 1929k lbf Ans. 
13-38 
Pt = 6 cos 30° = 5.196 teeth/in 
d3 = 42 
5.196 
= 8.083 in 
φt = 22.8° 
d2 = 16 
5.196 
= 3.079 in 
T2 = 63 025(25) 
1720 
= 916 lbf · in 
Wt = T 
r 
= 916 
3.079/2 
= 595 lbf 
Wa = 595 tan 30° = 344 lbf 
Wr = 595 tan 22.8° = 250 lbf 
W = 344i + 250j + 595k lbf 
RDC = 6i, RDG = 3i − 4.04j 
C 
T3 
D 
T2 
y 
3 
B A 
2 
x 
z 
y 
x 
Wr Wt 
Wa 
Wt 
Wa 
r4 
r3
Chapter 13 353 

 
Wt 
MD = RDC × FC + RDG ×W+ T = 0 (1) 
zC 
RDG ×W = −2404i − 1785j + 2140k 
RDC × FC = −6Fj + 6Fy 
Ck 
Substituting and solving Eq. (1) gives 
zC 
T = 2404i lbf · in 
F= −297.5 lbf 
Fy 
C 
= −356.7 lbf 

 
F = FD + FC +W = 0 
Substituting and solving gives 
FxC 
= −344 lbf 
Fy 
D 
= 106.7 lbf 
FzD 
= −297.5 lbf 
So 
FC = −344i − 356.7j − 297.5k lbf Ans. 
FD = 106.7j − 297.5k lbf Ans. 
13-39 Pt = 8 cos 15° = 7.727 teeth/in 
y 
2 
z 
x 
a 
Fa 
a2 
Fta 
2 
Fr 
a2 
Fa 
32 
Fr 
32 
Ft 
32 
G 
C 
D 
x 
z 
y 
Wr 
Wa 
4.04 
3 
3 
Fy 
C 
FxC 
FzC 
Fz 
T 
D 
Fy 
D
354 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
d2 = 16/7.727 = 2.07 in 
d3 = 36/7.727 = 4.66 in 
d4 = 28/7.727 = 3.62 in 
T2 = 63 025(7.5) 
1720 
= 274.8 lbf · in 
Wt = 274.8 
2.07/2 
= 266 lbf 
Wr = 266 tan 20° = 96.8 lbf 
Wa = 266 tan 15° = 71.3 lbf 
F2a = −266i − 96.8j − 71.3k lbf Ans. 
F3b = (266 − 96.8)i − (266 − 96.8)j 
= 169i − 169j lbf Ans. 
F4c = 96.8i + 266j + 71.3k lbf Ans. 
13-40 
d2 = N 
Pn cosψ 
= 14 
8 cos 30° 
Fa 
54 
= 2.021 in, d3 = 36 
8 cos 30° 
= 5.196 in 
d4 = 15 
5 cos 15° 
= 3.106 in, d5 = 45 
5 cos 15° 
= 9.317 in 
C 
x 
y 
z 
b 
Ft 
23 Fr 
23 
Fa 
23 
Ft 
54 
Fr 
54 
D 
G 
H 
3 
2 
3 
2.6R 
1.55R 
4 
3 
1 
2 
Fy 
F D xD 
FxC 
Fy 
C 
FzD 
y 
Fr 
43 
Fx 
b3 
Fy 
b3 
Fa 
23 
Fr 
23 
Ft 
23 
Ft 
43 
Fa 
43 
3 
Fb3 
z 
x 
b 
y 
Ft 
c4 
Fr 
c4 
Fac 
4 
4 
Fa 
34 
Fr 
34 
Ft 
34 
z 
x 
c
Chapter 13 355 
For gears 2 and 3: φt = tan−1(tan φn/cosψ) = tan−1(tan 20°/cos 30◦) = 22.8°, 
For gears 4 and 5: φt = tan−1(tan 20°/cos 15°) = 20.6°, 
Ft 
23 
= T2/r = 1200/(2.021/2) = 1188 lbf 
Ft 
54 
= 1188 
5.196 
3.106 
= 1987 lbf 
Fr 
23 
= Ft 
23 tan φt = 1188 tan 22.8° = 499 lbf 
Fr 
54 
= 1986 tan 20.6° = 746 lbf 
Fa 
23 
= Ft 
23 tanψ = 1188 tan 30° = 686 lbf 
Fa 
54 
= 1986 tan 15° = 532 lbf 
Next, designate the points of action on gears 4 and 3, respectively, as points G and H, 
as shown. Position vectors are 
RCG = 1.553j − 3k 
RCH = −2.598j − 6.5k 
RCD = −8.5k 
Force vectors are 
xC 
F54 = −1986i − 748j + 532k 
F23 = −1188i + 500j − 686k 
FC = Fi + Fy 
Cj 
FD = FxD 
i + Fy 
Dj + FzDk 
Now, a summation of moments about bearing C gives 

 
MC = RCG × F54 + RCH × F23 + RCD × FD = 0 
The terms for this equation are found to be 
RCG × F54 = −1412i + 5961j + 3086k 
RCH × F23 = 5026i + 7722j − 3086k 
RCD × FD = 8.5Fy 
Di − 8.5FxD 
j 
When these terms are placed back into the moment equation, the k terms, representing 
the shaft torque, cancel. The i and j terms give 
Fy 
D 
= −3614 
8.5 
= −425 lbf Ans. 
FxD 
= (13 683) 
8.5 
= 1610 lbf Ans. 
Next, we sum the forces to zero. 

 
F = FC + F54 + F23 + FD = 0 
Substituting, gives 
 
FxC 
i + Fy 
 
+ (−1987i − 746j + 532k) + (−1188i + 499j − 686k) 
Cj 
+(1610i − 425j + FzD 
k) = 0
356 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
Solving gives 
FxC 
= 1987 + 1188 − 1610 = 1565 lbf 
Fy 
C 
= 746 − 499 + 425 = 672 lbf 
FzD 
= −532 + 686 = 154 lbf Ans. 
13-41 
VW = πdWnW 
60 
= π(0.100)(600) 
60 
= π m/s 
WWt = H 
VW 
= 2000 
π 
= 637 N 
L = px NW = 25(1) = 25 mm 
λ = tan−1 L 
πdW 
= tan−1 25 
π(100) 
= 4.550° lead angle 
B 
y 
100 
100 
Wa 
50 
A x 
Wt 
W = WWt 
cos φn sin λ + f cos λ 
VS = VW 
cos λ 
= π 
cos 4.550° 
= 3.152 m/s 
G 
z 
Worm shaft diagram 
Wr 
In ft/min: VS = 3.28(3.152) = 10.33 ft/s = 620 ft/min 
Use f = 0.043 from curve A of Fig. 13-42. Then from the first of Eq. (13-43) 
W = 637 
cos 14.5°(sin 4.55°) + 0.043 cos 4.55° 
= 5323 N 
Wy = W sin φn = 5323 sin 14.5° = 1333 N 
Wz = 5323[cos 14.5°(cos 4.55°) − 0.043 sin 4.55°] = 5119 N 
The force acting against the worm is 
W = −637i + 1333j + 5119k N 
Thus A is the thrust bearing. Ans. 
RAG = −0.05j − 0.10k, RAB = −0.20k 

 
MA = RAG ×W+ RAB × FB + T = 0 
RAG ×W = −122.6i + 63.7j − 31.85k 
RAB × FB = 0.2Fy 
Bi − 0.2FxB 
j 
Substituting and solving gives 
xB 
T = 31.85 N · m Ans. 
F= 318.5 N, Fy 
B 
= 613 N 
So FB = 318.5i + 613j N Ans.
Chapter 13 357 
Or FB = [(613)2 + (318.5)2]1/2 = 691 N radial 

 
F = FA +W+ RB = 0 
FA = −(W+ FB) = −(−637i + 1333j + 5119k + 318.5i + 613j) 
= 318.5i − 1946j − 5119k Ans. 
Radial Fr 
A 
= 318.5i − 1946j N, 
FrA 
= [(318.5)2 + (−1946)2]1/2 = 1972 N 
Thrust FaA 
= −5119 N 
13-42 From Prob. 13-41 
WG = 637i − 1333j − 5119k N 
pt = px 
So dG = NG px 
π 
= 48(25) 
π 
= 382 mm 
Bearing D to take thrust load 

 
MD = RDG ×WG + RDC × FC + T = 0 
RDG = −0.0725i + 0.191j 
RDC = −0.1075i 
The position vectors are in meters. 
RDG ×WG = −977.7i − 371.1j − 25.02k 
RDC × FC = 0.1075 FzCj − 0.1075Fy 
Ck 
Putting it together and solving 
Gives 
G 
x 
y 
z 
Not to scale 
D 
FD 
FC 
WG 
C 
72.5 
191 
35 
T = 977.7 N · m Ans. 
FC = −233j + 3450k N, FC = 3460 N Ans. 

 
F = FC +WG + FD = 0 
FD = −(FC +WG) = −637i + 1566j + 1669k N Ans.
358 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 
Radial Fr 
D 
= 1566j + 1669k N 
Or FrD 
= 2289 N (total radial) 
Ft 
D 
= −637i N (thrust) 
13-43 
VW = π(1.5)(900) 
12 
= 353.4 ft/min 
Wx = WWt = 33 000(0.5) 
353.4 
= 46.69 lbf 
pt = px = π 
10 
= 0.314 16 in 
L = 0.314 16(2) = 0.628 in 
λ = tan−1 0.628 
π(1.5) 
= 7.59° 
W = 46.7 
0.75 
cos 14.5° sin 7.59° + 0.05 cos 7.59° 
= 263 lbf 
Wy = 263 sin 14.5◦ = 65.8 lbf 
Wz = 263[cos 14.5◦(cos 7.59◦) − 0.05 sin 7.59◦] = 251 lbf 
So W = 46.7i + 65.8j + 251k lbf Ans. 
T = 46.7(0.75) = 35 lbf · in Ans. 
13-44 
100:101 Mesh 
dP = 100 
48 
= 2.083 33 in 
dG = 101 
48 
= 2.104 17 in 
x 
y 
z 
WWt 
G 
T 
y 
z

More Related Content

What's hot

Gearbox design - MECH 393 final project
Gearbox design - MECH 393 final projectGearbox design - MECH 393 final project
Gearbox design - MECH 393 final projectStasik Nemirovsky
 
Ch06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shearCh06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shearDario Ch
 
12 Speed Gear Box Theory Notes by Prof. Sagar Dhotare
12 Speed Gear Box Theory Notes by Prof. Sagar Dhotare12 Speed Gear Box Theory Notes by Prof. Sagar Dhotare
12 Speed Gear Box Theory Notes by Prof. Sagar DhotareSagar Dhotare
 
DESIGN OF SOLID TRANSMISSION SHAFT
DESIGN OF SOLID TRANSMISSION SHAFTDESIGN OF SOLID TRANSMISSION SHAFT
DESIGN OF SOLID TRANSMISSION SHAFTAnimesh Bhattacharya
 
Chapter 5 failure theories final
Chapter 5  failure theories finalChapter 5  failure theories final
Chapter 5 failure theories finalKhalil Alhatab
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTESASHOK KUMAR RAJENDRAN
 
Springs - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IISprings - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IIDr. L K Bhagi
 
Basic of Brakes,
Basic of Brakes, Basic of Brakes,
Basic of Brakes, dodi mulya
 
solution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnstonsolution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnstonZia ur rahman
 
Stresses in flywheel rim.pptx
Stresses in flywheel rim.pptxStresses in flywheel rim.pptx
Stresses in flywheel rim.pptxHarikumarA4
 
kale amd khandale ic engine (1).pdf
kale amd khandale ic engine (1).pdfkale amd khandale ic engine (1).pdf
kale amd khandale ic engine (1).pdfShyam Mishra
 
Machine design lab manual
Machine design lab manualMachine design lab manual
Machine design lab manualbadri21
 

What's hot (20)

Shi20396 ch14
Shi20396 ch14Shi20396 ch14
Shi20396 ch14
 
SFD & BMD
SFD & BMDSFD & BMD
SFD & BMD
 
The Thick-Walled cylinder
The Thick-Walled cylinder The Thick-Walled cylinder
The Thick-Walled cylinder
 
Gearbox design - MECH 393 final project
Gearbox design - MECH 393 final projectGearbox design - MECH 393 final project
Gearbox design - MECH 393 final project
 
Ch06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shearCh06 07 pure bending & transverse shear
Ch06 07 pure bending & transverse shear
 
12 Speed Gear Box Theory Notes by Prof. Sagar Dhotare
12 Speed Gear Box Theory Notes by Prof. Sagar Dhotare12 Speed Gear Box Theory Notes by Prof. Sagar Dhotare
12 Speed Gear Box Theory Notes by Prof. Sagar Dhotare
 
DESIGN OF SOLID TRANSMISSION SHAFT
DESIGN OF SOLID TRANSMISSION SHAFTDESIGN OF SOLID TRANSMISSION SHAFT
DESIGN OF SOLID TRANSMISSION SHAFT
 
Shi20396 ch07
Shi20396 ch07Shi20396 ch07
Shi20396 ch07
 
Chapter 5 failure theories final
Chapter 5  failure theories finalChapter 5  failure theories final
Chapter 5 failure theories final
 
DME - Unit 5.pptx
DME - Unit 5.pptxDME - Unit 5.pptx
DME - Unit 5.pptx
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - IV NOTES
 
Springs - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IISprings - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-II
 
Basic of Brakes,
Basic of Brakes, Basic of Brakes,
Basic of Brakes,
 
solution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnstonsolution manual of mechanics of material by beer johnston
solution manual of mechanics of material by beer johnston
 
Stresses in flywheel rim.pptx
Stresses in flywheel rim.pptxStresses in flywheel rim.pptx
Stresses in flywheel rim.pptx
 
Thin cylinder
Thin cylinderThin cylinder
Thin cylinder
 
kale amd khandale ic engine (1).pdf
kale amd khandale ic engine (1).pdfkale amd khandale ic engine (1).pdf
kale amd khandale ic engine (1).pdf
 
WORM GEAR PPT
WORM GEAR PPTWORM GEAR PPT
WORM GEAR PPT
 
Machine design lab manual
Machine design lab manualMachine design lab manual
Machine design lab manual
 
Solution manual 13 15
Solution manual 13 15Solution manual 13 15
Solution manual 13 15
 

Viewers also liked

Exposicion de circuitos 2 potencia instantanea y promedio
Exposicion de circuitos 2 potencia instantanea y promedioExposicion de circuitos 2 potencia instantanea y promedio
Exposicion de circuitos 2 potencia instantanea y promedioAlejandro Alzate Arias
 
Mot tinh yeu dung nghia
Mot tinh yeu dung nghiaMot tinh yeu dung nghia
Mot tinh yeu dung nghiapeprocy
 
Ikp'ko;b0yp
Ikp'ko;b0ypIkp'ko;b0yp
Ikp'ko;b0ypnoylove
 
P pt keys for good and happy life.
P pt keys for good and happy life.P pt keys for good and happy life.
P pt keys for good and happy life.Rajasekhar Dasari
 
Exposing Opportunities in China A50 using CFD
Exposing Opportunities in China A50 using CFDExposing Opportunities in China A50 using CFD
Exposing Opportunities in China A50 using CFDPhillip CFD
 
Ergen medeeleh 201604 sar
Ergen medeeleh  201604 sarErgen medeeleh  201604 sar
Ergen medeeleh 201604 sarrtumur
 
4-31 NTC Information Sheet SEP 2012
4-31 NTC Information Sheet SEP 20124-31 NTC Information Sheet SEP 2012
4-31 NTC Information Sheet SEP 2012Tracey Jones
 
Tonometer Final NSF I-Corps presentation
Tonometer Final NSF I-Corps presentationTonometer Final NSF I-Corps presentation
Tonometer Final NSF I-Corps presentationStanford University
 
MySQL Idiosyncrasies That Bite
MySQL Idiosyncrasies That BiteMySQL Idiosyncrasies That Bite
MySQL Idiosyncrasies That BiteRonald Bradford
 
Lookbook "The ballet of the Tsars"
Lookbook "The ballet of the Tsars"Lookbook "The ballet of the Tsars"
Lookbook "The ballet of the Tsars"Patricia Rosales
 
Breve Sistema de Desenvolvimento Merrii a31
Breve Sistema de Desenvolvimento Merrii a31Breve Sistema de Desenvolvimento Merrii a31
Breve Sistema de Desenvolvimento Merrii a31Lojamundi
 
Some, any, another, other, each, every
Some, any, another, other, each, everySome, any, another, other, each, every
Some, any, another, other, each, everytheLecturette
 

Viewers also liked (20)

Exposicion de circuitos 2 potencia instantanea y promedio
Exposicion de circuitos 2 potencia instantanea y promedioExposicion de circuitos 2 potencia instantanea y promedio
Exposicion de circuitos 2 potencia instantanea y promedio
 
CORRIENTE ALTERNA
CORRIENTE ALTERNACORRIENTE ALTERNA
CORRIENTE ALTERNA
 
Building Comfort with MATLAB
Building Comfort with MATLABBuilding Comfort with MATLAB
Building Comfort with MATLAB
 
Mot tinh yeu dung nghia
Mot tinh yeu dung nghiaMot tinh yeu dung nghia
Mot tinh yeu dung nghia
 
Ikp'ko;b0yp
Ikp'ko;b0ypIkp'ko;b0yp
Ikp'ko;b0yp
 
P pt keys for good and happy life.
P pt keys for good and happy life.P pt keys for good and happy life.
P pt keys for good and happy life.
 
Managic presentation english
Managic presentation englishManagic presentation english
Managic presentation english
 
Exposing Opportunities in China A50 using CFD
Exposing Opportunities in China A50 using CFDExposing Opportunities in China A50 using CFD
Exposing Opportunities in China A50 using CFD
 
Ergen medeeleh 201604 sar
Ergen medeeleh  201604 sarErgen medeeleh  201604 sar
Ergen medeeleh 201604 sar
 
4-31 NTC Information Sheet SEP 2012
4-31 NTC Information Sheet SEP 20124-31 NTC Information Sheet SEP 2012
4-31 NTC Information Sheet SEP 2012
 
Lift hero class1_presentation
Lift hero class1_presentationLift hero class1_presentation
Lift hero class1_presentation
 
Tonometer Final NSF I-Corps presentation
Tonometer Final NSF I-Corps presentationTonometer Final NSF I-Corps presentation
Tonometer Final NSF I-Corps presentation
 
33559
3355933559
33559
 
MySQL Idiosyncrasies That Bite
MySQL Idiosyncrasies That BiteMySQL Idiosyncrasies That Bite
MySQL Idiosyncrasies That Bite
 
Freefixer log
Freefixer logFreefixer log
Freefixer log
 
Lookbook "The ballet of the Tsars"
Lookbook "The ballet of the Tsars"Lookbook "The ballet of the Tsars"
Lookbook "The ballet of the Tsars"
 
Breve Sistema de Desenvolvimento Merrii a31
Breve Sistema de Desenvolvimento Merrii a31Breve Sistema de Desenvolvimento Merrii a31
Breve Sistema de Desenvolvimento Merrii a31
 
Aquamacs Manual
Aquamacs ManualAquamacs Manual
Aquamacs Manual
 
Some, any, another, other, each, every
Some, any, another, other, each, everySome, any, another, other, each, every
Some, any, another, other, each, every
 
NOVEL 2
NOVEL 2NOVEL 2
NOVEL 2
 

Similar to Shi20396 ch13

Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionfercrotti
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricasJhayson Carvalho
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfDannyCoronel5
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdffranciscoantoniomonr1
 
Shigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th editionShigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th editionLuis Eduin
 
Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fimJhayson Carvalho
 
IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET Journal
 

Similar to Shi20396 ch13 (20)

Capítulo 13 engrenagens
Capítulo 13   engrenagensCapítulo 13   engrenagens
Capítulo 13 engrenagens
 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Shi20396 ch16
Shi20396 ch16Shi20396 ch16
Shi20396 ch16
 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricas
 
Capítulo 16 embreagens
Capítulo 16   embreagensCapítulo 16   embreagens
Capítulo 16 embreagens
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
Budynas Sm Ch13
Budynas Sm Ch13Budynas Sm Ch13
Budynas Sm Ch13
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
 
Capítulo 03 materiais
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
 
Shigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th editionShigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th edition
 
Shi20396 ch05
Shi20396 ch05Shi20396 ch05
Shi20396 ch05
 
Shi20396 ch15
Shi20396 ch15Shi20396 ch15
Shi20396 ch15
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
Shi20396 ch06
Shi20396 ch06Shi20396 ch06
Shi20396 ch06
 
Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fim
 
IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...
 

More from Paralafakyou Mens

Corriente alterna trifasica
 Corriente alterna trifasica Corriente alterna trifasica
Corriente alterna trifasicaParalafakyou Mens
 
Introduccion a la discucion filosofica de lo moral
Introduccion a la discucion filosofica de lo moralIntroduccion a la discucion filosofica de lo moral
Introduccion a la discucion filosofica de lo moralParalafakyou Mens
 
Marco legal del profecional en analista de sistemas
Marco legal del profecional en analista de sistemasMarco legal del profecional en analista de sistemas
Marco legal del profecional en analista de sistemasParalafakyou Mens
 
Insalar, compilar y depurar cobol
Insalar, compilar y depurar cobolInsalar, compilar y depurar cobol
Insalar, compilar y depurar cobolParalafakyou Mens
 
Ejercicios de sistema de datos
Ejercicios de sistema de datosEjercicios de sistema de datos
Ejercicios de sistema de datosParalafakyou Mens
 
Como instalar Cobol en window 7
Como instalar Cobol en window 7Como instalar Cobol en window 7
Como instalar Cobol en window 7Paralafakyou Mens
 
Instalar e configurar o cobol45 no dos
Instalar e configurar o cobol45 no dosInstalar e configurar o cobol45 no dos
Instalar e configurar o cobol45 no dosParalafakyou Mens
 
Ingles tecnico i para informática 2013 en oficio
Ingles tecnico i para informática 2013  en oficioIngles tecnico i para informática 2013  en oficio
Ingles tecnico i para informática 2013 en oficioParalafakyou Mens
 
Programacion de juegos para celulares
Programacion de juegos para celularesProgramacion de juegos para celulares
Programacion de juegos para celularesParalafakyou Mens
 
Un proyecto con fujitsu power cobol
Un proyecto con fujitsu power cobolUn proyecto con fujitsu power cobol
Un proyecto con fujitsu power cobolParalafakyou Mens
 
Montaje y desmontaje de rodamientos
Montaje y desmontaje de rodamientosMontaje y desmontaje de rodamientos
Montaje y desmontaje de rodamientosParalafakyou Mens
 

More from Paralafakyou Mens (20)

Corriente alterna trifasica
 Corriente alterna trifasica Corriente alterna trifasica
Corriente alterna trifasica
 
Introduccion a la discucion filosofica de lo moral
Introduccion a la discucion filosofica de lo moralIntroduccion a la discucion filosofica de lo moral
Introduccion a la discucion filosofica de lo moral
 
Marco legal del profecional en analista de sistemas
Marco legal del profecional en analista de sistemasMarco legal del profecional en analista de sistemas
Marco legal del profecional en analista de sistemas
 
Insalar, compilar y depurar cobol
Insalar, compilar y depurar cobolInsalar, compilar y depurar cobol
Insalar, compilar y depurar cobol
 
Manula de cobol
Manula de cobolManula de cobol
Manula de cobol
 
Guia de cobol
Guia de cobolGuia de cobol
Guia de cobol
 
2° practico p. politica
2° practico p. politica2° practico p. politica
2° practico p. politica
 
Ejercicios de sistema de datos
Ejercicios de sistema de datosEjercicios de sistema de datos
Ejercicios de sistema de datos
 
Etica final
Etica finalEtica final
Etica final
 
Como instalar Cobol en window 7
Como instalar Cobol en window 7Como instalar Cobol en window 7
Como instalar Cobol en window 7
 
Instalar e configurar o cobol45 no dos
Instalar e configurar o cobol45 no dosInstalar e configurar o cobol45 no dos
Instalar e configurar o cobol45 no dos
 
Ingles tecnico i para informática 2013 en oficio
Ingles tecnico i para informática 2013  en oficioIngles tecnico i para informática 2013  en oficio
Ingles tecnico i para informática 2013 en oficio
 
Programacion de juegos para celulares
Programacion de juegos para celularesProgramacion de juegos para celulares
Programacion de juegos para celulares
 
Teorías étcias
Teorías étciasTeorías étcias
Teorías étcias
 
Un proyecto con fujitsu power cobol
Un proyecto con fujitsu power cobolUn proyecto con fujitsu power cobol
Un proyecto con fujitsu power cobol
 
Montaje y desmontaje de rodamientos
Montaje y desmontaje de rodamientosMontaje y desmontaje de rodamientos
Montaje y desmontaje de rodamientos
 
Curso de power cobol
Curso de power cobolCurso de power cobol
Curso de power cobol
 
Niquel y sus aleaciones
Niquel y sus aleacionesNiquel y sus aleaciones
Niquel y sus aleaciones
 
Materiales magneticos
Materiales magneticosMateriales magneticos
Materiales magneticos
 
Aluminio
AluminioAluminio
Aluminio
 

Shi20396 ch13

  • 1. Chapter 13 13-1 dP = 17/8 = 2.125 in dG = N2 N3 dP = 1120 544 (2.125) = 4.375 in NG = PdG = 8(4.375) = 35 teeth Ans. C = (2.125 + 4.375)/2 = 3.25 in Ans. 13-2 nG = 1600(15/60) = 400 rev/min Ans. p = πm = 3π mm Ans. C = [3(15 + 60)]/2 = 112.5 mm Ans. 13-3 NG = 20(2.80) = 56 teeth Ans. dG = NGm = 56(4) = 224 mm Ans. dP = NPm = 20(4) = 80 mm Ans. C = (224 + 80)/2 = 152 mm Ans. 13-4 Mesh: a = 1/P = 1/3 = 0.3333 in Ans. b = 1.25/P = 1.25/3 = 0.4167 in Ans. c = b − a = 0.0834 in Ans. p = π/P = π/3 = 1.047 in Ans. t = p/2 = 1.047/2 = 0.523 in Ans. Pinion Base-Circle: d1 = N1/P = 21/3 = 7 in d1b = 7 cos 20° = 6.578 in Ans. Gear Base-Circle: d2 = N2/P = 28/3 = 9.333 in d2b = 9.333 cos 20° = 8.770 in Ans. Base pitch: pb = pc cos φ = (π/3) cos 20° = 0.984 in Ans. Contact Ratio: mc = Lab/pb = 1.53/0.984 = 1.55 Ans. See the next page for a drawing of the gears and the arc lengths.
  • 2. 334 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-5 (a) AO = 2.333 2 2 A B + P 14 12.6 5.333 2 2 1/2 = 2.910 in Ans. (b) γ = tan−1(14/32) = 23.63° Ans. = tan−1(32/14) = 66.37° Ans. (c) dP = 14/6 = 2.333 in, dG = 32/6 = 5.333 in Ans. (d) From Table 13-3, 0.3AO = 0.873 in and 10/P = 10/6 = 1.67 0.873 1.67 ∴ F = 0.873 in Ans. 13-6 (a) pn = π/5 = 0.6283 in 30 P G pt = pn/cosψ = 0.6283/cos 30° = 0.7255 in px = pt/tanψ = 0.7255/tan 30° = 1.25 in 21 3 51 3 AO 10.5 Arc of approach 0.87 in Ans. Arc of recess 0.77 in Ans. Arc of action 1.64 in Ans. Lab 1.53 in 10 O2 O1
  • 3. Chapter 13 335 (b) pnb = pn cos φn = 0.6283 cos 20° = 0.590 in Ans. (c) Pt = Pn cosψ = 5 cos 30° = 4.33 teeth/in φt = tan−1(tan φn/cosψ) = tan−1(tan 20°/cos 30◦) = 22.8° Ans. (d) Table 13-4: a = 1/5 = 0.200 in Ans. b = 1.25/5 = 0.250 in Ans. dP = 17 5 cos 30° = 3.926 in Ans. dG = 34 5 cos 30° = 7.852 in Ans. 13-7 φn = 14.5°, Pn = 10 teeth/in (a) pn = π/10 = 0.3142 in Ans. pt = pn cosψ = 0.3142 cos 20° = 0.3343 in Ans. px = pt tanψ = 0.3343 tan 20° = 0.9185 in Ans. (b) Pt = Pn cosψ = 10 cos 20° = 9.397 teeth/in φt = tan−1 tan 14.5° cos 20° = 15.39° Ans. (c) a = 1/10 = 0.100 in Ans. b = 1.25/10 = 0.125 in Ans. dP = 19 10 cos 20° = 2.022 in Ans. dG = 57 10 cos 20° = 6.066 in Ans. G 20 P
  • 4. 336 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-8 From Ex. 13-1, a 16-tooth spur pinion meshes with a 40-tooth gear, mG = 40/16 = 2.5. Equations (13-10) through (13-13) apply. (a) The smallest pinion tooth count that will run with itself is found from Eq. (13-10) NP ≥ 4k 6 sin2 φ 1 + 1 + 3 sin2 φ ≥ 4(1) 6 sin2 20° 1 + 1 + 3 sin2 20° ≥ 12.32→13 teeth Ans. (b) The smallest pinion that will mesh with a gear ratio of mG = 2.5, from Eq. (13-11) is NP ≥ 2(1) [1 + 2(2.5)] sin2 20° 2.5 + 2.52 + [1 + 2(2.5)] sin2 20° ≥ 14.64→15 pinion teeth Ans. (c) The smallest pinion that will mesh with a rack, from Eq. (13-12) NP ≥ 4k 2 sin2 φ = 4(1) 2 sin2 20° ≥ 17.097→18 teeth Ans. (d) The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-13) is NG ≤ N2P sin2 φ − 4k2 4k − 2NP sin2 φ ≤ 132 sin2 20° − 4(1)2 4(1) − 2(13) sin2 20° ≤ 16.45→16 teeth Ans. 13-9 From Ex. 13-2, a 20° pressure angle, 30° helix angle, pt = 6 teeth/in pinion with 18 full depth teeth, and φt = 21.88°. (a) The smallest tooth count that will mesh with a like gear, from Eq. (13-21), is NP ≥ 4k cosψ 6 sin2 φt 1 + 1 + 3 sin2 φt ≥ 4(1) cos 30° 6 sin2 21.88° 1 + 1 + 3 sin2 21.88° ≥ 9.11→10 teeth Ans. (b) The smallest pinion-tooth count that will run with a rack, from Eq. (13-23), is NP ≥ 4k cosψ 2 sin2 φt ≥ 4(1) cos 30◦ 2 sin2 21.88° ≥ 12.47→13 teeth Ans.
  • 5. Chapter 13 337 (c) The largest gear tooth possible, from Eq. (13-24) is NG ≤ N2P sin2 φt − 4k2 cos2 ψ 4k cosψ − 2NP sin2 φt ≤ 102 sin2 21.88° − 4(12) cos2 30° 4(1) cos 30° − 2(10) sin2 21.88° ≤ 15.86→15 teeth Ans. 13-10 Pressure Angle: φt = tan−1 tan 20° cos 30° = 22.796° Program Eq. (13-24) on a computer using a spreadsheet or code and increment NP. The first value of NP that can be doubled is NP = 10 teeth, where NG ≤ 26.01 teeth. So NG = 20 teeth will work. Higher tooth counts will work also, for example 11:22, 12:24, etc. Use 10:20 Ans. 13-11 Refer to Prob. 13-10 solution. The first value of NP that can be multiplied by 6 is NP = 11 teeth where NG ≤ 93.6 teeth. So NG = 66 teeth. Use 11:66 Ans. 13-12 Begin with the more general relation, Eq. (13-24), for full depth teeth. NG = N2P sin2 φt − 4 cos2 ψ 4 cosψ − 2NP sin2 φt Set the denominator to zero 4 cosψ − 2NP sin2 φt = 0 From which sin φt = 2 cosψ NP φt = sin−1 2 cosψ NP For NP = 9 teeth and cosψ = 1 φt = sin−1
  • 6. 2(1) 9 = 28.126° Ans. 13-13 18T 32T 25, n 20, m 3 mm (a) pn = πmn = 3π mm Ans. pt = 3π/cos 25° = 10.4 mm Ans. px = 10.4/tan 25° = 22.3 mm Ans.
  • 7. 338 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design (b) mt = 10.4/π = 3.310 mm Ans. φt = tan−1 tan 20° cos 25° = 21.88° Ans. (c) dP = 3.310(18) = 59.58 mm Ans. dG = 3.310(32) = 105.92 mm Ans. 13-14 (a) The axial force of 2 on shaft a is in the negative direction. The axial force of 3 on shaft b is in the positive direction of z. Ans. b a 3 z 2 The axial force of gear 4 on shaft b is in the positive z-direction. The axial force of gear 5 on shaft c is in the negative z-direction. Ans. (b) nc = n5 = 14 54 16 36 5 4 c b z (900) = +103.7 rev/min ccw Ans. (c) dP2 = 14/(10 cos 30°) = 1.6166 in dG3 = 54/(10 cos 30°) = 6.2354 in Cab = 1.6166 + 6.2354 2 = 3.926 in Ans. dP4 = 16/(6 cos 25°) = 2.9423 in dG5 = 36/(6 cos 25°) = 6.6203 in Cbc = 4.781 in Ans. 13-15 e = 20 40 8 17 20 60 = 4 51 nd = 4 51 (600) = 47.06 rev/min cw Ans.
  • 8. Chapter 13 339 13-16 e = 6 10 18 38 20 48 3 36 = 3 304 na = 3 304 (1200) = 11.84 rev/min cw Ans. 13-17 (a) nc = 12 40 · 1 1 (540) = 162 rev/min cw about x. Ans. (b) dP = 12/(8 cos 23°) = 1.630 in dG = 40/(8 cos 23°) = 5.432 in dP + dG 2 = 3.531 in Ans. (c) d = 32 4 = 8 in at the large end of the teeth. Ans. 13-18 (a) The planet gears act as keys and the wheel speeds are the same as that of the ring gear. Thus nA = n3 = 1200(17/54) = 377.8 rev/min Ans. (b) nF = n5 = 0, nL = n6, e = −1 −1 = n6 − 377.8 0 − 377.8 377.8 = n6 − 377.8 n6 = 755.6 rev/min Ans. Alternatively, the velocity of the center of gear 4 is v4c ∝ N6n3 . The velocity of the left edge of gear 4 is zero since the left wheel is resting on the ground. Thus, the ve-locity of the right edge of gear 4 is 2v4c ∝ 2N6n3. This velocity, divided by the radius of gear 6 ∝ N6, is angular velocity of gear 6–the speed of wheel 6. ∴ n6 = 2N6n3 N6 = 2n3 = 2(377.8) = 755.6 rev/min Ans. (c) The wheel spins freely on icy surfaces, leaving no traction for the other wheel. The car is stalled. Ans. 13-19 (a) The motive power is divided equally among four wheels instead of two. (b) Locking the center differential causes 50 percent of the power to be applied to the rear wheels and 50 percent to the front wheels. If one of the rear wheels, rests on a slippery surface such as ice, the other rear wheel has no traction. But the front wheels still provide traction, and so you have two-wheel drive. However, if the rear differential is locked, you have 3-wheel drive because the rear-wheel power is now distributed 50-50.
  • 9. 340 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-20 Let gear 2 be first, then nF = n2 = 0. Let gear 6 be last, then nL = n6 = −12 rev/min. e = 20 30 16 34 = 16 51 , e = nL − nA nF − nA (0 − nA) 16 51 = −12 − nA nA = −12 35/51 = −17.49 rev/min (negative indicates cw) Ans. Alternatively, since N ∝ r , let v = Nn (crazy units). v = N6n6 N6 = 20 + 30 − 16 = 34 teeth vA = v ⇒ = N4N6n6 vA N4 N4 − N5 N4 − N5 nA = vA N2 + N4 = N4N6n6 (N2 + N4)(N4 − N5) = 30(34)(12) (20 + 30)(30 − 16) = 17.49 rev/min cw Ans. 13-21 Let gear 2 be first, then nF = n2 = 180 rev/min. Let gear 6 be last, then nL = n6 = 0. e = 20 30 16 34 = 16 51 , e = nL − nA nF − nA (180 − nA) 16 51 = (0 − nA) nA = −16 35 180 = −82.29 rev/min The negative sign indicates opposite n2 ∴ nA = 82.29 rev/min cw Ans. Alternatively, since N ∝ r , let v = Nn (crazy units). vA N5 = v N4 − N5 = N2n2 N4 − N5 vA = N5N2n2 N4 − N5 nA = vA N2 + N4 = N5N2n2 (N2 + N4)(N4 − N5) = 16(20)(180) (20 + 30)(30 − 16) = 82.29 rev/min cw Ans. 5 4 v 0 v N2n2 N2 vA 2 4 5 v v 0 vA 2
  • 10. Chapter 13 341 13-22 N5 = 12 + 2(16) + 2(12) = 68 teeth Ans. Let gear 2 be first, nF = n2 = 320 rev/min. Let gear 5 be last, nL = n5 = 0 e = 12 16 16 12 12 68 = 3 17 , e = nL − nA nF − nA 320 − nA = 17 3 (0 − nA) nA = − 3 14 (320) = −68.57 rev/min The negative sign indicates opposite of n2 ∴ nA = 68.57 rev/min cw Ans. Alternatively, nA = n2N2 nA(N2 2N3 N4) 2(N3 + N4) = 320(12) 2(16 + 12) = 68.57 rev/min cw Ans. 13-23 Let nF = n2 then nL = n7 = 0. e = −24 18 18 30 36 54 = − 8 15 e = nL − n5 nF − n5 = − 8 15 0 − 5 n2 − 5 = − 8 15 ⇒ n2 = 5 + 15 8 (5) = 14.375 turns in same direction 13-24 (a) Let nF = n2 = 0, then nL = n5. e = 99 100 101 100 = 9999 10 000 , e = nL − nA nF − nA = nL − nA 0 − nA nL − nA = −enA nL = nA(−e + 1) nL nA = 1 − e = 1 − 9999 10 000 = 1 10 000 = 0.0001 Ans. (b) d4 = N4 P = 101 10 = 10.1 in d5 = 100 10 = 10 in dhousing 2 d4 + d5 2 = 2 10.1 + 10 2 = 30.2 in Ans. v 0 nA(N2 N3) v n2N2 2nA(N2 2N3 N4) n2N2 2nA(N2 N3) 2nA(N2 2N3 N4) 2nA(N2 N3) n2N2
  • 11. 342 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-25 n2 = nb = nF, nA = na, nL = n5 = 0 e = − 21 444 = nL − nA nF − nA − 21 444 (nF − nA) = 0 − nA With shaft b as input − 21 444 nF + 21 444 nA + 444 444 nA = 0 nA nF = na nb = 21 465 na = 21 465 nb, inthe same direction as shaft b, the input. Ans. Alternatively, vA N4 = n2N2 N3 + N4 vA = n2N2N4 N3 + N4 na = nA = vA N2 + N3 = n2N2N4 (N2 + N3)(N3 + N4) = 18(21)(nb) (18 + 72)(72 + 21) = 21 465 nb in the same direction as b Ans. v 0 13-26 nF = n2 = na, nL = n6 = 0 e = −24 18 22 64 = −11 24 , e = nL − nA nF − nA = 0 − nb na − nb −11 24 = 0 − nb na − nb ⇒ nb na = 11 35 Ans. Yes, both shafts rotate in the same direction. Ans. Alternatively, vA N5 = n2N2 N3 + N5 = N2 N3 + N5 na, vA = N2N5 N3 + N5 na nA = nb = vA N2 + N3 = N2N5 (N2 + N3)(N3 + N5) na nb na = 24(22) (24 + 18)(22 + 18) = 11 35 Ans. nb rotates ccw ∴ Yes Ans. 13-27 n2 = nF = 0, nL = n5 = nb, nA = na e = +20 24 20 24 = 25 36 3 5 v 0 vA n2N2 2 3 4 2 vA n2N2
  • 12. Chapter 13 343 25 36 = nb − na 0 − na nb na = 11 36 Ans. Same sense, therefore shaft b rotates in the same direction as a. Ans. Alternatively, v5 N3 − N4 = (N2 + N3)na N3 v5 = (N2 + N3)(N3 − N4)n N3 nb = v5 N5 = (N2 + N3)(N3 − N4)na N3N5 nb na = (20 + 24)(24 − 20) 24(24) = 11 36 same sense Ans. 13-28 (a) ω = 2πn/60 H = Tω = 2πTn/60 (T in N · m, H in W) So T = 60H(103) 2πn = 9550H/n (H in kW, n in rev/min) Ta = 9550(75) 1800 = 398 N · m r2 = mN2 2 = 5(17) 2 = 42.5 mm So Ft 32 = Ta r2 = 398 42.5 = 9.36 kN 9.36 2 a F3b = −Fb3 = 2(9.36) = 18.73 kN in the positive x-direction. Ans. See the figure in part (b) on the following page. Ta2 398 N•m Ft 32 3 4 v5 v 0 (N2 N3)na
  • 13. 344 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design (b) r4 = mN4 2 = 5(51) 2 = 127.5 mm Ft 43 Tc4 = 9.36(127.5) = 1193 N · m ccw ∴ T4c = 1193 N · m cw Ans. Note: The solution is independent of the pressure angle. 13-29 d = N 6 2 4 d2 = 4 in, d4 = 4 in, d5 = 6 in, d6 = 24 in e = 24 24 24 36 36 144 = 1/6, nP = n2 = 1000 rev/min nL = n6 = 0 e = nL − nA nF − nA = 0 − nA 1000 − nA nA = −200 rev/min 5 6 9.36 4 c Tc4 1193 b 9.36 O 3 9.36 18.73 Ft 23 Fb3
  • 14. Chapter 13 345 Input torque: T2 = 63 025H n T2 = 63 025(25) 1000 = 1576 lbf · in For 100 percent gear efficiency Tarm = 63 025(25) 200 = 7878 lbf · in Gear 2 Wt = 1576 2 = 788 lbf Fr 32 = 788 tan 20° = 287 lbf Ft a2 n T2 1576 lbf • in 2 Fr a2 Fr 2 Gear 4 FA4 = 2Wt = 2(788) = 1576 lbf Wt 42 Wt Wt Fr Fr n4 Gear 5 Arm Fr 287 lbf 2Wt 1576 lbf 5 Wt 788 lbf Wt Fr Tout = 1576(9) − 1576(4) = 7880 lbf · in Ans. FA4 1576 lbf 4 4 5 1576 lbf Tout 13-30 Given: P = 2 teeth/in, nP = 1800 rev/min cw, N2 = 18T, N3 = 32T, N4 = 18T, N5 = 48T. Pitch Diameters: d2 = 18/2 = 9 in; d3 = 32/2 = 16 in; d4 = 18/2 = 9 in; d5 = 48/2 = 24 in.
  • 15. 346 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Gear 2 Ta2 = 63 025(200)/1800 = 7003 lbf · in Wt = 7003/4.5 = 1556 lbf Wr = 1556 tan 20° = 566 lbf 2 Wr 566 lbf a Wt 1556 lbf Ta2 7003 lbf•in Gears 3 and 4 Wt(4.5) = 1556(8), Wt = 2766 lbf Wr = 2766 tan 20◦ = 1007 lbf Ans. b 3 4 y x Wt 2766 lbf Wr 1007 lbf Wr 566 lbf Wt 1556 lbf 13-31 Given: P = 5 teeth/in, N2 = 18T, N3 = 45T, φn = 20°, H = 32 hp, n2 = 1800 rev/min. Gear 2 Tin = 63 025(32) 1800 = 1120 lbf · in dP = 18 5 = 3.600 in dG = 45 5 = 9.000 in Wt 32 = 1120 3.6/2 = 622 lbf Wr 32 = 622 tan 20° = 226 lbf Fta 2 = Wt 32 = 622 lbf, Fr a2 = Wr 32 = 226 lbf Fa2 = (6222 + 2262)1/2 = 662 lbf 2 Wr a Tin Wt 32 32 Fr a2 Ft a2 Each bearing on shaft a has the same radial load of RA = RB = 662/2 = 331 lbf.
  • 16. Chapter 13 347 Gear 3 Wt 23 = Wt 32 = 622 lbf Wr 23 = Wr 32 = 226 lbf Fb3 = Fb2 = 662 lbf RC = RD = 662/2 = 331 lbf r 3 Fb Each bearing on shaft b has the same radial load which is equal to the radial load of bear-ings, A and B. Thus, all four bearings have the same radial load of 331 lbf. Ans. 13-32 Given: P = 4 teeth/in, φn = 20◦, NP = 20T, n2 = 900 rev/min. d2 = NP P = 20 4 = 5.000 in Tin = 63 025(30)(2) 900 = 4202 lbf · in Wt 32 = Tin/(d2/2) = 4202/(5/2) = 1681 lbf Wr 32 = 1681 tan 20◦ = 612 lbf 4202 lbf•in y Equivalent Wr 32 612 lbf The motor mount resists the equivalent forces and torque. The radial force due to torque Fr = 4202 14(2) = 150 lbf Forces reverse with rotational sense as torque reverses. C D A B 150 14 150 150 150 4202 lbf • in y 2 612 lbf 1681 lbf z z 2 Wt 32 1681 lbf Load on 2 due to 3 3 2 y x y z 3 Tout Wt 23r3 2799 lbf•in b Fb t 3 Wt 23 Wr 23
  • 17. 348 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design The compressive loads at A and D are absorbed by the base plate, not the bolts. For Wt 32 , the tensions in C and D are MAB = 0 1681(4.875 + 15.25) − 2F(15.25) = 0 F = 1109 lbf If Wt F F 32 reverses, 15.25 in changes to 13.25 in, 4.815 in changes to 2.875 in, and the forces change direction. For A and B, 1681(2.875) − 2F1(13.25) = 0 ⇒ F1 = 182.4 lbf For Wr 32 F F2 2 M = 612(4.875 + 11.25/2) = 6426 lbf · in a = (14/2)2 + (11.25/2)2 = 8.98 in F2 = 6426 4(8.98) = 179 lbf At C and D, the shear forces are: FS1 = [153 + 179(5.625/8.98)]2 + [179(7/8.98)]2 = 300 lbf At A and B, the shear forces are: FS2 = [153 − 179(5.625/8.98)]2 + [179(7/8.98)]2 = 145 lbf C a D 153 lbf 153 lbf F2 F2 612 4 153 lbf 4.875 11.25 14 612 lbf 153 lbf B C 15.25 4.875 1681 lbf D F1 F1 A
  • 18. Chapter 13 349 The shear forces are independent of the rotational sense. The bolt tensions and the shear forces for cw rotation are, Tension (lbf) Shear (lbf) A 0 145 B 0 145 C 1109 300 D 1109 300 For ccw rotation, Tension (lbf) Shear (lbf) A 182 145 B 182 145 C 0 300 D 0 300 13-33 Tin = 63 025H/n = 63 025(2.5)/240 = 656.5 lbf · in Wt = T/r = 656.5/2 = 328.3 lbf γ = tan−1(2/4) = 26.565° = tan−1(4/2) = 63.435° a = 2 + (1.5 cos 26.565°)/2 = 2.67 in Wr = 328.3 tan 20° cos 26.565° = 106.9 lbf Wa = 328.3 tan 20° sin 26.565° = 53.4 lbf W = 106.9i − 53.4j + 328.3k lbf RAG = −2i + 5.17j, RAB = 2.5j M4 = RAG ×W+ RAB × FB + T = 0 Wa a FzB Fx B z x Solving gives RAB × FB = 2.5FzB i − 2.5FxB k RAG ×W = 1697i + 656.6j − 445.9k So (1697i + 656.6j − 445.9k) + 2.5FzB i − 2.5FxB = 0 k + T j FzB = −1697/2.5 = −678.8 lbf T = −656.6 lbf · in FxB = −445.9/2.5 = −178.4 lbf y 2 2 1 2 B A G W Wt r Tin Not to scale Fy A FzA Fx A
  • 19. 350 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design So FB = [(−678.8)2 + (−178.4)2]1/2 = 702 lbf Ans. FA = −(FB +W) = −(−178.4i − 678.8k + 106.9i − 53.4j + 328.3k) = 71.5i + 53.4j + 350.5k FA (radial) = (71.52 + 350.52)1/2 = 358 lbf Ans. FA (thrust) = 53.4 lbf Ans. 13-34 d2 = 15/10 = 1.5 in, Wt = 30 lbf, d3 = 25 10 = 2.5 in γ = tan−1 0.75 1.25 = 30.96°, = 59.04° DE = 9 16 + 0.5 cos 59.04° = 0.8197 in Wr = 30 tan 20° cos 59.04° = 5.617 lbf Wa = 30 tan 20° sin 59.04° = 9.363 lbf W = −5.617i − 9.363j + 30k RDG = 0.8197j + 1.25i RDC = −0.625j MD = RDG ×W+ RDC × FC + T = 0 RDG ×W = 24.591i − 37.5j − 7.099k RDC × FC = −0.625FzC i + 0.625FxC k T = 37.5 lbf · in Ans. FC = 11.4i + 39.3k lbf Ans. FC = (11.42 + 39.32)1/2 = 40.9 lbf Ans. F =0 FD = −5.78i + 9.363j − 69.3k lbf FD (radial) = [(−5.78)2 + (−69.3)2]1/2 = 69.5 lbf Ans. FD (thrust) = Wa = 9.363 lbf Ans. Wr Wa Wt z 0.8197 FxD D C E G x y 5 8 1.25 Not to scale FzD FxC FzC Fy D 1.25 0.75
  • 20. Chapter 13 351 13-35 Sketch gear 2 pictorially. Pt = Pn cosψ = 4 cos 30° = 3.464 teeth/in φt = tan−1 tan φn cosψ = tan−1 tan 20° cos 30° = 22.80° Sketch gear 3 pictorially, dP = 18 3.464 z y = 5.196 in Pinion (Gear 2) Wr = Wt tan φt = 800 tan 22.80° = 336 lbf Wa = Wt tanψ = 800 tan 30° = 462 lbf W = −336i − 462j + 800k lbf Ans. W = [(−336)2 + (−462)2 + 8002]1/2 = 983 lbf Ans. Gear 3 W = 336i + 462j − 800k lbf Ans. W = 983 lbf Ans. dG = 32 3.464 = 9.238 in TG = Wtr = 800(9.238) = 7390 lbf · in 13-36 From Prob. 13-35 solution, 3 462 336 336 462 Notice that the idler shaft reaction contains a couple tending to turn the shaft end-over-end. Also the idler teeth are bent both ways. Idlers are more severely loaded than other gears, belying their name. Thus be cautious. 800 336 462 4 800 800 462 800 2 336 Wa TG Wr Wt x 3 Wa Wr T Wt x y z 2
  • 21. 352 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 13-37 Gear 3: Pt = Pn cosψ = 7 cos 30° = 6.062 teeth/in tan φt = tan 20° cos 30° = 0.4203, φt = 22.8° d3 = 54 6.062 = 8.908 in Wt = 500 lbf Wa = 500 tan 30° = 288.7 lbf Wr = 500 tan 22.8° = 210.2 lbf W3 = 210.2i + 288.7j − 500k lbf Ans. Gear 4: Wr d4 = 14 6.062 = 2.309 in Wt = 500 8.908 2.309 = 1929 lbf Wa = 1929 tan 30° = 1114 lbf Wr = 1929 tan 22.8° = 811 lbf W4 = −811i + 1114j − 1929k lbf Ans. 13-38 Pt = 6 cos 30° = 5.196 teeth/in d3 = 42 5.196 = 8.083 in φt = 22.8° d2 = 16 5.196 = 3.079 in T2 = 63 025(25) 1720 = 916 lbf · in Wt = T r = 916 3.079/2 = 595 lbf Wa = 595 tan 30° = 344 lbf Wr = 595 tan 22.8° = 250 lbf W = 344i + 250j + 595k lbf RDC = 6i, RDG = 3i − 4.04j C T3 D T2 y 3 B A 2 x z y x Wr Wt Wa Wt Wa r4 r3
  • 22. Chapter 13 353 Wt MD = RDC × FC + RDG ×W+ T = 0 (1) zC RDG ×W = −2404i − 1785j + 2140k RDC × FC = −6Fj + 6Fy Ck Substituting and solving Eq. (1) gives zC T = 2404i lbf · in F= −297.5 lbf Fy C = −356.7 lbf F = FD + FC +W = 0 Substituting and solving gives FxC = −344 lbf Fy D = 106.7 lbf FzD = −297.5 lbf So FC = −344i − 356.7j − 297.5k lbf Ans. FD = 106.7j − 297.5k lbf Ans. 13-39 Pt = 8 cos 15° = 7.727 teeth/in y 2 z x a Fa a2 Fta 2 Fr a2 Fa 32 Fr 32 Ft 32 G C D x z y Wr Wa 4.04 3 3 Fy C FxC FzC Fz T D Fy D
  • 23. 354 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design d2 = 16/7.727 = 2.07 in d3 = 36/7.727 = 4.66 in d4 = 28/7.727 = 3.62 in T2 = 63 025(7.5) 1720 = 274.8 lbf · in Wt = 274.8 2.07/2 = 266 lbf Wr = 266 tan 20° = 96.8 lbf Wa = 266 tan 15° = 71.3 lbf F2a = −266i − 96.8j − 71.3k lbf Ans. F3b = (266 − 96.8)i − (266 − 96.8)j = 169i − 169j lbf Ans. F4c = 96.8i + 266j + 71.3k lbf Ans. 13-40 d2 = N Pn cosψ = 14 8 cos 30° Fa 54 = 2.021 in, d3 = 36 8 cos 30° = 5.196 in d4 = 15 5 cos 15° = 3.106 in, d5 = 45 5 cos 15° = 9.317 in C x y z b Ft 23 Fr 23 Fa 23 Ft 54 Fr 54 D G H 3 2 3 2.6R 1.55R 4 3 1 2 Fy F D xD FxC Fy C FzD y Fr 43 Fx b3 Fy b3 Fa 23 Fr 23 Ft 23 Ft 43 Fa 43 3 Fb3 z x b y Ft c4 Fr c4 Fac 4 4 Fa 34 Fr 34 Ft 34 z x c
  • 24. Chapter 13 355 For gears 2 and 3: φt = tan−1(tan φn/cosψ) = tan−1(tan 20°/cos 30◦) = 22.8°, For gears 4 and 5: φt = tan−1(tan 20°/cos 15°) = 20.6°, Ft 23 = T2/r = 1200/(2.021/2) = 1188 lbf Ft 54 = 1188 5.196 3.106 = 1987 lbf Fr 23 = Ft 23 tan φt = 1188 tan 22.8° = 499 lbf Fr 54 = 1986 tan 20.6° = 746 lbf Fa 23 = Ft 23 tanψ = 1188 tan 30° = 686 lbf Fa 54 = 1986 tan 15° = 532 lbf Next, designate the points of action on gears 4 and 3, respectively, as points G and H, as shown. Position vectors are RCG = 1.553j − 3k RCH = −2.598j − 6.5k RCD = −8.5k Force vectors are xC F54 = −1986i − 748j + 532k F23 = −1188i + 500j − 686k FC = Fi + Fy Cj FD = FxD i + Fy Dj + FzDk Now, a summation of moments about bearing C gives MC = RCG × F54 + RCH × F23 + RCD × FD = 0 The terms for this equation are found to be RCG × F54 = −1412i + 5961j + 3086k RCH × F23 = 5026i + 7722j − 3086k RCD × FD = 8.5Fy Di − 8.5FxD j When these terms are placed back into the moment equation, the k terms, representing the shaft torque, cancel. The i and j terms give Fy D = −3614 8.5 = −425 lbf Ans. FxD = (13 683) 8.5 = 1610 lbf Ans. Next, we sum the forces to zero. F = FC + F54 + F23 + FD = 0 Substituting, gives FxC i + Fy + (−1987i − 746j + 532k) + (−1188i + 499j − 686k) Cj +(1610i − 425j + FzD k) = 0
  • 25. 356 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Solving gives FxC = 1987 + 1188 − 1610 = 1565 lbf Fy C = 746 − 499 + 425 = 672 lbf FzD = −532 + 686 = 154 lbf Ans. 13-41 VW = πdWnW 60 = π(0.100)(600) 60 = π m/s WWt = H VW = 2000 π = 637 N L = px NW = 25(1) = 25 mm λ = tan−1 L πdW = tan−1 25 π(100) = 4.550° lead angle B y 100 100 Wa 50 A x Wt W = WWt cos φn sin λ + f cos λ VS = VW cos λ = π cos 4.550° = 3.152 m/s G z Worm shaft diagram Wr In ft/min: VS = 3.28(3.152) = 10.33 ft/s = 620 ft/min Use f = 0.043 from curve A of Fig. 13-42. Then from the first of Eq. (13-43) W = 637 cos 14.5°(sin 4.55°) + 0.043 cos 4.55° = 5323 N Wy = W sin φn = 5323 sin 14.5° = 1333 N Wz = 5323[cos 14.5°(cos 4.55°) − 0.043 sin 4.55°] = 5119 N The force acting against the worm is W = −637i + 1333j + 5119k N Thus A is the thrust bearing. Ans. RAG = −0.05j − 0.10k, RAB = −0.20k MA = RAG ×W+ RAB × FB + T = 0 RAG ×W = −122.6i + 63.7j − 31.85k RAB × FB = 0.2Fy Bi − 0.2FxB j Substituting and solving gives xB T = 31.85 N · m Ans. F= 318.5 N, Fy B = 613 N So FB = 318.5i + 613j N Ans.
  • 26. Chapter 13 357 Or FB = [(613)2 + (318.5)2]1/2 = 691 N radial F = FA +W+ RB = 0 FA = −(W+ FB) = −(−637i + 1333j + 5119k + 318.5i + 613j) = 318.5i − 1946j − 5119k Ans. Radial Fr A = 318.5i − 1946j N, FrA = [(318.5)2 + (−1946)2]1/2 = 1972 N Thrust FaA = −5119 N 13-42 From Prob. 13-41 WG = 637i − 1333j − 5119k N pt = px So dG = NG px π = 48(25) π = 382 mm Bearing D to take thrust load MD = RDG ×WG + RDC × FC + T = 0 RDG = −0.0725i + 0.191j RDC = −0.1075i The position vectors are in meters. RDG ×WG = −977.7i − 371.1j − 25.02k RDC × FC = 0.1075 FzCj − 0.1075Fy Ck Putting it together and solving Gives G x y z Not to scale D FD FC WG C 72.5 191 35 T = 977.7 N · m Ans. FC = −233j + 3450k N, FC = 3460 N Ans. F = FC +WG + FD = 0 FD = −(FC +WG) = −637i + 1566j + 1669k N Ans.
  • 27. 358 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Radial Fr D = 1566j + 1669k N Or FrD = 2289 N (total radial) Ft D = −637i N (thrust) 13-43 VW = π(1.5)(900) 12 = 353.4 ft/min Wx = WWt = 33 000(0.5) 353.4 = 46.69 lbf pt = px = π 10 = 0.314 16 in L = 0.314 16(2) = 0.628 in λ = tan−1 0.628 π(1.5) = 7.59° W = 46.7 0.75 cos 14.5° sin 7.59° + 0.05 cos 7.59° = 263 lbf Wy = 263 sin 14.5◦ = 65.8 lbf Wz = 263[cos 14.5◦(cos 7.59◦) − 0.05 sin 7.59◦] = 251 lbf So W = 46.7i + 65.8j + 251k lbf Ans. T = 46.7(0.75) = 35 lbf · in Ans. 13-44 100:101 Mesh dP = 100 48 = 2.083 33 in dG = 101 48 = 2.104 17 in x y z WWt G T y z
  • 28. Chapter 13 359 Proper center-to-center distance: C = dP + dG 2 = 2.083 33 + 2.104 17 2 = 2.093 75 in rbP = r cos φ = 2.0833 2 cos 20◦ = 0.9788 in 99:100 Mesh dP = 99 48 = 2.0625 in dG = 100 48 = 2.083 33 in Proper: C = 99/48 + 100/48 2 = 2.072 917 in rbP = r cos φ = 2.0625 2 cos 20◦ = 0.969 06 in Improper: C = d P + d G 2 = d P + (100/99)d P 2 = 2.093 75 in d P = 2(2.093 75) 1 + (100/99) = 2.0832 in φ = cos−1 rbP d P/2 = cos−1 0.969 06 2.0832/2 = 21.5° From Ex. 13-1 last line φ = cos−1 rbP d P/2 = cos−1 (dP/2) cos φ d P/2 = cos−1 (NP/P) cos φ (2C/(1 + mG)) = cos−1 (1 + mG)NP cos φ 2PC Ans. 13-45 Computer programs will vary.