SlideShare a Scribd company logo
1 of 15
Download to read offline
Problems 1st Exam
Enrico Castro Grespan
May 23, 2017
Contents
1 Problem 1 2
2 Problem 2 3
3 Problem 3 7
4 Problem 4 8
4.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Problem 5 10
6 Problem 6 10
6.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7 Problem 7 12
7.1 a) PbS of crystalline diameter 5 and 8 nm . . . . . . . . . . . . . 12
7.2 b) InSb of crystalline diameter 5 and 8 nm . . . . . . . . . . . . 13
7.3 c) GaSb of crystalline diameter 5 and 8 nm . . . . . . . . . . . . 13
7.4 d) Si of crystalline diameter 2, 3 and 4 nm . . . . . . . . . . . . . 13
8 Problem 8 14
8.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9 Problem 9 15
1
1 Problem 1
Many semiconductors occur in nature as minerals galena (PbS), zinc blende
(ZnS), cuprite (Cu20), cassiterite (SnO2), stibnite (Sb2S3) chalcopyrite (CuFeS2),
chalcostibite (CuSbS2). From these metals are extracted by metallurgical pro-
cessing reactions. Consider these examples and determine the quantity of metals
in kg per metric ton of mineral extracted in each case.
1 mol PbS −→ (207.2 + 32.065) g
A ←− 1000 kg
A = 4179.5 mol de PbS
1 mol PbS ←→ 1 mol Pb
4179.4 mol ←→ B
B = 4179.4 mol de Pb
1 mol Pb ←→ 207.3 g
4179.4 mol ←→ C
C = 866 kg de Pb
1 mol S ←→ 32.065 g
4179.4 mol ←→ D
D = 134.01 kg de S
The same method was used for the others minerals and the results are shown
in the next table.
PbS Pb 866 kg S 134 kg
ZnS Zn 670.97 kg S 329.02 kg
Cu2O 2 Cu 888.19 kg O 111.81 kg
SnO2 Sn 787.68 kg 2 O 212.32 kg
Sb2S3 2 Sb 716.87 kg 3 S 283.13 kg
CuFeS2 Cu 346.28 kg Fe 304.32 kg 2 S 349.4 kg
2
2 Problem 2
Semiconducting films may be produced through solid-solid or solid-vapor reac-
tions of the following kind. Determine the thicknesses of films and/or vapor
requirement per cm2
of the films for the following cases:
Sb2S3 + 2In −→ 2 InSb + 3 S ↑
ρ =
m
V
−→ m =
ρ
V
V = 1 cm2
× (thickness in cm)
mSb2S3
= 4.63g cm−3
3 × 10−5
cm3
= 1.389 × 10−4
g
1 mol Sb2S3 −→ 339.7 g
A ←− 1.389 × 10−4
g
A = 4.089 × 10−7
mol
1 mol Sb2S3 −→ 2 mol In
4.089 × 10−7
mol −→ 8.178 × 10−7
mol
1 mol In −→ 114.818 g
8.178 × 10−7
mol −→ 9.389 × 10−5
g
ThicknessIn =
9.389 × 10−5
g
7.29 g cm−3
= 128.8 nm
For InSb
1 mol Sb2S3 −→ 2 mol InSb
4.089 × 10−7
mol −→ 8.178 × 10−7
mol
1 mol InSb −→ 236.58 g
8.178 × 10−7
mol −→ 1.935 × 10−4
g
ThicknessInSb =
1.935 × 10−4
g
5.78 g cm−3
= 334.7 nm
For the second reaction
3
Sb2S3(300 nm) + 2Cu + S −→ 2 CuSbS2
For Cu
1 mol Sb2S3 −→ 2 mol Cu
4.089 × 10−7
mol −→ 8.178 × 10−7
mol
1 mol Cu −→ 63.546 g
8.178 × 10−7
mol −→ 5.197 × 10−5
g
ThicknessCu =
5.197 × 10−5
g
8.93 g cm−3
= 58.19 nm
For CuSbS2
1 mol Sb2S3 −→ 2 mol CuSbS2
4.089 × 10−7
mol −→ 8.178 × 10−7
mol
1 mol CuSbS2 −→ 249.45 g
8.178 × 10−7
mol −→ 2.039 × 10−4
g
ThicknessCuSbS2 =
2.039 × 10−4
g
4.99 g cm−3
= 408.8 nm
For S
1 mol Sb2S3 −→ 1 mol S
1 mol S −→ 32.065 g
4.089 × 10−7
mol −→ 113.1 × 10−6
g
S = 13.11 µg cm−2
For the third reaction
Cu(300 nm) + In + 2 Se −→ CuInSe2
ρ =
m
V
−→ m =
ρ
V
V = 1 cm2
× (3 × 10−5
cm)
mCu = 8.93g cm−3
3 × 10−5
cm3
= 2.679 × 10−4
g
4
1 mol Cu −→ 63.546 g
A ←− 2.679 × 10−4
g
A = 4.216 × 10−6
mol
For In
1 mol Cu −→ 1 mol In
1 mol In −→ 114.818 g
4.216 × 10−6
mol −→ 4.840 × 10−4
g
ThicknessIn =
4.840 × 10−4
g
7.29 g cm−3
= 664 nm
For CuInSe2
1 mol Cu −→ 1 mol CuInSe2
1 mol CuInSe2 −→ 336.284 g
4.216 × 10−6
mol −→ 1.418 × 10−3
g
ThicknessCuInSe2
=
1.418 × 10−3
g
5.77 g cm−3
= 2.46 µm
For S
1 mol Cu −→ 1 mol S
1 mol S −→ 32.065 g
4.216 × 10−6
mol −→ 135.2 × 10−6
g
S = 135.2 µg cm−2
For the fourth reaction
Cu(300 nm) + Zn + Sn + 4 S −→ Cu2ZnSnS4
ρ =
m
V
−→ m =
ρ
V
V = 1 cm2
× (3 × 10−5
cm)
mCu = 8.93g cm−3
3 × 10−5
cm3
= 2.679 × 10−4
g
5
1 mol Cu −→ 63.546 g
A ←− 2.679 × 10−4
g
A = 4.216 × 10−6
mol
1 mol Cu −→ 1 mol In
4.216 × 10−6
mol −→ 4.216 × 10−6
mol
For Zn
1 mol Cu −→ 1 mol Zn
1 mol Zn −→ 65.38 g
4.216 × 10−6
mol −→ 2.756 × 10−4
g
ThicknessZn =
2.756 × 10−4
g
7.29 g cm−3
= 378 nm
For Sn
1 mol Cu −→ 1 mol Sn
1 mol Sn −→ 118.71 g
4.216 × 10−6
mol −→ 5.005 × 10−4
g
ThicknessSn =
5.005 × 10−4
g
5.77 g cm−3
= 87 µm
For S
2 mol Cu −→ 4 mol S
1 mol S −→ 64.12 g
4.216 × 10−6
mol −→ 2.70 × 10−4
g
S = 270 µg cm−2
For Cu2ZnSnS4
2 mol Cu −→ 1 mol Cu2ZnSnS4
1 mol Cu2ZnSnS4 −→ 439.442 g
4.216 × 10−6
mol −→ 9.263 × 10−4
g
ThicknessCu2ZnSnS4
=
9.263 × 10−4
g
4.56 g cm−3
= 203 µm
6
3 Problem 3
Propose the energy dispersive emission lines in a graphical plot which may be
observed in the energy Dispersive X-ray spectra (EDS) of the reactant thin films
and in the thin film product in the above reactions
En2 − En1 = 13.6 eV z∗2 1
n2
1
−
1
n2
2
For Kα
n2 = 2 n1 = 1
1
n2
1
−
1
n2
2
=
3
4
z∗
= z − 1
Sb-Kα
En2
− En1
= 13.6 eV (50)2
(3/4) = 25.5 keV
λ = 1240/25500 = 0.049 nm
S-Kα
En2
− En1
= 13.6 eV (15)2
(3/4) = 2.29 keV
λ = 1240/2295 = 0.54 nm
In-Kα
En2 − En1 = 13.6 eV (48)2
(3/4) = 23.5 keV
λ = 1240/23501 = 0.053 nm
Cu-Kα
En2
− En1
= 13.6 eV (28)2
(3/4) = 7.99 keV
λ = 1240/7997 = 0.155 nm
Se-Kα
En2
− En1
= 13.6 eV (33)2
(3/4) = 11.1 keV
λ = 1240/11108 = 0.112 nm
Zn-Kα
En2 − En1 = 13.6 eV (29)2
(3/4) = 8.58 keV
λ = 1240/8578 = 0.144 nm
Sn-Kα
En2
− En1
= 13.6 eV (49)2
(3/4) = 24.5 keV
λ = 1240/24490 = 0.051 nm
7
Figure 1:
4 Problem 4
Consider the reaction for the formation of chalcopyrite:
Cu (300nm) + Fe (...nm) + 2 S (...µg/s) −→ CuFeS2 (...nm)
4.1 a)
Estimate the values of the missing thicknesses. CuFeS2 has tetragonal structure
with a = 5.29 ˚A and c = 10 ˚A and 4 formula units per cell.
ρ =
m
V
−→ m =
ρ
V
V = 1 cm2
× (3 × 10−5
cm)
mCu = 8.93g cm−3
3 × 10−5
cm3
= 2.679 × 10−4
g
1 mol Cu −→ 63.546 g
A ←− 2.679 × 10−4
g
A = 4.216 × 10−6
mol
1 mol Cu −→ 1 mol Fe
4.216 × 10−6
mol −→ 4.216 × 10−6
mol
For Fe
1 mol Cu −→ 1 mol Fe
8
1 mol Fe −→ 55.845 g
4.216 × 10−6
mol −→ 2.354 × 10−4
g
ThicknessF e =
2.354 × 10−4
g
7.874 g cm−3
= 299 nm
For CuFeS2
1 mol Cu −→ 1 mol CuFeS2
1 mol CuFeS2 −→ 183.511 g
4.216 × 10−6
mol −→ 7.737 × 10−4
g
ρCuF eS2 =
183.511 ∗ 1.66 × 10−24
g
(5.29 × 10−8 cm)2(10−8 cm)
= 10.88g cm−2
ThicknessCuF eS2
=
7.737 × 10−4
g
10.88 g cm−3
= 711 nm
For S
1 mol Cu −→ 2 mol S
1 mol S −→ 32.065 g
8.432 × 10−6
mol −→ 2.703 × 10−4
g
S = 270.4 µg cm−2
4.2 b)
Propose the XRD pattern in the 2θ interval 20o
60o
for the reacting thin film
stack and for the product for Cu-Kα radiation (1.5406 ˙A).
2θ = 2 Arcsin
λ
√
h2 + l2 + k2
2 a0
9
Fe Cu FeCuS2
2 θ BCC FCC Tetragonal
a0 = 2.87˚A a0 = 3.61˚A a0 = 5.39˚A
(110) (111) (112)
1 44.61 43.38 40.98
(200) (200) (200)
2 64.95 50.52 33.21
(211) (220) (220)
3 74.25 47.68
(220) (311) (312)
4 64.65
(310) (400) (222)
5 59.35
5 Problem 5
In an experiment in Photovoltaic Lab II, Pb-S-Se thin films are produced
by chemical bath deposition from solution mixtures containing lead nitrate,
thiourea and selenosulfate. Three possibilities exist in the composition of the
resulting thin film:
a) Mixture of PbS and PbSe
b) Solid solution of the type PbS0.5Se0.5 or variation of such composition
c) A mixture of PbS, PbSe and PbS0.5Se0.5 Propose the XRD pattern for
the thin film produced in the three cases for Cu-K radiation (1.5406 ) in the 2θ
interval 20o
60o
. PbSe (a = 6.117˚A)
For c) the lattice constant is 6.0266 ˚A and all three are rock salt so the
possibles planes are (111), (200), (220), (311) and (222). Using the relation
2θ = 2 Arcsin
λ(
√
h2 + l2 + k2)2
2 a0
PbS PbSe PS0.5Se0.5
2 θ Rock salt Rock salt Rock salt
a0 = 5.9362˚A a0 = 6.117˚A a0 = 6.0266˚A
(111) 25.98 25.19 25.57
(200) 30.08 29.17 29.61
(220) 43.05 41.72 42.37
(311) 50.97 49.36 50.15
(222) 53.41 51.71 52.55
6 Problem 6
A crystalline semiconductor solid solution is formed of GaAsxSb1−x with its
band gap equal to that of Si (1.12 eV). Estimate the following:
10
6.1 a)
The value of x and the value of lattice constant by considering proportionality
EgSi = x EgGaAs + (1 − x) EgGaSb
x =
EgSi − EgGaSb
EgGaAs − EgGaSb
=
1.12 − 0.72
1.42 − 0.72
= 0.57
a = x aGaAs + (1 − x) aGaSb = 0.57(5.6533) + (1 − 0.57)(6.0959) = 5.8434 ˚A
6.2 b)
Mass density of the semiconductor formed using the atomic mass and the lattice
constant calculated, calculate the mass of GaAs0.57Sb0.43. GaSb=191.483 g/mol
GaAs=144.6446 g/mol
GaAs0.53Sb0.43 = x mGaAs+(1−x) mGaSb = 0.57(144.6446)+(1−0.57)(191.483) = 164.7851 g mol−1
ρ =
4 atoms(164.7851 g/mol)
6.023 × 1023 atoms/mol(5.8434 × 10−8 cm)3
= 5.4849g cm−3
6.3 c)
EDX spectrum
Ga-Kα, z∗
= 30
En2
− En1
= 13.6 eV (30)2
(3/4) = 9.18 keV
λ = 1240/9180 = 0.135 nm
As-Kα, z∗
= 32
En2 − En1 = 13.6 eV (32)2
(3/4) = 10.44 keV
λ = 1240/10445 = 0.119 nm
Sb-Kα, z∗
= 30
En2
− En1
= 13.6 eV (50)2
(3/4) = 25.5 keV
λ = 1240/25500 = 0.49 nm
11
6.4 d)
XRD pattern for the thin film for Cu-Kα radiation (1.5406 ); 2 θ interval 20o
60o
.
Both GaAs and GaSb have Zincblende structure, so GaAs0.57Sb0.43 also has a
zincblende structure. The Peaks of difraction are located in planes (111), (220),
(311) and a weak peak in plane (200). Using the lattice constant calculated is
possible calculate the angle 2 θ as it is shown.
2 θ GaAs0.53Sb0.47
a0 = 5.8434˚A
(111) 26.39
(220) 43.77
(311) 51.84
(200) 30.56
7 Problem 7
Consider Bohr radius of excitons and examine whether in the following cases the
Bohr radius exceeds the crystal diameter. If so, strong quantum confinement
of exciton is expected and hence the optical band gap exceeds that of the bulk
material. Thus, estimate the optical band gap of crystalline semiconductors of
the following specifications:
rB = 0.0529177 nm



r
z∗
m
m∗
e



Eg(eV )nm = EgA +
h2
2(a nm)2(m∗)me q
7.1 a) PbS of crystalline diameter 5 and 8 nm
me = 0.25 and mh = 0.25
1
m∗
e
=
1
0.25
+
1
0.25
= 8 m∗
e = 0.125 me
rB = 0.0529177 nm (17/0.125) = 7.19 nm
Eg5 nm = 0.41 +
h2
2(5 nm)2(0.125)me q
= 0.892 eV
Eg8 nm = 0.41 +
h2
2(8 nm)2(0.125)me q
= 0.598 eV
12
7.2 b) InSb of crystalline diameter 5 and 8 nm
me = 0.0145 and mh = 0.4
1
m∗
e
=
1
0.0145
+
1
0.4
= 71.43 m∗
e = 0.014 me
rB = 0.0529177 nm (17.7/0.014) = 66.9 nm
Eg5 nm = 0.17 +
h2
2(5 nm)2(0.014)me q
= 4.47 eV
Eg8 nm = 0.17 +
h2
2(8 nm)2(0.014)me q
= 1.85 eV
7.3 c) GaSb of crystalline diameter 5 and 8 nm
me = 0.042 and mh = 0.4
1
m∗
e
=
1
0.042
+
1
0.4
= 26.31 m∗
e = 0.038 me
rB = 0.0529177 nm (15.7/0.038) = 21.86 nm
Eg5 nm = 0.72 +
h2
2(5 nm)2(0.038)me q
= 2.30 eV
Eg8 nm = 0.72 +
h2
2(8 nm)2(0.038)me q
= 1.34 eV
7.4 d) Si of crystalline diameter 2, 3 and 4 nm
me = 0.19 and mh = 0.49
1
m∗
e
=
1
0.19
+
1
0.49
= 7.30 m∗
e = 0.137 me
rB = 0.0529177 nm (11.9/0.137) = 4.60 nm
Eg2 nm = 1.12 +
h2
2(2 nm)2(0.137)me q
= 3.87 eV
Eg3 nm = 1.12 +
h2
2(3 nm)2(0.137)me q
= 2.34 eV
Eg4 nm = 1.12 +
h2
2(4 nm)2(0.137)me q
= 1.81 eV
13
8 Problem 8
Intrinsic temperature (Ti) of an extrinsic semiconductor is the temperature at
which the intrinsic carrier concentration reaches the value of electron- or hole-
concentration estimated at room temperature for an extrinsic semiconductor
prepared by doping with donor/acceptor atoms. See p. 20 Book of S. M. Sze.
Evaluate the value of Ti for the following cases:
ni(T) =
1
2π2
√
π
2
2 m kB T
2
3/2
(me mh)3/4
e(Eg q)/kBT
8.1 a)
p-Si of electrical resistivity 10 Ωcm → 0.1 Ωm
pp =
σp
q µp
=
1
0.10(1.602 × 10−19)(0.045)
= 1.39 × 1021
m−3
ni(T) =
1
2π2
√
π
2
2 m kB T
2
3/2
(0.19 × 0.49)3/4
e1.12/kBT
= pp
using Mathematica for the calculation Ti = 645.5 K
8.2 b)
n-GaAs of electrical resistivity 1 Ωcm → 0.01 Ωm
nn =
σp
q µn
=
1
0.01(1.602 × 10−19)(0.85)
= 7.34 × 1020
m−3
ni(T) =
1
2π2
√
π
2
2 m kB T
2
3/2
(0.067 × 0.04)3/4
e1.42/kBT
= nn
using Mathematica for the calculation Ti = 991.3 K
8.3 c)
p-Ge of electrical resistivity 1 Ωcm → 0.01 Ωm
pp =
σp
q µp
=
1
0.01(1.602 × 10−19)(0.19)
= 3.28 × 1021
m−3
ni(T) =
1
2π2
√
π
2
2 m kB T
2
3/2
(0.082 × 0.28)3/4
e0.66/kBT
= pp
using Mathematica for the calculation Ti = 546.2 K
14
9 Problem 9
Estimate and draw to the same scale the energy level diagrams of the above
three cases of semiconductors. Also draw the energy level diagram for p-Si/n-
GaAs and p-Ge/n-GaAs heterojunctions of materials of the above specifications,
clearly indicating the built-in voltage Vbi and the depletion layer width of the
junctions
p-Si of electrical resistivity 10 Ωcm → 0.1 Ωm; pp = 1.387 × 1021
m−3
EF p =
Eg
2
−
kBT
q
ln
pp
ni
=
1.12 eV
2
−0.0259 eV ln
1.39 × 1021
m−3
1.45 × 1016 m−3
= 0.26 eV
n-GaAs of electrical resistivity 1 Ωcm→ 0.01 Ωm; nn = 7.344 × 1020
m−3
EF n =
Eg
2
+
kBT
q
ln
nn
ni
=
1.42 eV
2
+0.0259 eV ln
7.344 × 1020
m−3
1.79 × 1012 m−3
= 1.22 eV
p-Si/n-GaAs
Vbi = EF n − EF p = 1.22 eV − 0.26 eV = 0.96 eV
W =
2 0 r (Vbi − 2kBT/q)
pp q
=
2(8.854 × 10−12
)(11.9) (0.96 − 2 × 0.0259) eV
1.387 × 1021m−3 (1.602 × 10−19)
= 928 nm
p-Ge of electrical resistivity 1 Ωcm→ 0.01 Ωm; pp = 3.28 × 1021
m−3
EF p =
Eg
2
−
kBT
q
ln
pp
ni
=
0.66 eV
2
−0.0259 eV ln
3.28 × 1021
m−3
2.4 × 1019 m−3
= 0.20 eV
p-Ge/n-GaAs
Vbi = EF n − EF p = 1.22 eV − 0.20 eV = 1.02 eV
W =
2 0 r (Vbi − 2kBT/q)
pp q
=
2(8.854 × 10−12
)(16) (1.02 − 2 × 0.0259) eV
3.28 × 1021m−3 (1.602 × 10−19)
= 722 nm
15

More Related Content

What's hot

OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...ijrap
 
Chapter 2 Homework A
Chapter 2  Homework  AChapter 2  Homework  A
Chapter 2 Homework Aspathman
 
Dpp 04 ionic_equilibrium_jh_sir-4172
Dpp 04 ionic_equilibrium_jh_sir-4172Dpp 04 ionic_equilibrium_jh_sir-4172
Dpp 04 ionic_equilibrium_jh_sir-4172NEETRICKSJEE
 
Dpp 04 chemical_bonding_jh_sir-4167
Dpp 04 chemical_bonding_jh_sir-4167Dpp 04 chemical_bonding_jh_sir-4167
Dpp 04 chemical_bonding_jh_sir-4167NEETRICKSJEE
 
Dpp 02 periodic_table_jh_sir-3579
Dpp 02 periodic_table_jh_sir-3579Dpp 02 periodic_table_jh_sir-3579
Dpp 02 periodic_table_jh_sir-3579NEETRICKSJEE
 
Marking scheme-chemistry-perfect-score-module-form-4-set-1
Marking scheme-chemistry-perfect-score-module-form-4-set-1Marking scheme-chemistry-perfect-score-module-form-4-set-1
Marking scheme-chemistry-perfect-score-module-form-4-set-1Mudzaffar Shah
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsDaniel Wheeler
 
Dpp atomic structure_jh_sir-3573
Dpp atomic structure_jh_sir-3573Dpp atomic structure_jh_sir-3573
Dpp atomic structure_jh_sir-3573NEETRICKSJEE
 
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...PFHub PFHub
 
Joam (preparation and characterization of zn o thin films deposited by sol ge...
Joam (preparation and characterization of zn o thin films deposited by sol ge...Joam (preparation and characterization of zn o thin films deposited by sol ge...
Joam (preparation and characterization of zn o thin films deposited by sol ge...Phaccebookq Nizar
 
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...Daisuke Satow
 
Qualitative chemistry math
Qualitative chemistry mathQualitative chemistry math
Qualitative chemistry mathJakir Hossain
 

What's hot (19)

Topic 6 kft 131
Topic 6 kft 131Topic 6 kft 131
Topic 6 kft 131
 
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
 
03-De_PAC
03-De_PAC03-De_PAC
03-De_PAC
 
presentation
presentationpresentation
presentation
 
Chapter 2 Homework A
Chapter 2  Homework  AChapter 2  Homework  A
Chapter 2 Homework A
 
Dpp 04 ionic_equilibrium_jh_sir-4172
Dpp 04 ionic_equilibrium_jh_sir-4172Dpp 04 ionic_equilibrium_jh_sir-4172
Dpp 04 ionic_equilibrium_jh_sir-4172
 
Dpp 04 chemical_bonding_jh_sir-4167
Dpp 04 chemical_bonding_jh_sir-4167Dpp 04 chemical_bonding_jh_sir-4167
Dpp 04 chemical_bonding_jh_sir-4167
 
Dpp 02 periodic_table_jh_sir-3579
Dpp 02 periodic_table_jh_sir-3579Dpp 02 periodic_table_jh_sir-3579
Dpp 02 periodic_table_jh_sir-3579
 
Marking scheme-chemistry-perfect-score-module-form-4-set-1
Marking scheme-chemistry-perfect-score-module-form-4-set-1Marking scheme-chemistry-perfect-score-module-form-4-set-1
Marking scheme-chemistry-perfect-score-module-form-4-set-1
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 
Gunda et al-2018-chem_physchem-si
Gunda et al-2018-chem_physchem-siGunda et al-2018-chem_physchem-si
Gunda et al-2018-chem_physchem-si
 
Dpp atomic structure_jh_sir-3573
Dpp atomic structure_jh_sir-3573Dpp atomic structure_jh_sir-3573
Dpp atomic structure_jh_sir-3573
 
J0456571
J0456571J0456571
J0456571
 
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...Phase-field modeling of crystal nucleation: Comparison with simulations and e...
Phase-field modeling of crystal nucleation: Comparison with simulations and e...
 
Joam (preparation and characterization of zn o thin films deposited by sol ge...
Joam (preparation and characterization of zn o thin films deposited by sol ge...Joam (preparation and characterization of zn o thin films deposited by sol ge...
Joam (preparation and characterization of zn o thin films deposited by sol ge...
 
Se oct2011
Se oct2011Se oct2011
Se oct2011
 
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
 
Qualitative chemistry math
Qualitative chemistry mathQualitative chemistry math
Qualitative chemistry math
 
Topic 7 kft 131
Topic 7 kft 131Topic 7 kft 131
Topic 7 kft 131
 

Viewers also liked

Teddy bear sleep over 2017
Teddy bear sleep over 2017Teddy bear sleep over 2017
Teddy bear sleep over 2017Amy Caughlin
 
Bridging European Urban Transformations ESRC Workshop Series in Brussels UT E...
Bridging European Urban Transformations ESRC Workshop Series in Brussels UT E...Bridging European Urban Transformations ESRC Workshop Series in Brussels UT E...
Bridging European Urban Transformations ESRC Workshop Series in Brussels UT E...Dr Igor Calzada, MBA, FeRSA
 
La corte penal internacional_IAFJSR
La corte penal internacional_IAFJSRLa corte penal internacional_IAFJSR
La corte penal internacional_IAFJSRMauri Rojas
 
Práctica de evaluación entre pares
Práctica de evaluación entre paresPráctica de evaluación entre pares
Práctica de evaluación entre paresJosé Chan Barahona
 
Waianae rescue dogs 40 and under 2.14.17
Waianae rescue dogs   40 and under 2.14.17Waianae rescue dogs   40 and under 2.14.17
Waianae rescue dogs 40 and under 2.14.17Suzy M. Tam
 
Presentación Informe Anual ONU Derechos Humanos Colombia año 2016
Presentación Informe Anual ONU Derechos Humanos Colombia año 2016Presentación Informe Anual ONU Derechos Humanos Colombia año 2016
Presentación Informe Anual ONU Derechos Humanos Colombia año 2016difusionhchr
 
Informativo STF 854 Comentado
Informativo STF 854 ComentadoInformativo STF 854 Comentado
Informativo STF 854 ComentadoRicardo Torques
 
CSUnplugged - Informatik ohne Stecker - ICT Kadervernetzung 2017 Wil
CSUnplugged - Informatik ohne Stecker - ICT Kadervernetzung 2017 WilCSUnplugged - Informatik ohne Stecker - ICT Kadervernetzung 2017 Wil
CSUnplugged - Informatik ohne Stecker - ICT Kadervernetzung 2017 WilMarcel Jent
 
Fahrenheit 451 Adult Education Guide 2003
Fahrenheit 451 Adult Education Guide 2003Fahrenheit 451 Adult Education Guide 2003
Fahrenheit 451 Adult Education Guide 2003Cheyenne Tuller
 
presentacion de tipos de memoria
 presentacion de tipos de memoria  presentacion de tipos de memoria
presentacion de tipos de memoria alex garcia
 
Textos Informativos: El Articulo
Textos Informativos: El ArticuloTextos Informativos: El Articulo
Textos Informativos: El ArticuloAna Gaeta
 
House on Mango Street Adult Education Guide 2008
House on Mango Street Adult Education Guide 2008House on Mango Street Adult Education Guide 2008
House on Mango Street Adult Education Guide 2008Cheyenne Tuller
 
Forty Year Inspection Coral Gables
Forty Year Inspection Coral GablesForty Year Inspection Coral Gables
Forty Year Inspection Coral Gablessouffrontengineering
 
BSPvision Presentation
BSPvision PresentationBSPvision Presentation
BSPvision PresentationBSP Vision
 

Viewers also liked (20)

Teddy bear sleep over 2017
Teddy bear sleep over 2017Teddy bear sleep over 2017
Teddy bear sleep over 2017
 
Bridging European Urban Transformations ESRC Workshop Series in Brussels UT E...
Bridging European Urban Transformations ESRC Workshop Series in Brussels UT E...Bridging European Urban Transformations ESRC Workshop Series in Brussels UT E...
Bridging European Urban Transformations ESRC Workshop Series in Brussels UT E...
 
Invierte.pe
Invierte.peInvierte.pe
Invierte.pe
 
Diapositiva de logica
Diapositiva de logicaDiapositiva de logica
Diapositiva de logica
 
La corte penal internacional_IAFJSR
La corte penal internacional_IAFJSRLa corte penal internacional_IAFJSR
La corte penal internacional_IAFJSR
 
Conheça a Axyon
Conheça a AxyonConheça a Axyon
Conheça a Axyon
 
Práctica de evaluación entre pares
Práctica de evaluación entre paresPráctica de evaluación entre pares
Práctica de evaluación entre pares
 
Waianae rescue dogs 40 and under 2.14.17
Waianae rescue dogs   40 and under 2.14.17Waianae rescue dogs   40 and under 2.14.17
Waianae rescue dogs 40 and under 2.14.17
 
Academia ciencias naturales y experimentales
Academia ciencias naturales y experimentalesAcademia ciencias naturales y experimentales
Academia ciencias naturales y experimentales
 
Academia de matematicas
Academia de matematicasAcademia de matematicas
Academia de matematicas
 
Slideshare
SlideshareSlideshare
Slideshare
 
Presentación Informe Anual ONU Derechos Humanos Colombia año 2016
Presentación Informe Anual ONU Derechos Humanos Colombia año 2016Presentación Informe Anual ONU Derechos Humanos Colombia año 2016
Presentación Informe Anual ONU Derechos Humanos Colombia año 2016
 
Informativo STF 854 Comentado
Informativo STF 854 ComentadoInformativo STF 854 Comentado
Informativo STF 854 Comentado
 
CSUnplugged - Informatik ohne Stecker - ICT Kadervernetzung 2017 Wil
CSUnplugged - Informatik ohne Stecker - ICT Kadervernetzung 2017 WilCSUnplugged - Informatik ohne Stecker - ICT Kadervernetzung 2017 Wil
CSUnplugged - Informatik ohne Stecker - ICT Kadervernetzung 2017 Wil
 
Fahrenheit 451 Adult Education Guide 2003
Fahrenheit 451 Adult Education Guide 2003Fahrenheit 451 Adult Education Guide 2003
Fahrenheit 451 Adult Education Guide 2003
 
presentacion de tipos de memoria
 presentacion de tipos de memoria  presentacion de tipos de memoria
presentacion de tipos de memoria
 
Textos Informativos: El Articulo
Textos Informativos: El ArticuloTextos Informativos: El Articulo
Textos Informativos: El Articulo
 
House on Mango Street Adult Education Guide 2008
House on Mango Street Adult Education Guide 2008House on Mango Street Adult Education Guide 2008
House on Mango Street Adult Education Guide 2008
 
Forty Year Inspection Coral Gables
Forty Year Inspection Coral GablesForty Year Inspection Coral Gables
Forty Year Inspection Coral Gables
 
BSPvision Presentation
BSPvision PresentationBSPvision Presentation
BSPvision Presentation
 

Similar to Physics of Solar Cells

Find the answers to any of your questions with answerl.com
Find the answers to any of your questions with answerl.comFind the answers to any of your questions with answerl.com
Find the answers to any of your questions with answerl.comanswerl
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3edKadu Brito
 
Ohanian 01
Ohanian 01Ohanian 01
Ohanian 01yad2017
 
Numerical modeling and experimental evaluation of drying shrinkage of concret...
Numerical modeling and experimental evaluation of drying shrinkage of concret...Numerical modeling and experimental evaluation of drying shrinkage of concret...
Numerical modeling and experimental evaluation of drying shrinkage of concret...Mohamed Moafak
 
Physics Notes: Solved numerical of Physics first year
Physics Notes: Solved numerical of Physics first yearPhysics Notes: Solved numerical of Physics first year
Physics Notes: Solved numerical of Physics first yearRam Chand
 
Solid state numerical 2016
Solid state numerical 2016Solid state numerical 2016
Solid state numerical 2016nysa tutorial
 
Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamTurja Deb
 
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-adityajoko222
 
Presentation ZnO (Final).pptx
Presentation ZnO (Final).pptxPresentation ZnO (Final).pptx
Presentation ZnO (Final).pptxAhsanAwan53
 
chem_11_tr_ans_key_unit_3.pdf
chem_11_tr_ans_key_unit_3.pdfchem_11_tr_ans_key_unit_3.pdf
chem_11_tr_ans_key_unit_3.pdfMaryamShakir5
 

Similar to Physics of Solar Cells (19)

ask cap 3.pdf
ask cap 3.pdfask cap 3.pdf
ask cap 3.pdf
 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
The Solid State-Smita Gupta.pptx
The Solid State-Smita Gupta.pptxThe Solid State-Smita Gupta.pptx
The Solid State-Smita Gupta.pptx
 
Find the answers to any of your questions with answerl.com
Find the answers to any of your questions with answerl.comFind the answers to any of your questions with answerl.com
Find the answers to any of your questions with answerl.com
 
Maths book2 Text book answer
Maths book2 Text book answerMaths book2 Text book answer
Maths book2 Text book answer
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
 
Ohanian 01
Ohanian 01Ohanian 01
Ohanian 01
 
INJSO-2014-Solutions
INJSO-2014-SolutionsINJSO-2014-Solutions
INJSO-2014-Solutions
 
Numerical modeling and experimental evaluation of drying shrinkage of concret...
Numerical modeling and experimental evaluation of drying shrinkage of concret...Numerical modeling and experimental evaluation of drying shrinkage of concret...
Numerical modeling and experimental evaluation of drying shrinkage of concret...
 
Appendix b
Appendix bAppendix b
Appendix b
 
Sm chap01
Sm chap01Sm chap01
Sm chap01
 
Physics Notes: Solved numerical of Physics first year
Physics Notes: Solved numerical of Physics first yearPhysics Notes: Solved numerical of Physics first year
Physics Notes: Solved numerical of Physics first year
 
Solid state numerical 2016
Solid state numerical 2016Solid state numerical 2016
Solid state numerical 2016
 
طه
طهطه
طه
 
Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beam
 
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
33406960 manual-desain-jembatan-baja-oleh-gilang-aditya
 
Presentation ZnO (Final).pptx
Presentation ZnO (Final).pptxPresentation ZnO (Final).pptx
Presentation ZnO (Final).pptx
 
chem_11_tr_ans_key_unit_3.pdf
chem_11_tr_ans_key_unit_3.pdfchem_11_tr_ans_key_unit_3.pdf
chem_11_tr_ans_key_unit_3.pdf
 
F0363341
F0363341F0363341
F0363341
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 

Recently uploaded (20)

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 

Physics of Solar Cells

  • 1. Problems 1st Exam Enrico Castro Grespan May 23, 2017 Contents 1 Problem 1 2 2 Problem 2 3 3 Problem 3 7 4 Problem 4 8 4.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 Problem 5 10 6 Problem 6 10 6.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6.4 d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 Problem 7 12 7.1 a) PbS of crystalline diameter 5 and 8 nm . . . . . . . . . . . . . 12 7.2 b) InSb of crystalline diameter 5 and 8 nm . . . . . . . . . . . . 13 7.3 c) GaSb of crystalline diameter 5 and 8 nm . . . . . . . . . . . . 13 7.4 d) Si of crystalline diameter 2, 3 and 4 nm . . . . . . . . . . . . . 13 8 Problem 8 14 8.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 8.2 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 8.3 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 9 Problem 9 15 1
  • 2. 1 Problem 1 Many semiconductors occur in nature as minerals galena (PbS), zinc blende (ZnS), cuprite (Cu20), cassiterite (SnO2), stibnite (Sb2S3) chalcopyrite (CuFeS2), chalcostibite (CuSbS2). From these metals are extracted by metallurgical pro- cessing reactions. Consider these examples and determine the quantity of metals in kg per metric ton of mineral extracted in each case. 1 mol PbS −→ (207.2 + 32.065) g A ←− 1000 kg A = 4179.5 mol de PbS 1 mol PbS ←→ 1 mol Pb 4179.4 mol ←→ B B = 4179.4 mol de Pb 1 mol Pb ←→ 207.3 g 4179.4 mol ←→ C C = 866 kg de Pb 1 mol S ←→ 32.065 g 4179.4 mol ←→ D D = 134.01 kg de S The same method was used for the others minerals and the results are shown in the next table. PbS Pb 866 kg S 134 kg ZnS Zn 670.97 kg S 329.02 kg Cu2O 2 Cu 888.19 kg O 111.81 kg SnO2 Sn 787.68 kg 2 O 212.32 kg Sb2S3 2 Sb 716.87 kg 3 S 283.13 kg CuFeS2 Cu 346.28 kg Fe 304.32 kg 2 S 349.4 kg 2
  • 3. 2 Problem 2 Semiconducting films may be produced through solid-solid or solid-vapor reac- tions of the following kind. Determine the thicknesses of films and/or vapor requirement per cm2 of the films for the following cases: Sb2S3 + 2In −→ 2 InSb + 3 S ↑ ρ = m V −→ m = ρ V V = 1 cm2 × (thickness in cm) mSb2S3 = 4.63g cm−3 3 × 10−5 cm3 = 1.389 × 10−4 g 1 mol Sb2S3 −→ 339.7 g A ←− 1.389 × 10−4 g A = 4.089 × 10−7 mol 1 mol Sb2S3 −→ 2 mol In 4.089 × 10−7 mol −→ 8.178 × 10−7 mol 1 mol In −→ 114.818 g 8.178 × 10−7 mol −→ 9.389 × 10−5 g ThicknessIn = 9.389 × 10−5 g 7.29 g cm−3 = 128.8 nm For InSb 1 mol Sb2S3 −→ 2 mol InSb 4.089 × 10−7 mol −→ 8.178 × 10−7 mol 1 mol InSb −→ 236.58 g 8.178 × 10−7 mol −→ 1.935 × 10−4 g ThicknessInSb = 1.935 × 10−4 g 5.78 g cm−3 = 334.7 nm For the second reaction 3
  • 4. Sb2S3(300 nm) + 2Cu + S −→ 2 CuSbS2 For Cu 1 mol Sb2S3 −→ 2 mol Cu 4.089 × 10−7 mol −→ 8.178 × 10−7 mol 1 mol Cu −→ 63.546 g 8.178 × 10−7 mol −→ 5.197 × 10−5 g ThicknessCu = 5.197 × 10−5 g 8.93 g cm−3 = 58.19 nm For CuSbS2 1 mol Sb2S3 −→ 2 mol CuSbS2 4.089 × 10−7 mol −→ 8.178 × 10−7 mol 1 mol CuSbS2 −→ 249.45 g 8.178 × 10−7 mol −→ 2.039 × 10−4 g ThicknessCuSbS2 = 2.039 × 10−4 g 4.99 g cm−3 = 408.8 nm For S 1 mol Sb2S3 −→ 1 mol S 1 mol S −→ 32.065 g 4.089 × 10−7 mol −→ 113.1 × 10−6 g S = 13.11 µg cm−2 For the third reaction Cu(300 nm) + In + 2 Se −→ CuInSe2 ρ = m V −→ m = ρ V V = 1 cm2 × (3 × 10−5 cm) mCu = 8.93g cm−3 3 × 10−5 cm3 = 2.679 × 10−4 g 4
  • 5. 1 mol Cu −→ 63.546 g A ←− 2.679 × 10−4 g A = 4.216 × 10−6 mol For In 1 mol Cu −→ 1 mol In 1 mol In −→ 114.818 g 4.216 × 10−6 mol −→ 4.840 × 10−4 g ThicknessIn = 4.840 × 10−4 g 7.29 g cm−3 = 664 nm For CuInSe2 1 mol Cu −→ 1 mol CuInSe2 1 mol CuInSe2 −→ 336.284 g 4.216 × 10−6 mol −→ 1.418 × 10−3 g ThicknessCuInSe2 = 1.418 × 10−3 g 5.77 g cm−3 = 2.46 µm For S 1 mol Cu −→ 1 mol S 1 mol S −→ 32.065 g 4.216 × 10−6 mol −→ 135.2 × 10−6 g S = 135.2 µg cm−2 For the fourth reaction Cu(300 nm) + Zn + Sn + 4 S −→ Cu2ZnSnS4 ρ = m V −→ m = ρ V V = 1 cm2 × (3 × 10−5 cm) mCu = 8.93g cm−3 3 × 10−5 cm3 = 2.679 × 10−4 g 5
  • 6. 1 mol Cu −→ 63.546 g A ←− 2.679 × 10−4 g A = 4.216 × 10−6 mol 1 mol Cu −→ 1 mol In 4.216 × 10−6 mol −→ 4.216 × 10−6 mol For Zn 1 mol Cu −→ 1 mol Zn 1 mol Zn −→ 65.38 g 4.216 × 10−6 mol −→ 2.756 × 10−4 g ThicknessZn = 2.756 × 10−4 g 7.29 g cm−3 = 378 nm For Sn 1 mol Cu −→ 1 mol Sn 1 mol Sn −→ 118.71 g 4.216 × 10−6 mol −→ 5.005 × 10−4 g ThicknessSn = 5.005 × 10−4 g 5.77 g cm−3 = 87 µm For S 2 mol Cu −→ 4 mol S 1 mol S −→ 64.12 g 4.216 × 10−6 mol −→ 2.70 × 10−4 g S = 270 µg cm−2 For Cu2ZnSnS4 2 mol Cu −→ 1 mol Cu2ZnSnS4 1 mol Cu2ZnSnS4 −→ 439.442 g 4.216 × 10−6 mol −→ 9.263 × 10−4 g ThicknessCu2ZnSnS4 = 9.263 × 10−4 g 4.56 g cm−3 = 203 µm 6
  • 7. 3 Problem 3 Propose the energy dispersive emission lines in a graphical plot which may be observed in the energy Dispersive X-ray spectra (EDS) of the reactant thin films and in the thin film product in the above reactions En2 − En1 = 13.6 eV z∗2 1 n2 1 − 1 n2 2 For Kα n2 = 2 n1 = 1 1 n2 1 − 1 n2 2 = 3 4 z∗ = z − 1 Sb-Kα En2 − En1 = 13.6 eV (50)2 (3/4) = 25.5 keV λ = 1240/25500 = 0.049 nm S-Kα En2 − En1 = 13.6 eV (15)2 (3/4) = 2.29 keV λ = 1240/2295 = 0.54 nm In-Kα En2 − En1 = 13.6 eV (48)2 (3/4) = 23.5 keV λ = 1240/23501 = 0.053 nm Cu-Kα En2 − En1 = 13.6 eV (28)2 (3/4) = 7.99 keV λ = 1240/7997 = 0.155 nm Se-Kα En2 − En1 = 13.6 eV (33)2 (3/4) = 11.1 keV λ = 1240/11108 = 0.112 nm Zn-Kα En2 − En1 = 13.6 eV (29)2 (3/4) = 8.58 keV λ = 1240/8578 = 0.144 nm Sn-Kα En2 − En1 = 13.6 eV (49)2 (3/4) = 24.5 keV λ = 1240/24490 = 0.051 nm 7
  • 8. Figure 1: 4 Problem 4 Consider the reaction for the formation of chalcopyrite: Cu (300nm) + Fe (...nm) + 2 S (...µg/s) −→ CuFeS2 (...nm) 4.1 a) Estimate the values of the missing thicknesses. CuFeS2 has tetragonal structure with a = 5.29 ˚A and c = 10 ˚A and 4 formula units per cell. ρ = m V −→ m = ρ V V = 1 cm2 × (3 × 10−5 cm) mCu = 8.93g cm−3 3 × 10−5 cm3 = 2.679 × 10−4 g 1 mol Cu −→ 63.546 g A ←− 2.679 × 10−4 g A = 4.216 × 10−6 mol 1 mol Cu −→ 1 mol Fe 4.216 × 10−6 mol −→ 4.216 × 10−6 mol For Fe 1 mol Cu −→ 1 mol Fe 8
  • 9. 1 mol Fe −→ 55.845 g 4.216 × 10−6 mol −→ 2.354 × 10−4 g ThicknessF e = 2.354 × 10−4 g 7.874 g cm−3 = 299 nm For CuFeS2 1 mol Cu −→ 1 mol CuFeS2 1 mol CuFeS2 −→ 183.511 g 4.216 × 10−6 mol −→ 7.737 × 10−4 g ρCuF eS2 = 183.511 ∗ 1.66 × 10−24 g (5.29 × 10−8 cm)2(10−8 cm) = 10.88g cm−2 ThicknessCuF eS2 = 7.737 × 10−4 g 10.88 g cm−3 = 711 nm For S 1 mol Cu −→ 2 mol S 1 mol S −→ 32.065 g 8.432 × 10−6 mol −→ 2.703 × 10−4 g S = 270.4 µg cm−2 4.2 b) Propose the XRD pattern in the 2θ interval 20o 60o for the reacting thin film stack and for the product for Cu-Kα radiation (1.5406 ˙A). 2θ = 2 Arcsin λ √ h2 + l2 + k2 2 a0 9
  • 10. Fe Cu FeCuS2 2 θ BCC FCC Tetragonal a0 = 2.87˚A a0 = 3.61˚A a0 = 5.39˚A (110) (111) (112) 1 44.61 43.38 40.98 (200) (200) (200) 2 64.95 50.52 33.21 (211) (220) (220) 3 74.25 47.68 (220) (311) (312) 4 64.65 (310) (400) (222) 5 59.35 5 Problem 5 In an experiment in Photovoltaic Lab II, Pb-S-Se thin films are produced by chemical bath deposition from solution mixtures containing lead nitrate, thiourea and selenosulfate. Three possibilities exist in the composition of the resulting thin film: a) Mixture of PbS and PbSe b) Solid solution of the type PbS0.5Se0.5 or variation of such composition c) A mixture of PbS, PbSe and PbS0.5Se0.5 Propose the XRD pattern for the thin film produced in the three cases for Cu-K radiation (1.5406 ) in the 2θ interval 20o 60o . PbSe (a = 6.117˚A) For c) the lattice constant is 6.0266 ˚A and all three are rock salt so the possibles planes are (111), (200), (220), (311) and (222). Using the relation 2θ = 2 Arcsin λ( √ h2 + l2 + k2)2 2 a0 PbS PbSe PS0.5Se0.5 2 θ Rock salt Rock salt Rock salt a0 = 5.9362˚A a0 = 6.117˚A a0 = 6.0266˚A (111) 25.98 25.19 25.57 (200) 30.08 29.17 29.61 (220) 43.05 41.72 42.37 (311) 50.97 49.36 50.15 (222) 53.41 51.71 52.55 6 Problem 6 A crystalline semiconductor solid solution is formed of GaAsxSb1−x with its band gap equal to that of Si (1.12 eV). Estimate the following: 10
  • 11. 6.1 a) The value of x and the value of lattice constant by considering proportionality EgSi = x EgGaAs + (1 − x) EgGaSb x = EgSi − EgGaSb EgGaAs − EgGaSb = 1.12 − 0.72 1.42 − 0.72 = 0.57 a = x aGaAs + (1 − x) aGaSb = 0.57(5.6533) + (1 − 0.57)(6.0959) = 5.8434 ˚A 6.2 b) Mass density of the semiconductor formed using the atomic mass and the lattice constant calculated, calculate the mass of GaAs0.57Sb0.43. GaSb=191.483 g/mol GaAs=144.6446 g/mol GaAs0.53Sb0.43 = x mGaAs+(1−x) mGaSb = 0.57(144.6446)+(1−0.57)(191.483) = 164.7851 g mol−1 ρ = 4 atoms(164.7851 g/mol) 6.023 × 1023 atoms/mol(5.8434 × 10−8 cm)3 = 5.4849g cm−3 6.3 c) EDX spectrum Ga-Kα, z∗ = 30 En2 − En1 = 13.6 eV (30)2 (3/4) = 9.18 keV λ = 1240/9180 = 0.135 nm As-Kα, z∗ = 32 En2 − En1 = 13.6 eV (32)2 (3/4) = 10.44 keV λ = 1240/10445 = 0.119 nm Sb-Kα, z∗ = 30 En2 − En1 = 13.6 eV (50)2 (3/4) = 25.5 keV λ = 1240/25500 = 0.49 nm 11
  • 12. 6.4 d) XRD pattern for the thin film for Cu-Kα radiation (1.5406 ); 2 θ interval 20o 60o . Both GaAs and GaSb have Zincblende structure, so GaAs0.57Sb0.43 also has a zincblende structure. The Peaks of difraction are located in planes (111), (220), (311) and a weak peak in plane (200). Using the lattice constant calculated is possible calculate the angle 2 θ as it is shown. 2 θ GaAs0.53Sb0.47 a0 = 5.8434˚A (111) 26.39 (220) 43.77 (311) 51.84 (200) 30.56 7 Problem 7 Consider Bohr radius of excitons and examine whether in the following cases the Bohr radius exceeds the crystal diameter. If so, strong quantum confinement of exciton is expected and hence the optical band gap exceeds that of the bulk material. Thus, estimate the optical band gap of crystalline semiconductors of the following specifications: rB = 0.0529177 nm    r z∗ m m∗ e    Eg(eV )nm = EgA + h2 2(a nm)2(m∗)me q 7.1 a) PbS of crystalline diameter 5 and 8 nm me = 0.25 and mh = 0.25 1 m∗ e = 1 0.25 + 1 0.25 = 8 m∗ e = 0.125 me rB = 0.0529177 nm (17/0.125) = 7.19 nm Eg5 nm = 0.41 + h2 2(5 nm)2(0.125)me q = 0.892 eV Eg8 nm = 0.41 + h2 2(8 nm)2(0.125)me q = 0.598 eV 12
  • 13. 7.2 b) InSb of crystalline diameter 5 and 8 nm me = 0.0145 and mh = 0.4 1 m∗ e = 1 0.0145 + 1 0.4 = 71.43 m∗ e = 0.014 me rB = 0.0529177 nm (17.7/0.014) = 66.9 nm Eg5 nm = 0.17 + h2 2(5 nm)2(0.014)me q = 4.47 eV Eg8 nm = 0.17 + h2 2(8 nm)2(0.014)me q = 1.85 eV 7.3 c) GaSb of crystalline diameter 5 and 8 nm me = 0.042 and mh = 0.4 1 m∗ e = 1 0.042 + 1 0.4 = 26.31 m∗ e = 0.038 me rB = 0.0529177 nm (15.7/0.038) = 21.86 nm Eg5 nm = 0.72 + h2 2(5 nm)2(0.038)me q = 2.30 eV Eg8 nm = 0.72 + h2 2(8 nm)2(0.038)me q = 1.34 eV 7.4 d) Si of crystalline diameter 2, 3 and 4 nm me = 0.19 and mh = 0.49 1 m∗ e = 1 0.19 + 1 0.49 = 7.30 m∗ e = 0.137 me rB = 0.0529177 nm (11.9/0.137) = 4.60 nm Eg2 nm = 1.12 + h2 2(2 nm)2(0.137)me q = 3.87 eV Eg3 nm = 1.12 + h2 2(3 nm)2(0.137)me q = 2.34 eV Eg4 nm = 1.12 + h2 2(4 nm)2(0.137)me q = 1.81 eV 13
  • 14. 8 Problem 8 Intrinsic temperature (Ti) of an extrinsic semiconductor is the temperature at which the intrinsic carrier concentration reaches the value of electron- or hole- concentration estimated at room temperature for an extrinsic semiconductor prepared by doping with donor/acceptor atoms. See p. 20 Book of S. M. Sze. Evaluate the value of Ti for the following cases: ni(T) = 1 2π2 √ π 2 2 m kB T 2 3/2 (me mh)3/4 e(Eg q)/kBT 8.1 a) p-Si of electrical resistivity 10 Ωcm → 0.1 Ωm pp = σp q µp = 1 0.10(1.602 × 10−19)(0.045) = 1.39 × 1021 m−3 ni(T) = 1 2π2 √ π 2 2 m kB T 2 3/2 (0.19 × 0.49)3/4 e1.12/kBT = pp using Mathematica for the calculation Ti = 645.5 K 8.2 b) n-GaAs of electrical resistivity 1 Ωcm → 0.01 Ωm nn = σp q µn = 1 0.01(1.602 × 10−19)(0.85) = 7.34 × 1020 m−3 ni(T) = 1 2π2 √ π 2 2 m kB T 2 3/2 (0.067 × 0.04)3/4 e1.42/kBT = nn using Mathematica for the calculation Ti = 991.3 K 8.3 c) p-Ge of electrical resistivity 1 Ωcm → 0.01 Ωm pp = σp q µp = 1 0.01(1.602 × 10−19)(0.19) = 3.28 × 1021 m−3 ni(T) = 1 2π2 √ π 2 2 m kB T 2 3/2 (0.082 × 0.28)3/4 e0.66/kBT = pp using Mathematica for the calculation Ti = 546.2 K 14
  • 15. 9 Problem 9 Estimate and draw to the same scale the energy level diagrams of the above three cases of semiconductors. Also draw the energy level diagram for p-Si/n- GaAs and p-Ge/n-GaAs heterojunctions of materials of the above specifications, clearly indicating the built-in voltage Vbi and the depletion layer width of the junctions p-Si of electrical resistivity 10 Ωcm → 0.1 Ωm; pp = 1.387 × 1021 m−3 EF p = Eg 2 − kBT q ln pp ni = 1.12 eV 2 −0.0259 eV ln 1.39 × 1021 m−3 1.45 × 1016 m−3 = 0.26 eV n-GaAs of electrical resistivity 1 Ωcm→ 0.01 Ωm; nn = 7.344 × 1020 m−3 EF n = Eg 2 + kBT q ln nn ni = 1.42 eV 2 +0.0259 eV ln 7.344 × 1020 m−3 1.79 × 1012 m−3 = 1.22 eV p-Si/n-GaAs Vbi = EF n − EF p = 1.22 eV − 0.26 eV = 0.96 eV W = 2 0 r (Vbi − 2kBT/q) pp q = 2(8.854 × 10−12 )(11.9) (0.96 − 2 × 0.0259) eV 1.387 × 1021m−3 (1.602 × 10−19) = 928 nm p-Ge of electrical resistivity 1 Ωcm→ 0.01 Ωm; pp = 3.28 × 1021 m−3 EF p = Eg 2 − kBT q ln pp ni = 0.66 eV 2 −0.0259 eV ln 3.28 × 1021 m−3 2.4 × 1019 m−3 = 0.20 eV p-Ge/n-GaAs Vbi = EF n − EF p = 1.22 eV − 0.20 eV = 1.02 eV W = 2 0 r (Vbi − 2kBT/q) pp q = 2(8.854 × 10−12 )(16) (1.02 − 2 × 0.0259) eV 3.28 × 1021m−3 (1.602 × 10−19) = 722 nm 15