Polar Form of a Complex Number
Dr. Maria Athar
The Complex Plane
•A complex number z = a + bi is represented as a point
(a, b) in a coordinate plane. The horizontal axis of the
coordinate plane is called the real axis. The vertical axis is
called the imaginary axis. The coordinate system is called
the complex plane.
• When we represent a complex
number as a point in the complex
plane, we say that we are
plotting the complex number.
Example: Plotting Complex Numbers
•Plot the complex number in the complex plane:
z = 2 + 3i
z a bi
 
2 3
z i
 
2, 3
a b
 
We plot the point
(a, b) = (2, 3).
2 3
z i
 
Example: Plotting Complex Numbers
•Plot the complex number in the complex plane:
z = –3 – 5i
z a bi
 
3 5
z i
  
3, 5
a b
   
We plot the point
(a, b) = (–3, –5).
3 5
z i
  
Example: Plotting Complex Numbers
•Plot the complex number in the complex plane:
z = –4
z a bi
 
4 0
z i
  
4, 0
a b
  
We plot the point
(a, b) = (–4, 0).
4 0
z i
  
Example: Plotting Complex Numbers
•Plot the complex number in the complex plane:
z = –i
z a bi
 
0
z i
 
0, 1
a b
  
We plot the point
(a, b) = (0, –1).
0
z i
 
Polar Form of a Complex Number
•A complex number in the form z = x+ iy is said
to be in rectangular form.
•The expression is called
the polar form of a complex number.
(cos sin )
z r i
 
 
Example1: Finding the Modulus of a
Complex Number
5 12
z i
 
2 2
.
z a bi a b
   
2 2
5 12 5 12
z i
    25 144
  169
 13

Example2: Finding the Absolute Value
of a Complex Number
2 3
z i
 
2 2
.
z a bi a b
   
2 2
2 3 2 ( 3)
z i
     4 9
  13

Example: Writing a Complex Number
in Polar Form
•write the number in polar form: 1 3
z i
  
z a bi
 
1 3
z i
  
1, 3
a b
   
1 3
z i
  
Example: Writing a Complex Number
in Polar Form
1 3
z i
  
2 2
r a b
 
 
2
2
( 1) 3
   
1 3 4 2
   
tan
b
a
 
3
3
1

 

4
3

 
Example: Writing a Complex Number
in Polar Form
1 3
z i
  
The polar form of
is
1 3
z i
  
4
2,
3
r


 
(cos sin )
z r i
 
 
4 4
2 cos sin .
3 3
z i
 
 
 
 
 
3) Polar Form(mathematics) subject slides.pdf
3) Polar Form(mathematics) subject slides.pdf
3) Polar Form(mathematics) subject slides.pdf

3) Polar Form(mathematics) subject slides.pdf

  • 1.
    Polar Form ofa Complex Number Dr. Maria Athar
  • 9.
    The Complex Plane •Acomplex number z = a + bi is represented as a point (a, b) in a coordinate plane. The horizontal axis of the coordinate plane is called the real axis. The vertical axis is called the imaginary axis. The coordinate system is called the complex plane. • When we represent a complex number as a point in the complex plane, we say that we are plotting the complex number.
  • 10.
    Example: Plotting ComplexNumbers •Plot the complex number in the complex plane: z = 2 + 3i z a bi   2 3 z i   2, 3 a b   We plot the point (a, b) = (2, 3). 2 3 z i  
  • 11.
    Example: Plotting ComplexNumbers •Plot the complex number in the complex plane: z = –3 – 5i z a bi   3 5 z i    3, 5 a b     We plot the point (a, b) = (–3, –5). 3 5 z i   
  • 12.
    Example: Plotting ComplexNumbers •Plot the complex number in the complex plane: z = –4 z a bi   4 0 z i    4, 0 a b    We plot the point (a, b) = (–4, 0). 4 0 z i   
  • 13.
    Example: Plotting ComplexNumbers •Plot the complex number in the complex plane: z = –i z a bi   0 z i   0, 1 a b    We plot the point (a, b) = (0, –1). 0 z i  
  • 19.
    Polar Form ofa Complex Number •A complex number in the form z = x+ iy is said to be in rectangular form. •The expression is called the polar form of a complex number. (cos sin ) z r i    
  • 22.
    Example1: Finding theModulus of a Complex Number 5 12 z i   2 2 . z a bi a b     2 2 5 12 5 12 z i     25 144   169  13 
  • 23.
    Example2: Finding theAbsolute Value of a Complex Number 2 3 z i   2 2 . z a bi a b     2 2 2 3 2 ( 3) z i      4 9   13 
  • 26.
    Example: Writing aComplex Number in Polar Form •write the number in polar form: 1 3 z i    z a bi   1 3 z i    1, 3 a b     1 3 z i   
  • 27.
    Example: Writing aComplex Number in Polar Form 1 3 z i    2 2 r a b     2 2 ( 1) 3     1 3 4 2     tan b a   3 3 1     4 3   
  • 28.
    Example: Writing aComplex Number in Polar Form 1 3 z i    The polar form of is 1 3 z i    4 2, 3 r     (cos sin ) z r i     4 4 2 cos sin . 3 3 z i          