SlideShare a Scribd company logo
1 of 45
Download to read offline
COMPLEX NUMBERS
ELECTRONIC VERSION OF LECTURE
Dr. Lê Xuân Đại
HoChiMinh City University of Technology
Faculty of Applied Science, Department of Applied Mathematics
Email: ytkadai@hcmut.edu.vn
HCMC — 2018.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 1 / 45
OUTLINE
1 PROBLEM
2 ALGEBRAIC FORM OF COMPLEX NUMBER
3 POLAR FORM OF A COMPLEX NUMBER
4 POWERS OF A COMPLEX NUMBER
5 COMPLEX EXPONENTS
6 FUNDAMENTAL THEOREM OF ALGEBRA
7 MATLAB
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 2 / 45
Problem
Complex numbers arise naturally in the
course of solving polynomial equations. For
example, the solutions of the quadratic
equation ax2
+bx+c = 0, which are given by
the quadratic formula
x =
−b±
p
b2 −4ac
2a
are complex numbers if the expression
inside the radical is negative (b2
−4ac < 0).
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 3 / 45
Algebraic form of complex number Definitions
To deal with the problem that the equation
x2
= −1 has no real solutions,
mathematicians invented the imaginary
number i =
p
−1, which is assumed to have
the property i2
= (
p
−1)2
= −1.
DEFINITION 2.1
An expression of the form z = a+bi; (a,b) ∈ R2
,
is called a complex number. The number a is
called the real part of z and is denoted by
Re (z), and the number b is called the
imaginary part of z and is denoted by Im (z).
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 4 / 45
Algebraic form of complex number Definitions
DEFINITION 2.2
A complex number of the form z = 0+bi,b 6= 0
whose real part is zero is said to be pure
imaginary. For example i,3i,−i,... are pure
imaginary.
DEFINITION 2.3
A complex number of the form z = a+0i = a
whose imaginary part is zero is a real
number, so the real numbers can be viewed
as a subset of the complex numbers.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 5 / 45
Algebraic form of complex number Definitions
A complex number z = a+bi can be
associated with the ordered pair (a,b) and
represented geometrically by a point or a
vector in the xy−plane (complex plane).
Argand diagram
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 6 / 45
Algebraic form of complex number Operations
DEFINITION 2.4
Two complex numbers are considered equal
if and only if their real parts are equal and
their imaginary parts are equal; that is,
z1 = a1 +b1i = z2 = a2 +b2i
⇐⇒ a1 = a2 and b1 = b2.
(1)
Remark. Unlike the real numbers, the order
symbols <,É,> and Ê are not used with
complex numbers.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 7 / 45
Algebraic form of complex number Operations
EXAMPLE 2.1
Find the real numbers x,y such that
(1+2i)x+(3−5i)y = 5−i
SOLUTION.
(1+2i)x+(3−5i)y = 1−3i
⇔ (x+3y)+(2x−5y)i = 5−i
⇔
(
x+3y = 5
2x−5y = −1
⇔
(
x = 2
y = 1
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 8 / 45
Algebraic form of complex number Operations
DEFINITION 2.5
Let z1 = a1 +b1i and z2 = a2 +b2i. Complex
numbers z1,z2 are added, subtracted by the
formulas
z1 +z2 = (a1 +a2)+(b1 +b2)i (2)
z1 −z2 = (a1 −a2)+(b1 −b2)i (3)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 9 / 45
Algebraic form of complex number Operations
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 10 / 45
Algebraic form of complex number Operations
EXAMPLE 2.2
Find the real and imaginary parts of the
complex number z = (2+3i)+(−3+4i)−(6−5i)
SOLUTION.
z = (2−3−6)+(3+4+5)i = −7+12i
⇒ Re (z) = −7,Im (z) = 12.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 11 / 45
Algebraic form of complex number Operations
DEFINITION 2.6
Let z1 = a1 +b1i and z2 = a2 +b2i. Complex
numbers z1,z2 are multiplied in accordance
with the standard rules of algebra but with
i2
= −1.
z1.z2 = (a1.a2 −b1.b2)+(a1.b2 +a2.b1)i (4)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 12 / 45
Algebraic form of complex number Operations
EXAMPLE 2.3
Let z1 = 1+2i,z2 = 2+bi. Find all real
numbers b such that z1.z2 is a real number.
SOLUTION.
z1.z2 = (1×2−2×b)+(1×b+2×2)i =
= (2−2b)+(b+4)i.
In order that z1.z2 is a real number, then
b+4 = 0 ⇒ b = −4.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 13 / 45
Algebraic form of complex number Complex conjugate
DEFINITION 2.7
If z = a+bi is a complex number, then the
complex conjugate of z is denoted by z (read
"z bar") and is defined by z = a−bi.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 14 / 45
Algebraic form of complex number Complex conjugate
DEFINITION 2.8
The length of the vector z is called modulus
of z and is denoted by |z| or mod(z). The
modulus of z is defined by
|z| =
p
z.z =
p
(a+bi)(a−bi) =
p
a2 +b2
(5)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 15 / 45
Algebraic form of complex number Complex conjugate
EXAMPLE 2.4
Find the modulus of complex number 1+i
p
3
SOLUTION.
|z| =
q
12 +
p
3
2
= 2.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 16 / 45
Algebraic form of complex number Reciprocals and Division
DEFINITION 2.9
If z 6= 0, then the reciprocal of z is denoted by
1
z
and is defined by the property
1
z
·z = 1 (6)
⇒
1
z
·z.z = z ⇔
1
z
·|z|2
= z ⇔
1
z
=
z
|z|2
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 17 / 45
Algebraic form of complex number Reciprocals and Division
DEFINITION 2.10
If z2 6= 0, then the quotient
z1
z2
is defined by
z1
z2
=
z2
|z2|2
·z1 =
z1z2
|z2|2
(7)
z1
z2
=
a1 +b1i
a2 +b2i
=
(a1 +b1i)(a2 −b2i)
(a2 +b2i)(a2 −b2i)
z1
z2
=
a1a2 +b1b2
a2
2 +b2
2
+
a2b1 −a1b2
a2
2 +b2
2
i.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 18 / 45
Algebraic form of complex number Reciprocals and Division
EXAMPLE 2.5
Let z1 = 2+3i and z2 = 1+2i. Express z =
z1
z2
in
the form a+bi.
SOLUTION.
z =
2+3i
1+2i
=
2×1+3×2
12 +22
+
1×3−2×2
12 +22
i =
8
5
−
1
5
i.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 19 / 45
Algebraic form of complex number Reciprocals and Division
SOME BASIC PROPERTIES OF CONJUGATE OPERATIONS
1
z+z = 2.Re (z), z−z = 2i.Im (z).
2
z.z = |z|2
.
3
z = z if and only if z is a real number.
4
z1 ±z2 = z1 ±z2.
5
z1.z2 = z1.z2.
6
z1
z2
=
z1
z2
·
7
z = z.
8
zn = (z)n
,∀n ∈ N
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 20 / 45
Polar Form of a Complex Number Definitions
If z = a+bi,z 6= 0, is a nonzero complex
number, and if ϕ is an angle from the real
axis to the vector z, then the real and
imaginary parts of z can be expressed as
a = |z|cosϕ, b = |z|sinϕ (8)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 21 / 45
Polar Form of a Complex Number Definitions
DEFINITION 3.1
The complex number z = a+bi can be
expressed as
z = r(cosϕ+isinϕ) (9)
which is called a polar form of z, where
r = |z| =
p
a2 +b2,tanϕ =
b
a
· The angle ϕ is
called the argument of z and denoted by
arg z.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 22 / 45
Polar Form of a Complex Number Definitions
REMARK
The argument arg z is not unique; any two
arguments of z differ by an integer multiple
of 2π. However, there is only one argument
whose radian measure satisfies
0 É ϕ < 2π or −π < ϕ É π.
This argument is called the principal
argument of z and denoted by Arg z
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 23 / 45
Polar Form of a Complex Number Definitions
EXAMPLE 3.1
Express z = 1−
p
3i in polar form using the
principal argument.
SOLUTION. The modulus of z is
|z| =
q
12 +(
p
3)2 = 2
a = |z|cosϕ ⇒ 1 = 2cosϕ ⇒ cosϕ =
1
2
b = |z|sinϕ ⇒ −
p
3 = 2sinϕ ⇒ sinϕ =
−
p
3
2
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 24 / 45
Polar Form of a Complex Number Definitions
The unique angle ϕ satisfies these
equations and whose radian measure
satisfies −π < ϕ É π, is −
π
3
· Thus, the
principal argument is −
π
3
· Therefore, a polar
form of z is
z = 2
h
cos
³
−
π
3
´
+isin
³
−
π
3
´i
= 2
³
cos
π
3
−isin
π
3
´
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 25 / 45
Polar Form of a Complex Number Multiplication of Complex Numbers
Let z1 = r1(cosϕ1 +isinϕ1) and
z2 = r2(cosϕ2 +isinϕ2). Multiplying, we
obtain
z1.z2 = r1.r2
£
cos(ϕ1 +ϕ2)+isin(ϕ1 +ϕ2)
¤
(10)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 26 / 45
Polar Form of a Complex Number Multiplication of Complex Numbers
EXAMPLE 3.2
Use polar forms of the complex numbers to
compute z = (1+i
p
3)(2−2i).
SOLUTION.
z = 2
³
cos
π
3
+isin
π
3
´
.2
p
2
h
cos
³
−
π
4
´
+isin
³
−
π
4
´i
=
= 4
p
2
h
cos
³π
3
−
π
4
´
+isin
³π
3
−
π
4
´i
=
= 4
p
2
³
cos
π
12
+isin
π
12
´
.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 27 / 45
Polar Form of a Complex Number Division of Complex Numbers
DIVISION OF COMPLEX NUMBERS
Let z1 = r1(cosϕ1 +isinϕ1) and
z2 = r2(cosϕ2 +isinϕ2). Dividing, we obtain
z1
z2
=
r1
r2
£
cos(ϕ1 −ϕ2)+isin(ϕ1 −ϕ2)
¤
, z2 6= 0
(11)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 28 / 45
Polar Form of a Complex Number Division of Complex Numbers
EXAMPLE 3.3
Use polar forms of the complex numbers to
compute z =
1+i
p
3
1+i
SOLUTION.
z =
2
¡
cos π
3
+isin π
3
¢
p
2
¡
cos π
4
+isin π
4
¢ =
=
p
2
h
cos
³π
3
−
π
4
´
+isin
³π
3
−
π
4
´i
=
=
p
2
³
cos
π
12
+isin
π
12
´
.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 29 / 45
Powers of a Complex Number Powers of i
POWERS OF i
i1
= i, i2
= −1, i3
= i2
.i = −i, i4
= (i2
)2
= 1,
i5
= i4
.i = i,i6
= i4
.i2
= −1,
i7
= i4
.i3
= −i,i8
= (i4
)2
= 1
THEOREM 4.1
Suppose n be a natural number, then in
= ir
,
where r is the remainder of division n by 4.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 30 / 45
Powers of a Complex Number Powers of i
EXAMPLE 4.1
Evaluate i2011
.
SOLUTION.
We have 2011 = 4×502+3. So i2011
= i3
= −i.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 31 / 45
Powers of a Complex Number DeMoivre’s Formula
THEOREM 4.2 (DEMOIVRE’S FORMULA)
If r > 0 and n is a positive integer then
h
r(cosϕ+isinϕ)
in
= rn
(cosnϕ+isinnϕ)
(12)
THEOREM 4.3
If n is a positive integer then
(cosϕ+isinϕ)n
= cosnϕ+isinnϕ (13)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 32 / 45
Powers of a Complex Number DeMoivre’s Formula
EXAMPLE 4.2
Find a minimum positive integer n such that
z = (−
p
3+i)n
is a pure imaginary.
SOLUTION.
z = (−
p
3+i)n
=
h
2(cos 5π
6
+isin 5π
6
)
in
=
= 2n
(cos 5nπ
6
+isin 5nπ
6
).
Therefore, in order to z is a pure imaginary
then cos
5nπ
6
= 0 ⇔
5nπ
6
=
π
2
+kπ ⇔ n =
3+6k
5
.
In order to 3+6k is divisible by 5, the
minimum number k is k = 2 ⇒ n = 3.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 33 / 45
Powers of a Complex Number Roots of a complex number
THEOREM 4.4
Let z = a+bi = r(cosϕ+isinϕ) and let n be a
positive integer. Then z has the n distinct nth
roots
n
p
z = wk = n
p
r
µ
cos
ϕ+k2π
n
+isin
ϕ+k2π
n
¶
(14)
where k = 0,1,2,...,n−1.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 34 / 45
Powers of a Complex Number Roots of a complex number
EXAMPLE 4.3
Let z = 1−i. Find 3
p
z.
SOLUTION.
z = 1−i =
p
2
³
cos
−π
4
+isin
−π
4
´
⇒ 3
p
z =
6
p
2
µ
cos
−π
4
+k2π
3
+isin
−π
4
+k2π
3
¶
,
(k = 0,1,2)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 35 / 45
Complex Exponents Euler’s Formula
THEOREM 5.1 (EULER’S FORMULA)
eiϕ
= cosϕ+isinϕ (15)
If z = eiϕ
= cosϕ+isinϕ then |z| = 1 and z−1
=
=
1
cosϕ+isinϕ
=
cosϕ−isinϕ
(cosϕ+isinϕ)(cosϕ−isinϕ)
=
= cosϕ−isinϕ.
So z−1
= z.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 36 / 45
Complex Exponents Complex Exponent
DEFINITION 5.1
If z = a+bi is any complex number, then z
can be expressed in the complex exponent
form
z = a+bi = r(cosϕ+isinϕ) = reiϕ
(16)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 37 / 45
Complex Exponents Complex Exponent
Remark. Complex exponents follow the
same laws as real exponents.
THEOREM 5.2
If z1 = r1eiϕ1
and z2 = r2eiϕ2
are nonzero
complex numbers, then
1
z1z2 = r1r2eiϕ1+iϕ2
= r1r2ei(ϕ1+ϕ2)
2
z1
z2
=
r1
r2
eiϕ1−iϕ2
=
r1
r2
ei(ϕ1−ϕ2)
3
z1 = r(cosϕ−isinϕ) =
r
h
cos(−ϕ)+isin(−ϕ)
i
= re−iϕ
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 38 / 45
Complex Exponents Complex Exponent
EXAMPLE 5.1
Express the complex number z =
−1+i
p
3
1−i
in
the complex exponent form.
SOLUTION.
z =
−1+i
p
3
1−i
=
2ei2π
3
p
2ei−π
4
=
p
2ei2π
3 −i−π
4 =
=
p
2ei11π
12
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 39 / 45
Complex Exponents Complex Exponent
EXAMPLE 5.2
Express complex numbers of the form
z = e2+iy
,y ∈ R on complex plane.
SOLUTION.
z = e2+iy
= e2
.eiy
= e2
(cosy +isiny).
Since y is a arbitrary real number then the
set of all complex numbers of the form
z = e2+iy
,y ∈ R is the circle with center at
origin O and radius of r = e2
.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 40 / 45
Fundamental Theorem of Algebra
THEOREM 6.1
The equation
anxn
+an−1xn−1
+...+a1x+a0 = 0
(n ∈ N∗
,an 6= 0,ai ∈ C,i = 1,n) has exactly n
roots (real, complex and multiple roots).
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 41 / 45
Fundamental Theorem of Algebra
THEOREM 6.2
If x = α is a root of the equation
anxn
+an−1xn−1
+...+a1x+a0 = 0,
(n ∈ N∗
,an 6= 0,ai ∈ R,i = 1,2,...,n),
then x = α is also a root of this equation.
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 42 / 45
Fundamental Theorem of Algebra
EXAMPLE 6.1
Solve the equation z4
+z3
+3z2
+z+2 = 0 in
the set of complex numbers C if z = i is a root
of this equation.
SOLUTION. Since z = i is a root of the
equation then z = −i is also a root of this
equation. Therefore
z4
+z3
+3z2
+z+2 = 0 ⇔ (z2
+1)(z2
+z+2) = 0
⇔
"
z = ±i
z = −1±i
p
3
2
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 43 / 45
MatLab
MATLAB
1
To find a real part of complex number z :
real(z)
2
To find a imaginary part of complex
number z : imag(z)
3
To find modulus of complex number z :
abs(z)
4
To find the principle angle ϕ of complex
number z : angle(z)
5
To find complex conjugate of complex
number z : conj(z)
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 44 / 45
MatLab
THANK YOU FOR YOUR ATTENTION
Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 45 / 45

More Related Content

Similar to 1.complex_numbers_handout complex_numbers_handout.pdf

3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am
3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am
3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am
dataniyaarunkumar
 
3D Represent.docx
3D Represent.docx3D Represent.docx
3D Represent.docx
tamicawaysmith
 
A.B. .docx
A.B. .docxA.B. .docx
A.B. .docx
annetnash8266
 
Software product selectionSelecting a software product for use i.docx
Software product selectionSelecting a software product for use i.docxSoftware product selectionSelecting a software product for use i.docx
Software product selectionSelecting a software product for use i.docx
whitneyleman54422
 
Lecture 5(polar coordinates)
Lecture 5(polar coordinates)Lecture 5(polar coordinates)
Lecture 5(polar coordinates)
FahadYaqoob5
 
Lecture 5(polar coordinates)
Lecture 5(polar coordinates)Lecture 5(polar coordinates)
Lecture 5(polar coordinates)
FahadYaqoob5
 

Similar to 1.complex_numbers_handout complex_numbers_handout.pdf (20)

A Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex NumbersA Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex Numbers
 
Ch04
Ch04Ch04
Ch04
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curves
 
Chapter 2 Lecture Notes_ Divisibility.pdf
Chapter 2 Lecture Notes_ Divisibility.pdfChapter 2 Lecture Notes_ Divisibility.pdf
Chapter 2 Lecture Notes_ Divisibility.pdf
 
3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am
3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am
3130005 cvpde gtu_study_material_e-notes_all_18072019070728_am
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
 
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge3.complex numbers  Further Mathematics Zimbabwe Zimsec Cambridge
3.complex numbers Further Mathematics Zimbabwe Zimsec Cambridge
 
Rumus matematik examonline spa
Rumus matematik examonline spaRumus matematik examonline spa
Rumus matematik examonline spa
 
3D Represent.docx
3D Represent.docx3D Represent.docx
3D Represent.docx
 
2 complex numbers part 2 of 3
2 complex numbers part 2 of 32 complex numbers part 2 of 3
2 complex numbers part 2 of 3
 
A.B. .docx
A.B. .docxA.B. .docx
A.B. .docx
 
IIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's ClassesIIT JAM Math 2022 Question Paper | Sourav Sir's Classes
IIT JAM Math 2022 Question Paper | Sourav Sir's Classes
 
3 complex numbers part 3 of 3
3 complex numbers part 3 of 33 complex numbers part 3 of 3
3 complex numbers part 3 of 3
 
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbersMIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
 
class 12 2014 maths solution set 1
class 12 2014 maths solution set 1class 12 2014 maths solution set 1
class 12 2014 maths solution set 1
 
Software product selectionSelecting a software product for use i.docx
Software product selectionSelecting a software product for use i.docxSoftware product selectionSelecting a software product for use i.docx
Software product selectionSelecting a software product for use i.docx
 
Lecture 5(polar coordinates)
Lecture 5(polar coordinates)Lecture 5(polar coordinates)
Lecture 5(polar coordinates)
 
Lecture 5(polar coordinates)
Lecture 5(polar coordinates)Lecture 5(polar coordinates)
Lecture 5(polar coordinates)
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Complexos 2
Complexos 2Complexos 2
Complexos 2
 

Recently uploaded

Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
hublikarsn
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
meharikiros2
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 

Recently uploaded (20)

Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information Systems
 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 

1.complex_numbers_handout complex_numbers_handout.pdf

  • 1. COMPLEX NUMBERS ELECTRONIC VERSION OF LECTURE Dr. Lê Xuân Đại HoChiMinh City University of Technology Faculty of Applied Science, Department of Applied Mathematics Email: ytkadai@hcmut.edu.vn HCMC — 2018. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 1 / 45
  • 2. OUTLINE 1 PROBLEM 2 ALGEBRAIC FORM OF COMPLEX NUMBER 3 POLAR FORM OF A COMPLEX NUMBER 4 POWERS OF A COMPLEX NUMBER 5 COMPLEX EXPONENTS 6 FUNDAMENTAL THEOREM OF ALGEBRA 7 MATLAB Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 2 / 45
  • 3. Problem Complex numbers arise naturally in the course of solving polynomial equations. For example, the solutions of the quadratic equation ax2 +bx+c = 0, which are given by the quadratic formula x = −b± p b2 −4ac 2a are complex numbers if the expression inside the radical is negative (b2 −4ac < 0). Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 3 / 45
  • 4. Algebraic form of complex number Definitions To deal with the problem that the equation x2 = −1 has no real solutions, mathematicians invented the imaginary number i = p −1, which is assumed to have the property i2 = ( p −1)2 = −1. DEFINITION 2.1 An expression of the form z = a+bi; (a,b) ∈ R2 , is called a complex number. The number a is called the real part of z and is denoted by Re (z), and the number b is called the imaginary part of z and is denoted by Im (z). Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 4 / 45
  • 5. Algebraic form of complex number Definitions DEFINITION 2.2 A complex number of the form z = 0+bi,b 6= 0 whose real part is zero is said to be pure imaginary. For example i,3i,−i,... are pure imaginary. DEFINITION 2.3 A complex number of the form z = a+0i = a whose imaginary part is zero is a real number, so the real numbers can be viewed as a subset of the complex numbers. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 5 / 45
  • 6. Algebraic form of complex number Definitions A complex number z = a+bi can be associated with the ordered pair (a,b) and represented geometrically by a point or a vector in the xy−plane (complex plane). Argand diagram Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 6 / 45
  • 7. Algebraic form of complex number Operations DEFINITION 2.4 Two complex numbers are considered equal if and only if their real parts are equal and their imaginary parts are equal; that is, z1 = a1 +b1i = z2 = a2 +b2i ⇐⇒ a1 = a2 and b1 = b2. (1) Remark. Unlike the real numbers, the order symbols <,É,> and Ê are not used with complex numbers. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 7 / 45
  • 8. Algebraic form of complex number Operations EXAMPLE 2.1 Find the real numbers x,y such that (1+2i)x+(3−5i)y = 5−i SOLUTION. (1+2i)x+(3−5i)y = 1−3i ⇔ (x+3y)+(2x−5y)i = 5−i ⇔ ( x+3y = 5 2x−5y = −1 ⇔ ( x = 2 y = 1 Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 8 / 45
  • 9. Algebraic form of complex number Operations DEFINITION 2.5 Let z1 = a1 +b1i and z2 = a2 +b2i. Complex numbers z1,z2 are added, subtracted by the formulas z1 +z2 = (a1 +a2)+(b1 +b2)i (2) z1 −z2 = (a1 −a2)+(b1 −b2)i (3) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 9 / 45
  • 10. Algebraic form of complex number Operations Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 10 / 45
  • 11. Algebraic form of complex number Operations EXAMPLE 2.2 Find the real and imaginary parts of the complex number z = (2+3i)+(−3+4i)−(6−5i) SOLUTION. z = (2−3−6)+(3+4+5)i = −7+12i ⇒ Re (z) = −7,Im (z) = 12. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 11 / 45
  • 12. Algebraic form of complex number Operations DEFINITION 2.6 Let z1 = a1 +b1i and z2 = a2 +b2i. Complex numbers z1,z2 are multiplied in accordance with the standard rules of algebra but with i2 = −1. z1.z2 = (a1.a2 −b1.b2)+(a1.b2 +a2.b1)i (4) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 12 / 45
  • 13. Algebraic form of complex number Operations EXAMPLE 2.3 Let z1 = 1+2i,z2 = 2+bi. Find all real numbers b such that z1.z2 is a real number. SOLUTION. z1.z2 = (1×2−2×b)+(1×b+2×2)i = = (2−2b)+(b+4)i. In order that z1.z2 is a real number, then b+4 = 0 ⇒ b = −4. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 13 / 45
  • 14. Algebraic form of complex number Complex conjugate DEFINITION 2.7 If z = a+bi is a complex number, then the complex conjugate of z is denoted by z (read "z bar") and is defined by z = a−bi. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 14 / 45
  • 15. Algebraic form of complex number Complex conjugate DEFINITION 2.8 The length of the vector z is called modulus of z and is denoted by |z| or mod(z). The modulus of z is defined by |z| = p z.z = p (a+bi)(a−bi) = p a2 +b2 (5) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 15 / 45
  • 16. Algebraic form of complex number Complex conjugate EXAMPLE 2.4 Find the modulus of complex number 1+i p 3 SOLUTION. |z| = q 12 + p 3 2 = 2. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 16 / 45
  • 17. Algebraic form of complex number Reciprocals and Division DEFINITION 2.9 If z 6= 0, then the reciprocal of z is denoted by 1 z and is defined by the property 1 z ·z = 1 (6) ⇒ 1 z ·z.z = z ⇔ 1 z ·|z|2 = z ⇔ 1 z = z |z|2 Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 17 / 45
  • 18. Algebraic form of complex number Reciprocals and Division DEFINITION 2.10 If z2 6= 0, then the quotient z1 z2 is defined by z1 z2 = z2 |z2|2 ·z1 = z1z2 |z2|2 (7) z1 z2 = a1 +b1i a2 +b2i = (a1 +b1i)(a2 −b2i) (a2 +b2i)(a2 −b2i) z1 z2 = a1a2 +b1b2 a2 2 +b2 2 + a2b1 −a1b2 a2 2 +b2 2 i. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 18 / 45
  • 19. Algebraic form of complex number Reciprocals and Division EXAMPLE 2.5 Let z1 = 2+3i and z2 = 1+2i. Express z = z1 z2 in the form a+bi. SOLUTION. z = 2+3i 1+2i = 2×1+3×2 12 +22 + 1×3−2×2 12 +22 i = 8 5 − 1 5 i. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 19 / 45
  • 20. Algebraic form of complex number Reciprocals and Division SOME BASIC PROPERTIES OF CONJUGATE OPERATIONS 1 z+z = 2.Re (z), z−z = 2i.Im (z). 2 z.z = |z|2 . 3 z = z if and only if z is a real number. 4 z1 ±z2 = z1 ±z2. 5 z1.z2 = z1.z2. 6 z1 z2 = z1 z2 · 7 z = z. 8 zn = (z)n ,∀n ∈ N Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 20 / 45
  • 21. Polar Form of a Complex Number Definitions If z = a+bi,z 6= 0, is a nonzero complex number, and if ϕ is an angle from the real axis to the vector z, then the real and imaginary parts of z can be expressed as a = |z|cosϕ, b = |z|sinϕ (8) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 21 / 45
  • 22. Polar Form of a Complex Number Definitions DEFINITION 3.1 The complex number z = a+bi can be expressed as z = r(cosϕ+isinϕ) (9) which is called a polar form of z, where r = |z| = p a2 +b2,tanϕ = b a · The angle ϕ is called the argument of z and denoted by arg z. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 22 / 45
  • 23. Polar Form of a Complex Number Definitions REMARK The argument arg z is not unique; any two arguments of z differ by an integer multiple of 2π. However, there is only one argument whose radian measure satisfies 0 É ϕ < 2π or −π < ϕ É π. This argument is called the principal argument of z and denoted by Arg z Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 23 / 45
  • 24. Polar Form of a Complex Number Definitions EXAMPLE 3.1 Express z = 1− p 3i in polar form using the principal argument. SOLUTION. The modulus of z is |z| = q 12 +( p 3)2 = 2 a = |z|cosϕ ⇒ 1 = 2cosϕ ⇒ cosϕ = 1 2 b = |z|sinϕ ⇒ − p 3 = 2sinϕ ⇒ sinϕ = − p 3 2 Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 24 / 45
  • 25. Polar Form of a Complex Number Definitions The unique angle ϕ satisfies these equations and whose radian measure satisfies −π < ϕ É π, is − π 3 · Thus, the principal argument is − π 3 · Therefore, a polar form of z is z = 2 h cos ³ − π 3 ´ +isin ³ − π 3 ´i = 2 ³ cos π 3 −isin π 3 ´ Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 25 / 45
  • 26. Polar Form of a Complex Number Multiplication of Complex Numbers Let z1 = r1(cosϕ1 +isinϕ1) and z2 = r2(cosϕ2 +isinϕ2). Multiplying, we obtain z1.z2 = r1.r2 £ cos(ϕ1 +ϕ2)+isin(ϕ1 +ϕ2) ¤ (10) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 26 / 45
  • 27. Polar Form of a Complex Number Multiplication of Complex Numbers EXAMPLE 3.2 Use polar forms of the complex numbers to compute z = (1+i p 3)(2−2i). SOLUTION. z = 2 ³ cos π 3 +isin π 3 ´ .2 p 2 h cos ³ − π 4 ´ +isin ³ − π 4 ´i = = 4 p 2 h cos ³π 3 − π 4 ´ +isin ³π 3 − π 4 ´i = = 4 p 2 ³ cos π 12 +isin π 12 ´ . Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 27 / 45
  • 28. Polar Form of a Complex Number Division of Complex Numbers DIVISION OF COMPLEX NUMBERS Let z1 = r1(cosϕ1 +isinϕ1) and z2 = r2(cosϕ2 +isinϕ2). Dividing, we obtain z1 z2 = r1 r2 £ cos(ϕ1 −ϕ2)+isin(ϕ1 −ϕ2) ¤ , z2 6= 0 (11) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 28 / 45
  • 29. Polar Form of a Complex Number Division of Complex Numbers EXAMPLE 3.3 Use polar forms of the complex numbers to compute z = 1+i p 3 1+i SOLUTION. z = 2 ¡ cos π 3 +isin π 3 ¢ p 2 ¡ cos π 4 +isin π 4 ¢ = = p 2 h cos ³π 3 − π 4 ´ +isin ³π 3 − π 4 ´i = = p 2 ³ cos π 12 +isin π 12 ´ . Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 29 / 45
  • 30. Powers of a Complex Number Powers of i POWERS OF i i1 = i, i2 = −1, i3 = i2 .i = −i, i4 = (i2 )2 = 1, i5 = i4 .i = i,i6 = i4 .i2 = −1, i7 = i4 .i3 = −i,i8 = (i4 )2 = 1 THEOREM 4.1 Suppose n be a natural number, then in = ir , where r is the remainder of division n by 4. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 30 / 45
  • 31. Powers of a Complex Number Powers of i EXAMPLE 4.1 Evaluate i2011 . SOLUTION. We have 2011 = 4×502+3. So i2011 = i3 = −i. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 31 / 45
  • 32. Powers of a Complex Number DeMoivre’s Formula THEOREM 4.2 (DEMOIVRE’S FORMULA) If r > 0 and n is a positive integer then h r(cosϕ+isinϕ) in = rn (cosnϕ+isinnϕ) (12) THEOREM 4.3 If n is a positive integer then (cosϕ+isinϕ)n = cosnϕ+isinnϕ (13) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 32 / 45
  • 33. Powers of a Complex Number DeMoivre’s Formula EXAMPLE 4.2 Find a minimum positive integer n such that z = (− p 3+i)n is a pure imaginary. SOLUTION. z = (− p 3+i)n = h 2(cos 5π 6 +isin 5π 6 ) in = = 2n (cos 5nπ 6 +isin 5nπ 6 ). Therefore, in order to z is a pure imaginary then cos 5nπ 6 = 0 ⇔ 5nπ 6 = π 2 +kπ ⇔ n = 3+6k 5 . In order to 3+6k is divisible by 5, the minimum number k is k = 2 ⇒ n = 3. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 33 / 45
  • 34. Powers of a Complex Number Roots of a complex number THEOREM 4.4 Let z = a+bi = r(cosϕ+isinϕ) and let n be a positive integer. Then z has the n distinct nth roots n p z = wk = n p r µ cos ϕ+k2π n +isin ϕ+k2π n ¶ (14) where k = 0,1,2,...,n−1. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 34 / 45
  • 35. Powers of a Complex Number Roots of a complex number EXAMPLE 4.3 Let z = 1−i. Find 3 p z. SOLUTION. z = 1−i = p 2 ³ cos −π 4 +isin −π 4 ´ ⇒ 3 p z = 6 p 2 µ cos −π 4 +k2π 3 +isin −π 4 +k2π 3 ¶ , (k = 0,1,2) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 35 / 45
  • 36. Complex Exponents Euler’s Formula THEOREM 5.1 (EULER’S FORMULA) eiϕ = cosϕ+isinϕ (15) If z = eiϕ = cosϕ+isinϕ then |z| = 1 and z−1 = = 1 cosϕ+isinϕ = cosϕ−isinϕ (cosϕ+isinϕ)(cosϕ−isinϕ) = = cosϕ−isinϕ. So z−1 = z. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 36 / 45
  • 37. Complex Exponents Complex Exponent DEFINITION 5.1 If z = a+bi is any complex number, then z can be expressed in the complex exponent form z = a+bi = r(cosϕ+isinϕ) = reiϕ (16) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 37 / 45
  • 38. Complex Exponents Complex Exponent Remark. Complex exponents follow the same laws as real exponents. THEOREM 5.2 If z1 = r1eiϕ1 and z2 = r2eiϕ2 are nonzero complex numbers, then 1 z1z2 = r1r2eiϕ1+iϕ2 = r1r2ei(ϕ1+ϕ2) 2 z1 z2 = r1 r2 eiϕ1−iϕ2 = r1 r2 ei(ϕ1−ϕ2) 3 z1 = r(cosϕ−isinϕ) = r h cos(−ϕ)+isin(−ϕ) i = re−iϕ Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 38 / 45
  • 39. Complex Exponents Complex Exponent EXAMPLE 5.1 Express the complex number z = −1+i p 3 1−i in the complex exponent form. SOLUTION. z = −1+i p 3 1−i = 2ei2π 3 p 2ei−π 4 = p 2ei2π 3 −i−π 4 = = p 2ei11π 12 Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 39 / 45
  • 40. Complex Exponents Complex Exponent EXAMPLE 5.2 Express complex numbers of the form z = e2+iy ,y ∈ R on complex plane. SOLUTION. z = e2+iy = e2 .eiy = e2 (cosy +isiny). Since y is a arbitrary real number then the set of all complex numbers of the form z = e2+iy ,y ∈ R is the circle with center at origin O and radius of r = e2 . Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 40 / 45
  • 41. Fundamental Theorem of Algebra THEOREM 6.1 The equation anxn +an−1xn−1 +...+a1x+a0 = 0 (n ∈ N∗ ,an 6= 0,ai ∈ C,i = 1,n) has exactly n roots (real, complex and multiple roots). Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 41 / 45
  • 42. Fundamental Theorem of Algebra THEOREM 6.2 If x = α is a root of the equation anxn +an−1xn−1 +...+a1x+a0 = 0, (n ∈ N∗ ,an 6= 0,ai ∈ R,i = 1,2,...,n), then x = α is also a root of this equation. Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 42 / 45
  • 43. Fundamental Theorem of Algebra EXAMPLE 6.1 Solve the equation z4 +z3 +3z2 +z+2 = 0 in the set of complex numbers C if z = i is a root of this equation. SOLUTION. Since z = i is a root of the equation then z = −i is also a root of this equation. Therefore z4 +z3 +3z2 +z+2 = 0 ⇔ (z2 +1)(z2 +z+2) = 0 ⇔ " z = ±i z = −1±i p 3 2 Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 43 / 45
  • 44. MatLab MATLAB 1 To find a real part of complex number z : real(z) 2 To find a imaginary part of complex number z : imag(z) 3 To find modulus of complex number z : abs(z) 4 To find the principle angle ϕ of complex number z : angle(z) 5 To find complex conjugate of complex number z : conj(z) Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 44 / 45
  • 45. MatLab THANK YOU FOR YOUR ATTENTION Dr. Lê Xuân Đại (HCMUT-OISP) COMPLEX NUMBERS HCMC — 2018. 45 / 45