SlideShare a Scribd company logo
Complex plane, Modulus, Argument,
Complex plane, Modulus, Argument,
Graphical representation of a
Graphical representation of a
complex number.
complex number.
P r e s e n t a t i o n
o n
Submitted To
Mr. Md. Mozammelul Haque
Lecturer
Department of Software Engineering
Daffodil International University
Section : A
ID : 232-35-016
Reduan Ahmad
Section : A
ID : 232-35-003
Abdullah Al Noman
Section : A
ID : 232-35-022
Mohammad Ali Nayeem
Section : A
ID : 222-35-1189
Sabbir Hossen
Section : A
ID : 232-35-001
Prionti Maliha
Learning Target:
Complex plane
Modulus
Argument
Graphical representation of
a complex number.
Number Line
Negative Numbers (−) Positive Numbers (+)
A plane for complex
numbers!
3 units along (the real axis),
4 units up (the imaginary axis).
Plot a complex number like 3 + 4i
Modulus
The modulus of a complex number is a fundamental concept in mathematics.
The modulus of a complex number is the distance of the complex number from the origin in
the the complex plane
The modulus of a complex number (z), denoted as |z|, is the non-negative value equal to the
square root of the sum of the squares of its real (x) and imaginary (y) parts, expressed as:
In this equation, 𝑥 and 𝑦 represent the real and imaginary components of the complex number
𝑧 respectively.
When a complex number (z) is plotted on a graph (the complex plane), the distance between
the coordinates of the complex number and the origin (0, 0) is called the modulus of the
complex number.
Modulus of a complex number is always non-negative
Examples
Now lets Find Modulus of |z|=3 + 4i
Arguments in the Complex Plane
complex plane with a vector representing the complex number 3 + 4i
Argument of Complex Numbers Formula
θ = tan⁻¹ (y/x)
θ = π - tan⁻¹ |y/x|
θ = π + tan⁻¹ |y/x|
θ = 2π - tan⁻¹ |y/x|
Calculating the Argument
Be mindful of the quadrant of the complex number to determine the correct value of θ.
Formula:
For z = x + yi, the argument θ is given by:
tan(θ) = y/x
θ = arctan(y/x) (using the inverse tangent function)
Examples
Identify: x = 3 and y = 4
Calculate: tan(θ) = 4/3
Solve: θ = arctan(4/3) (using
a calculator)
Result: θ ≈ 53.13° (first
quadrant)
Graphical
Representation of
Complex Numbers
We can represent complex numbers in the
complex plane.
We use the horizontal axis for the real part and
the vertical axis for the imaginary part.
Example :
The number 3+2𝑗 (where 𝑗=−1​
) is represented by:
The point A is the representation of the
complex number 3+2𝑗.
The horizontal axis is marked R (for the "real"
numbered-component), and the vertical axis
is marked j (for the imaginary component of
the complex number).
THANK YOU!

More Related Content

Similar to Complex plane, Modulus, Argument, Graphical representation of a complex number - Math 102 - diu - swe

Maths glossary
Maths glossary Maths glossary
Maths glossary
sandhyajayalekshmi
 
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsxLECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
skhonjwayo78
 
Advanced algebra
Advanced algebraAdvanced algebra
Advanced algebra
spark21
 
MATHS SYMBOLS.pdf
MATHS SYMBOLS.pdfMATHS SYMBOLS.pdf
MATHS SYMBOLS.pdf
Brijesh Sharma
 
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxPOTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
TejedaGarcaAngelBala
 
Complex numbers precalculus
Complex numbers   precalculusComplex numbers   precalculus
Complex numbers precalculus
Itumeleng Segona
 
Mathematics power point presenttation on the topic
Mathematics power point presenttation on the topicMathematics power point presenttation on the topic
Mathematics power point presenttation on the topic
Meghansh Gautam
 
math Vocabulary
math  Vocabularymath  Vocabulary
math Vocabulary
fgeasland
 
Sample Lesson Plan for College Algebra
Sample Lesson Plan for College Algebra Sample Lesson Plan for College Algebra
Sample Lesson Plan for College Algebra
Tariqul Islam
 
Math20001 dec 2015
Math20001 dec 2015Math20001 dec 2015
Math20001 dec 2015
Atef Alnazer
 
G10_Daily Lesson Log_Second QUARTER.docx
G10_Daily Lesson Log_Second QUARTER.docxG10_Daily Lesson Log_Second QUARTER.docx
G10_Daily Lesson Log_Second QUARTER.docx
SinamarLaroyaRefuerz
 
Marh algebra lesson
Marh algebra lessonMarh algebra lesson
Marh algebra lesson
M, Michelle Jeannite
 
Lesson 1 imaginary and complex numbers p1 8
Lesson 1 imaginary and complex numbers p1 8Lesson 1 imaginary and complex numbers p1 8
Lesson 1 imaginary and complex numbers p1 8
jenniech
 
Formulas
FormulasFormulas
Formulas
shana540
 
Math Algebra
Math AlgebraMath Algebra
Math Algebra
Mark Brahier
 
1. introduction to complex numbers
1. introduction to complex numbers1. introduction to complex numbers
1. introduction to complex numbers
جليل الممتاز
 
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeksBeginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks
JinTaek Seo
 
tutorial5.ppt
tutorial5.ppttutorial5.ppt
tutorial5.ppt
jvjfvvoa
 
Solution of second kind volterra integro equations using linear
Solution of second kind volterra integro equations using linearSolution of second kind volterra integro equations using linear
Solution of second kind volterra integro equations using linear
Alexander Decker
 
Intro Num Int Asmd
Intro Num Int AsmdIntro Num Int Asmd
Intro Num Int Asmd
sourslw
 

Similar to Complex plane, Modulus, Argument, Graphical representation of a complex number - Math 102 - diu - swe (20)

Maths glossary
Maths glossary Maths glossary
Maths glossary
 
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsxLECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
 
Advanced algebra
Advanced algebraAdvanced algebra
Advanced algebra
 
MATHS SYMBOLS.pdf
MATHS SYMBOLS.pdfMATHS SYMBOLS.pdf
MATHS SYMBOLS.pdf
 
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxPOTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
 
Complex numbers precalculus
Complex numbers   precalculusComplex numbers   precalculus
Complex numbers precalculus
 
Mathematics power point presenttation on the topic
Mathematics power point presenttation on the topicMathematics power point presenttation on the topic
Mathematics power point presenttation on the topic
 
math Vocabulary
math  Vocabularymath  Vocabulary
math Vocabulary
 
Sample Lesson Plan for College Algebra
Sample Lesson Plan for College Algebra Sample Lesson Plan for College Algebra
Sample Lesson Plan for College Algebra
 
Math20001 dec 2015
Math20001 dec 2015Math20001 dec 2015
Math20001 dec 2015
 
G10_Daily Lesson Log_Second QUARTER.docx
G10_Daily Lesson Log_Second QUARTER.docxG10_Daily Lesson Log_Second QUARTER.docx
G10_Daily Lesson Log_Second QUARTER.docx
 
Marh algebra lesson
Marh algebra lessonMarh algebra lesson
Marh algebra lesson
 
Lesson 1 imaginary and complex numbers p1 8
Lesson 1 imaginary and complex numbers p1 8Lesson 1 imaginary and complex numbers p1 8
Lesson 1 imaginary and complex numbers p1 8
 
Formulas
FormulasFormulas
Formulas
 
Math Algebra
Math AlgebraMath Algebra
Math Algebra
 
1. introduction to complex numbers
1. introduction to complex numbers1. introduction to complex numbers
1. introduction to complex numbers
 
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeksBeginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks
 
tutorial5.ppt
tutorial5.ppttutorial5.ppt
tutorial5.ppt
 
Solution of second kind volterra integro equations using linear
Solution of second kind volterra integro equations using linearSolution of second kind volterra integro equations using linear
Solution of second kind volterra integro equations using linear
 
Intro Num Int Asmd
Intro Num Int AsmdIntro Num Int Asmd
Intro Num Int Asmd
 

Recently uploaded

哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
ihlasbinance2003
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
zwunae
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.pptPROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
bhadouriyakaku
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
ChristineTorrepenida1
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
一比一原版(UC Berkeley毕业证)加利福尼亚大学|伯克利分校毕业证成绩单专业办理
一比一原版(UC Berkeley毕业证)加利福尼亚大学|伯克利分校毕业证成绩单专业办理一比一原版(UC Berkeley毕业证)加利福尼亚大学|伯克利分校毕业证成绩单专业办理
一比一原版(UC Berkeley毕业证)加利福尼亚大学|伯克利分校毕业证成绩单专业办理
skuxot
 
Self-Control of Emotions by Slidesgo.pptx
Self-Control of Emotions by Slidesgo.pptxSelf-Control of Emotions by Slidesgo.pptx
Self-Control of Emotions by Slidesgo.pptx
iemerc2024
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 

Recently uploaded (20)

哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.pptPROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
PROJECT FORMAT FOR EVS AMITY UNIVERSITY GWALIOR.ppt
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
一比一原版(UC Berkeley毕业证)加利福尼亚大学|伯克利分校毕业证成绩单专业办理
一比一原版(UC Berkeley毕业证)加利福尼亚大学|伯克利分校毕业证成绩单专业办理一比一原版(UC Berkeley毕业证)加利福尼亚大学|伯克利分校毕业证成绩单专业办理
一比一原版(UC Berkeley毕业证)加利福尼亚大学|伯克利分校毕业证成绩单专业办理
 
Self-Control of Emotions by Slidesgo.pptx
Self-Control of Emotions by Slidesgo.pptxSelf-Control of Emotions by Slidesgo.pptx
Self-Control of Emotions by Slidesgo.pptx
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 

Complex plane, Modulus, Argument, Graphical representation of a complex number - Math 102 - diu - swe

  • 1. Complex plane, Modulus, Argument, Complex plane, Modulus, Argument, Graphical representation of a Graphical representation of a complex number. complex number. P r e s e n t a t i o n o n Submitted To Mr. Md. Mozammelul Haque Lecturer Department of Software Engineering Daffodil International University
  • 2. Section : A ID : 232-35-016 Reduan Ahmad Section : A ID : 232-35-003 Abdullah Al Noman Section : A ID : 232-35-022 Mohammad Ali Nayeem Section : A ID : 222-35-1189 Sabbir Hossen Section : A ID : 232-35-001 Prionti Maliha
  • 3. Learning Target: Complex plane Modulus Argument Graphical representation of a complex number.
  • 4. Number Line Negative Numbers (−) Positive Numbers (+)
  • 5. A plane for complex numbers! 3 units along (the real axis), 4 units up (the imaginary axis). Plot a complex number like 3 + 4i
  • 6. Modulus The modulus of a complex number is a fundamental concept in mathematics. The modulus of a complex number is the distance of the complex number from the origin in the the complex plane The modulus of a complex number (z), denoted as |z|, is the non-negative value equal to the square root of the sum of the squares of its real (x) and imaginary (y) parts, expressed as: In this equation, 𝑥 and 𝑦 represent the real and imaginary components of the complex number 𝑧 respectively. When a complex number (z) is plotted on a graph (the complex plane), the distance between the coordinates of the complex number and the origin (0, 0) is called the modulus of the complex number. Modulus of a complex number is always non-negative
  • 7. Examples Now lets Find Modulus of |z|=3 + 4i
  • 8. Arguments in the Complex Plane complex plane with a vector representing the complex number 3 + 4i
  • 9. Argument of Complex Numbers Formula θ = tan⁻¹ (y/x) θ = π - tan⁻¹ |y/x| θ = π + tan⁻¹ |y/x| θ = 2π - tan⁻¹ |y/x|
  • 10. Calculating the Argument Be mindful of the quadrant of the complex number to determine the correct value of θ. Formula: For z = x + yi, the argument θ is given by: tan(θ) = y/x θ = arctan(y/x) (using the inverse tangent function)
  • 11. Examples Identify: x = 3 and y = 4 Calculate: tan(θ) = 4/3 Solve: θ = arctan(4/3) (using a calculator) Result: θ ≈ 53.13° (first quadrant)
  • 13. We can represent complex numbers in the complex plane. We use the horizontal axis for the real part and the vertical axis for the imaginary part.
  • 14. Example : The number 3+2𝑗 (where 𝑗=−1​ ) is represented by:
  • 15. The point A is the representation of the complex number 3+2𝑗. The horizontal axis is marked R (for the "real" numbered-component), and the vertical axis is marked j (for the imaginary component of the complex number).