MAT225 TEST2A Name:
Show all work algebraically if possible.
RVC/RVE (Question 1) Product Rule 
 
Find the max of f(x) = sin(x),e−x ε[0, ].x π  
   
TEST2A page: 1
MAT225 TEST2A Name:
Show all work algebraically if possible.
 
   
TEST2A page: 2
MAT225 TEST2A Name:
Show all work algebraically if possible.
RVD/RVE (Question 2) Quotient Rule 
 
Find the equation of the Normal Line to g(x) at x = 1.5 given g(x) = .
1
1+9e−x    
TEST2A page: 3
MAT225 TEST2A Name:
Show all work algebraically if possible.
   
TEST2A page: 4
MAT225 TEST2A Name:
Show all work algebraically if possible.
(1) Let ​u​ = <1,2,3>, ​v​ = <0,–2,5>, ​w​ = <1,1,0>  
 
(1a) Find ​v​ x ​u  
(1b) Find ​w​(​v​ x ​u​)  
(1c) Find |​v​ x ​u​|  
 
(1) Let ​u​ = <1m,2m,3m>, ​v​ = <0m,–2m,5m>, ​w​ = <1m,1m,0m>  
(1d) What are the units of |​v​ x ​u​| and why?  
 
(1) Let ​u​ = <1yd,2yd,3yd>, ​v​ = <0yd,–2yd,5yd>, ​w​ = <1yd,1yd,0yd>  
(1e) What are the units of ​w​(​v​ x ​u​) and why?   
TEST2A page: 5
MAT225 TEST2A Name:
Show all work algebraically if possible.
TEST2A page: 6
MAT225 TEST2A Name:
Show all work algebraically if possible.
(2) Work  
 
A tractor pulls a log 2500 feet and the tension in the cable connecting the 
tractor to the log is 2600 pounds. The angle between the force and displacement 
vectors is 35º.  
 
Work is defined as W = ​F​ • ​s​ where ​F​ is the force vector and ​s​ the 
displacement vector.  
 
(2a) Calculate W in polar form.  
(2b) Calculate W in cartesian form.   
TEST2A page: 7
MAT225 TEST2A Name:
Show all work algebraically if possible.
   
TEST2A page: 8
MAT225 TEST2A Name:
Show all work algebraically if possible.
(3) Investments:  
 
Let x = an amount invested in AA rated bonds at 6.5%, 
Let y = an amount invested in A rated bonds at 7%, 
Let z = an amount invested in B rated bonds at 9%. 
 
If you decide to invest twice as much in B bonds as in A, your 
investment strategy is described by the following system of equations: 
 
x  + y  + z  = total investment  
0.065x  + 0.07y  + 0.09z  = desired return  
0x  + 2y  z−   = 0  
 
Let your total investment equal US$45,000.00 and your desired return 
equal US$3,000.00. 
 
A​ = X​ = B​ =  
 
(3a) Given AX = B, find det(A).  
(3b) Given AX = B, find x using Cramer’s Rule.   
TEST2A page: 9
MAT225 TEST2A Name:
Show all work algebraically if possible.
   
TEST2A page: 10
MAT225 TEST2A Name:
Show all work algebraically if possible.
(3) Investments:  
 
Let x = an amount invested in AA rated bonds at 6.5%, 
Let y = an amount invested in A rated bonds at 7%, 
Let z = an amount invested in B rated bonds at 9%. 
 
If you decide to invest twice as much in B bonds as in A, your 
investment strategy is described by the following system of equations: 
 
x  + y  + z  = total investment  
0.065x  + 0.07y  + 0.09z  = desired return  
0x  + 2y  z−   = 0  
 
Let your total investment equal US$45,000.00 and your desired return 
equal US$3,000.00. 
 
A​ = X​ = B​ =  
 
(3c) Given AX = B, find y using Cramer’s Rule. 
(3d) Given AX = B, find z using Cramer’s Rule.   
TEST2A page: 11
MAT225 TEST2A Name:
Show all work algebraically if possible.
   
TEST2A page: 12
MAT225 TEST2A Name:
Show all work algebraically if possible.
(4) Gradients  
 
Given the surface​ y z 3x3
+ 2
=  
 
(4a) Let f(x,y,z) =​ . Find the Gradient of f(x,y,z) at P(-1,1,2).y z 3x3
+ 2
−   
(4b) Derive the Tangent Plane equation to the given surface at P(-1,1,2).  
(4c) Use a linear approximation to approximate the value of f(-1.1,1.1,1.9).   
TEST2A page: 13
MAT225 TEST2A Name:
Show all work algebraically if possible.
   
TEST2A page: 14
MAT225 TEST2A Name:
Show all work algebraically if possible.
(5) Optimization  
 
Let f(x,y) =​ x y x y 63 2
+ 2 2
− 6 − 4 + 1   
 
(5a) Find the critical points of f(x,y) in the first quadrant.  
(5b) Use the 2nd Partials Test to classify the nature of your critical point.  
(5c) Calculate the critical value of f(x,y) in the first quadrant.   
TEST2A page: 15
MAT225 TEST2A Name:
Show all work algebraically if possible.
   
TEST2A page: 16
MAT225 TEST2A Name:
Show all work algebraically if possible.
(6) LaGrange Multipliers  
 
Maximize the volume V = xyz, subject to the constraint: .x2
+ y2
+ z = 1  
 
(6a) Write the LaGrange Multiplier equations to maximize V.  
(6b) Solve your equations (still assuming x > 0 and y > 0).    
TEST2A page: 17
MAT225 TEST2A Name:
Show all work algebraically if possible.
   
TEST2A page: 18
MAT225 TEST2A Name:
Show all work algebraically if possible.
(7) Chain Rule  
 
Let w =​ and x =​ , y =​ cos(t)​.xy2
− x2
et
  
 
(7a) Find w’(t) when t = using the new chain rule.2
π
  
(7b) Find w’(t) when t = using Elementary Calculus.2
π
   
TEST2A page: 19
MAT225 TEST2A Name:
Show all work algebraically if possible.
   
TEST2A page: 20
MAT225 TEST2A Name:
Show all work algebraically if possible.
(8) Chain Rule  
 
Given z = f(x,y) = 0 and y = g(x), then​ .
δf
δx dx
dx
+
δf
δy dx
dy
= 0 ⇒ dx
dy
= δf
δy
δx
−δf
 
 
(8) Given the conic section 9 x y 8x 6y 1 ,2
+ 4 2
− 1 + 1 − 1 = 0  
(8a) Find using the result given above.dx
dy
 
(8b) Check your answer using Elementary Calculus.   
TEST2A page: 21
MAT225 TEST2A Name:
Show all work algebraically if possible.
 
   
TEST2A page: 22
MAT225 TEST2A Name:
Show all work algebraically if possible.
Reference Sheet: Derivatives You Should Know Cold! 
 
Power Functions: 
x nxd
dx
n
= n−1
 
 
Trig Functions: 
sin(x) os(x)d
dx = c cos(x) in(x)d
dx = − s  
tan(x) (x)d
dx = sec2
cot(x) (x)d
dx = − csc2
 
sec(x) ec(x) tan(x)d
dx = s csc(x) sc(x) cot(x)d
dx = − c  
 
Transcendental Functions: 
ed
dx
x
= ex
a n(a) ad
dx
x
= l x
 
ln(x)d
dx = x
1
log (x)d
dx a = 1
ln(a) x
1
 
 
Inverse Trig Functions: 
sin (x)d
dx
−1
= 1
√1−x2
cos (x)d
dx
−1
= −1
√1−x2
 
tan (x)d
dx
−1
= 1
1+x2 cot (x)d
dx
−1
= −1
1+x2  
 
Product Rule: 
f(x) g(x) (x) g (x) (x) f (x)d
dx = f ′ + g ′  
 
Quotient Rule: 
d
dx
f(x)
g(x) = g (x)2
g(x) f (x) − f(x) g (x)′ ′
 
 
Chain Rule: 
f(g(x)) (g(x)) g (x)d
dx = f′ ′  
 
Difference Quotient: 
f’(x) =​ lim
h→0
h
f(x+h) − f(x)
   
TEST2A page: 23
MAT225 TEST2A Name:
Show all work algebraically if possible.
 
 
 
 
 
 
TEST2A page: 24

2020 preTEST2A

  • 1.
    MAT225 TEST2A Name: Showall work algebraically if possible. RVC/RVE (Question 1) Product Rule    Find the max of f(x) = sin(x),e−x ε[0, ].x π       TEST2A page: 1
  • 2.
    MAT225 TEST2A Name: Showall work algebraically if possible.       TEST2A page: 2
  • 3.
    MAT225 TEST2A Name: Showall work algebraically if possible. RVD/RVE (Question 2) Quotient Rule    Find the equation of the Normal Line to g(x) at x = 1.5 given g(x) = . 1 1+9e−x     TEST2A page: 3
  • 4.
    MAT225 TEST2A Name: Showall work algebraically if possible.     TEST2A page: 4
  • 5.
    MAT225 TEST2A Name: Showall work algebraically if possible. (1) Let ​u​ = <1,2,3>, ​v​ = <0,–2,5>, ​w​ = <1,1,0>     (1a) Find ​v​ x ​u   (1b) Find ​w​(​v​ x ​u​)   (1c) Find |​v​ x ​u​|     (1) Let ​u​ = <1m,2m,3m>, ​v​ = <0m,–2m,5m>, ​w​ = <1m,1m,0m>   (1d) What are the units of |​v​ x ​u​| and why?     (1) Let ​u​ = <1yd,2yd,3yd>, ​v​ = <0yd,–2yd,5yd>, ​w​ = <1yd,1yd,0yd>   (1e) What are the units of ​w​(​v​ x ​u​) and why?    TEST2A page: 5
  • 6.
    MAT225 TEST2A Name: Showall work algebraically if possible. TEST2A page: 6
  • 7.
    MAT225 TEST2A Name: Showall work algebraically if possible. (2) Work     A tractor pulls a log 2500 feet and the tension in the cable connecting the  tractor to the log is 2600 pounds. The angle between the force and displacement  vectors is 35º.     Work is defined as W = ​F​ • ​s​ where ​F​ is the force vector and ​s​ the  displacement vector.     (2a) Calculate W in polar form.   (2b) Calculate W in cartesian form.    TEST2A page: 7
  • 8.
    MAT225 TEST2A Name: Showall work algebraically if possible.     TEST2A page: 8
  • 9.
    MAT225 TEST2A Name: Showall work algebraically if possible. (3) Investments:     Let x = an amount invested in AA rated bonds at 6.5%,  Let y = an amount invested in A rated bonds at 7%,  Let z = an amount invested in B rated bonds at 9%.    If you decide to invest twice as much in B bonds as in A, your  investment strategy is described by the following system of equations:    x  + y  + z  = total investment   0.065x  + 0.07y  + 0.09z  = desired return   0x  + 2y  z−   = 0     Let your total investment equal US$45,000.00 and your desired return  equal US$3,000.00.    A​ = X​ = B​ =     (3a) Given AX = B, find det(A).   (3b) Given AX = B, find x using Cramer’s Rule.    TEST2A page: 9
  • 10.
    MAT225 TEST2A Name: Showall work algebraically if possible.     TEST2A page: 10
  • 11.
    MAT225 TEST2A Name: Showall work algebraically if possible. (3) Investments:     Let x = an amount invested in AA rated bonds at 6.5%,  Let y = an amount invested in A rated bonds at 7%,  Let z = an amount invested in B rated bonds at 9%.    If you decide to invest twice as much in B bonds as in A, your  investment strategy is described by the following system of equations:    x  + y  + z  = total investment   0.065x  + 0.07y  + 0.09z  = desired return   0x  + 2y  z−   = 0     Let your total investment equal US$45,000.00 and your desired return  equal US$3,000.00.    A​ = X​ = B​ =     (3c) Given AX = B, find y using Cramer’s Rule.  (3d) Given AX = B, find z using Cramer’s Rule.    TEST2A page: 11
  • 12.
    MAT225 TEST2A Name: Showall work algebraically if possible.     TEST2A page: 12
  • 13.
    MAT225 TEST2A Name: Showall work algebraically if possible. (4) Gradients     Given the surface​ y z 3x3 + 2 =     (4a) Let f(x,y,z) =​ . Find the Gradient of f(x,y,z) at P(-1,1,2).y z 3x3 + 2 −    (4b) Derive the Tangent Plane equation to the given surface at P(-1,1,2).   (4c) Use a linear approximation to approximate the value of f(-1.1,1.1,1.9).    TEST2A page: 13
  • 14.
    MAT225 TEST2A Name: Showall work algebraically if possible.     TEST2A page: 14
  • 15.
    MAT225 TEST2A Name: Showall work algebraically if possible. (5) Optimization     Let f(x,y) =​ x y x y 63 2 + 2 2 − 6 − 4 + 1      (5a) Find the critical points of f(x,y) in the first quadrant.   (5b) Use the 2nd Partials Test to classify the nature of your critical point.   (5c) Calculate the critical value of f(x,y) in the first quadrant.    TEST2A page: 15
  • 16.
    MAT225 TEST2A Name: Showall work algebraically if possible.     TEST2A page: 16
  • 17.
    MAT225 TEST2A Name: Showall work algebraically if possible. (6) LaGrange Multipliers     Maximize the volume V = xyz, subject to the constraint: .x2 + y2 + z = 1     (6a) Write the LaGrange Multiplier equations to maximize V.   (6b) Solve your equations (still assuming x > 0 and y > 0).     TEST2A page: 17
  • 18.
    MAT225 TEST2A Name: Showall work algebraically if possible.     TEST2A page: 18
  • 19.
    MAT225 TEST2A Name: Showall work algebraically if possible. (7) Chain Rule     Let w =​ and x =​ , y =​ cos(t)​.xy2 − x2 et      (7a) Find w’(t) when t = using the new chain rule.2 π    (7b) Find w’(t) when t = using Elementary Calculus.2 π     TEST2A page: 19
  • 20.
    MAT225 TEST2A Name: Showall work algebraically if possible.     TEST2A page: 20
  • 21.
    MAT225 TEST2A Name: Showall work algebraically if possible. (8) Chain Rule     Given z = f(x,y) = 0 and y = g(x), then​ . δf δx dx dx + δf δy dx dy = 0 ⇒ dx dy = δf δy δx −δf     (8) Given the conic section 9 x y 8x 6y 1 ,2 + 4 2 − 1 + 1 − 1 = 0   (8a) Find using the result given above.dx dy   (8b) Check your answer using Elementary Calculus.    TEST2A page: 21
  • 22.
    MAT225 TEST2A Name: Showall work algebraically if possible.       TEST2A page: 22
  • 23.
    MAT225 TEST2A Name: Showall work algebraically if possible. Reference Sheet: Derivatives You Should Know Cold!    Power Functions:  x nxd dx n = n−1     Trig Functions:  sin(x) os(x)d dx = c cos(x) in(x)d dx = − s   tan(x) (x)d dx = sec2 cot(x) (x)d dx = − csc2   sec(x) ec(x) tan(x)d dx = s csc(x) sc(x) cot(x)d dx = − c     Transcendental Functions:  ed dx x = ex a n(a) ad dx x = l x   ln(x)d dx = x 1 log (x)d dx a = 1 ln(a) x 1     Inverse Trig Functions:  sin (x)d dx −1 = 1 √1−x2 cos (x)d dx −1 = −1 √1−x2   tan (x)d dx −1 = 1 1+x2 cot (x)d dx −1 = −1 1+x2     Product Rule:  f(x) g(x) (x) g (x) (x) f (x)d dx = f ′ + g ′     Quotient Rule:  d dx f(x) g(x) = g (x)2 g(x) f (x) − f(x) g (x)′ ′     Chain Rule:  f(g(x)) (g(x)) g (x)d dx = f′ ′     Difference Quotient:  f’(x) =​ lim h→0 h f(x+h) − f(x)     TEST2A page: 23
  • 24.
    MAT225 TEST2A Name: Showall work algebraically if possible.             TEST2A page: 24