Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
DI
Uploaded by
Dian Fery Irawan
335,555 views
19. soal soal matriks
Read more
12
Save
Share
Embed
Embed presentation
Download
Downloaded 320 times
1
/ 5
2
/ 5
Most read
3
/ 5
Most read
4
/ 5
5
/ 5
More Related Content
PPTX
Trigonometri kelas XI
by
insan budiman
PDF
Materi lingkaran kelas 12 - Persamaan lingkaran
by
maulidyafajria
PDF
Latihan Soal Trigonometri Kelas XI
by
DeviPurnama
PPT
03 limit dan kekontinuan
by
Rudi Wicaksana
PDF
120 soal dan pembahasan limit fungsi trigonometri
by
Muhammad Arif
DOCX
Math Solution - Permutasi dan Kombinasi (Peluang)
by
Nouvel Raka
DOCX
Daftar perbandingan trigonometri sudut
by
Suci Nurlaeli
PPTX
Soal dan Pembahasan POLINOMIAL Matematika SMA kelas XI
by
Millenia Anjali
Trigonometri kelas XI
by
insan budiman
Materi lingkaran kelas 12 - Persamaan lingkaran
by
maulidyafajria
Latihan Soal Trigonometri Kelas XI
by
DeviPurnama
03 limit dan kekontinuan
by
Rudi Wicaksana
120 soal dan pembahasan limit fungsi trigonometri
by
Muhammad Arif
Math Solution - Permutasi dan Kombinasi (Peluang)
by
Nouvel Raka
Daftar perbandingan trigonometri sudut
by
Suci Nurlaeli
Soal dan Pembahasan POLINOMIAL Matematika SMA kelas XI
by
Millenia Anjali
What's hot
PDF
Soal dan pembahasan suku banyak
by
Muhammad Arif
PDF
Rangkuman Rumus Parabola, Elips, Hiperbola
by
Safira APM
DOCX
Soal dan pembahasan ellips
by
Nida Shafiyanti
PDF
14. soal soal limit fungsi
by
nurul Aulia sari
PPTX
Turunan fungsi aljabar
by
Slamet Wibowo Ws
PPT
Determinan es
by
adamkusnendar
PPTX
PPT Persamaan garis singgung lingkaran
by
trisno direction
PDF
Soal kesetimbangan kimia dan pergeseran kimia
by
Yusi Rahmah
PPTX
Persamaan Garis Singgung Lingkaran - Kelompok 6 XI IPA 2 (1.1).pptx
by
WahyuKristian3
PPTX
Transformasi Linear ( Aljabar Linear Elementer )
by
Kelinci Coklat
PPTX
SOAL MENENTUKAN PUSAT DAN JARI-JARI LINGKARAN
by
Dzaki Rafara
PDF
Polar Coordinates & Polar Curves
by
Diponegoro University
PDF
14. Soal-soal Limit Fungsi
by
Naufal Irsyad Arzada
PDF
Analisis regresi dan korelasi materi kelas 11
by
ReinIsmail1
PPTX
Limit Fungsi Trigonometri
by
Ega Anistia
PDF
Materi Fungsi Tangga kelas 9 semester ganjil.pdf
by
MustahalMPd
PPTX
Integral tak tentu dan integral tentu
by
Ana Sugiyarti
PDF
20. soal soal vektor
by
Dian Fery Irawan
PPT
Pertemuan 02 teori dasar himpunan
by
Fajar Istiqomah
PPTX
matematika kelas 11 matriks lengkap.pptx
by
YesyOktaviyanti1
Soal dan pembahasan suku banyak
by
Muhammad Arif
Rangkuman Rumus Parabola, Elips, Hiperbola
by
Safira APM
Soal dan pembahasan ellips
by
Nida Shafiyanti
14. soal soal limit fungsi
by
nurul Aulia sari
Turunan fungsi aljabar
by
Slamet Wibowo Ws
Determinan es
by
adamkusnendar
PPT Persamaan garis singgung lingkaran
by
trisno direction
Soal kesetimbangan kimia dan pergeseran kimia
by
Yusi Rahmah
Persamaan Garis Singgung Lingkaran - Kelompok 6 XI IPA 2 (1.1).pptx
by
WahyuKristian3
Transformasi Linear ( Aljabar Linear Elementer )
by
Kelinci Coklat
SOAL MENENTUKAN PUSAT DAN JARI-JARI LINGKARAN
by
Dzaki Rafara
Polar Coordinates & Polar Curves
by
Diponegoro University
14. Soal-soal Limit Fungsi
by
Naufal Irsyad Arzada
Analisis regresi dan korelasi materi kelas 11
by
ReinIsmail1
Limit Fungsi Trigonometri
by
Ega Anistia
Materi Fungsi Tangga kelas 9 semester ganjil.pdf
by
MustahalMPd
Integral tak tentu dan integral tentu
by
Ana Sugiyarti
20. soal soal vektor
by
Dian Fery Irawan
Pertemuan 02 teori dasar himpunan
by
Fajar Istiqomah
matematika kelas 11 matriks lengkap.pptx
by
YesyOktaviyanti1
More from Dian Fery Irawan
PDF
Kelas 2 sma_developing_english_competencies_achmad_doddy
by
Dian Fery Irawan
PDF
Smk10 fisikanonteknologi-mashuri
by
Dian Fery Irawan
PDF
Smk11 fisikateknik-endarko
by
Dian Fery Irawan
PDF
20090610171757 kelas 11_fisika_2_sri_handayani
by
Dian Fery Irawan
PDF
Kelas2 biologi eva_latifah_hanum(2)
by
Dian Fery Irawan
PDF
Kelas2 biologi eva_latifah_hanum
by
Dian Fery Irawan
PDF
Smk12 kimiakesehatan-zulfikar
by
Dian Fery Irawan
PDF
Smk11 kimiaindustri-suparni
by
Dian Fery Irawan
PDF
Smk12 kimiaindustri-suparni
by
Dian Fery Irawan
PDF
Smk12 fisikateknologi-endarko
by
Dian Fery Irawan
PDF
Kelas11 kimia2 siti_poppy
by
Dian Fery Irawan
PDF
Smk10 kimiaindustri-suparni
by
Dian Fery Irawan
PDF
Smk10 fisikateknologi-endarko
by
Dian Fery Irawan
PDF
Soal olimpiade-matematika-kabupaten-2010(2)
by
Dian Fery Irawan
PPT
Konsep termokimia 2
by
Dian Fery Irawan
PPT
Turunan trigonometri bilingual
by
Dian Fery Irawan
PDF
Trigonometry formulas
by
Dian Fery Irawan
PPT
Trigonometry
by
Dian Fery Irawan
PDF
Trigonometri untuk sma
by
Dian Fery Irawan
PPT
Trigonometri 3-(bentuk cos x + sin x)
by
Dian Fery Irawan
Kelas 2 sma_developing_english_competencies_achmad_doddy
by
Dian Fery Irawan
Smk10 fisikanonteknologi-mashuri
by
Dian Fery Irawan
Smk11 fisikateknik-endarko
by
Dian Fery Irawan
20090610171757 kelas 11_fisika_2_sri_handayani
by
Dian Fery Irawan
Kelas2 biologi eva_latifah_hanum(2)
by
Dian Fery Irawan
Kelas2 biologi eva_latifah_hanum
by
Dian Fery Irawan
Smk12 kimiakesehatan-zulfikar
by
Dian Fery Irawan
Smk11 kimiaindustri-suparni
by
Dian Fery Irawan
Smk12 kimiaindustri-suparni
by
Dian Fery Irawan
Smk12 fisikateknologi-endarko
by
Dian Fery Irawan
Kelas11 kimia2 siti_poppy
by
Dian Fery Irawan
Smk10 kimiaindustri-suparni
by
Dian Fery Irawan
Smk10 fisikateknologi-endarko
by
Dian Fery Irawan
Soal olimpiade-matematika-kabupaten-2010(2)
by
Dian Fery Irawan
Konsep termokimia 2
by
Dian Fery Irawan
Turunan trigonometri bilingual
by
Dian Fery Irawan
Trigonometry formulas
by
Dian Fery Irawan
Trigonometry
by
Dian Fery Irawan
Trigonometri untuk sma
by
Dian Fery Irawan
Trigonometri 3-(bentuk cos x + sin x)
by
Dian Fery Irawan
19. soal soal matriks
1.
www.matematika-sma.com - 1 19.
SOAL-SOAL MATRIKS EBTANAS1998 1. Diketahui matriks A = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 72 14 ; B = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 72 14 dan C= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 14 8 b a Nilai a dan b yang memenuhi A + 3B = C Berturut-turut adalah… A. 2 dan 4 C. -8 dan -14 E. 8 dan 14 B. -2 dan 4 D. 8 dan -14 Jawab: A + 3B = C ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 72 14 +3 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 72 14 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 14 8 b a ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 72 14 + 3 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 72 14 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 72 14 + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 216 312 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −+− +−− 21762 31124 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 144 28 Didapat a = 2 dan b = 4 Jawabannya adalah A EBTANAS2000 2. Diketahui matrik A = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− p4 24 B= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 43 81 , dan C= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 814 242 Jika AB=C, nilai p=… A. -6 B. - 3 10 C. 3 1 D. 3 10 E. 6 Jawab : A.B = C ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− p4 24 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 43 81 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 814 242 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− p4 24 ’ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 43 81 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −++− −−+−−+−− )4.(8.43.)1.(4 )4.(28.43).2()1.(4 pp = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −+− −− pp 432.34 242 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 814 242 -4 + 3p = 14 32 – 4p = 8 3p = 18 32 – 8 = 4p = 6 24 = 4p p = 6 jawabannya adalah E UAN2004 3. Diketahui matriks A= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 23 58 , B = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 23 2x dan C = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + 43 539 y Jika matriks A.B = A + C, maka nilai x + y = … A. 2 B. 4 C. 5 D. 6 E. 8 jawab: A.B = A + C ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 23 58 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 23 2x = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 23 58 + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + 43 539 y ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 23 58 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 23 2x = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −+−+ −+−+ 2).2(2.33).2(.3 2).5(2.83).5(.8 x x = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 26.3 615.8 x x ….(1)
2.
www.matematika-sma.com - 2 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 23 58 +
⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + 43 539 y = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +−+ ++−+ 4233 53598 y = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 26 317 y …(2) (1) = (2) ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 26.3 615.8 x x = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 26 317 y 8x-15 = 17 3y = 6 8x = 32 y = 2 x = 4 x + y = 4 + 2 = 6 jawabannya adalah D EBTANAS2000 4. Diketahui A = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 21 32 , B = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 104 126 Dan A 2 = x.A + y.B, nilai xy=… A. -4 B. -1 C. - 2 1 D. 1 2 1 E. 2 jawab: A 2 = x.A + y.B ⇔ A. A = x.A + y.B ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 21 32 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 21 32 = x. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 21 32 + y. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 104 126 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 21 32 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 21 32 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −−+−−−+− −+−+ )2).(2(3.1)1).(2(2.1 )2.(33.2)1.(32.2 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 10 01 …(1) x. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 21 32 + y. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 104 126 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− xx xx 2 32 + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− yy yy 104 126 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −−−− ++ yxyx yxyx 1024 12362 …(2) (1) = (2) ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 10 01 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −−−− ++ yxyx yxyx 1024 12362 2x + 6y = 1 x 3 ⇒ 6x + 18y = 3 3x+12y = 0 x 2 ⇒ 6x+ 24 y = 0 - 0 - 6y = 3 y = - 2 1 6x+ 24 y = 0 6x = -24y 6x = -24 . (- 2 1 ) 6x = 12 x = 2 x. y = 2. - 2 1 = - 1 jawabannya adalah B UAN2004 5. Diketahui matriks S = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 31 02 dan M = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 30 21 . Jika fungsi f(S,M) = S 2 -M 2 matriks f(S+M, S-M) adalah… A. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 404 204 D. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− − 404 204 B. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 304 204 E. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 364 84 C. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 384 84 jawab: Karena fungsi f(S,M) = S 2 -M 2 maka Fungsi f(S+M, S-M) = (S+M) 2 - (S-M) 2 S + M = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 31 02 + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 30 21 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 01 23
3.
www.matematika-sma.com - 3 (S+M)
2 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 01 23 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 01 23 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 23 67 S – M = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 31 02 - ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 30 21 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −−−− −− )3(301 2012 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 61 21 (S-M) 2 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 61 21 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 61 21 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 387 143 (S+M) 2 - (S-M) 2 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 23 67 - ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 387 143 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 404 204 Jawabannya adalah A EBTANAS1997 6. Diketahui A = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 86 3 x adalah matriks singular. Nilai x = …. A. -5 B. -4 C. -3 D. 3 E. 4 Jawab: teori: Jika A = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ dc ba Maka det(A) = |A| = ad – bc jika det(A) = 0 maka matriks A disebut matriks singular A = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 86 3 x Det(A) = ad – bc = 3.8 – (-x).6 = 24 + 6x =0 6x = -24 x = -4 jawabannya adalah B UAN2006 7. Diketahui matriks A= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 15 43 dan B = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 72 21 jika M = A + B, maka invers M adalah M 1− = …. A. ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − 4 2 1 3 11 C. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 87 22 E. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 87 22 B. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− −− 87 22 D. ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − 1 2 1 3 14 Jawab: M = A + B = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 15 43 + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 72 21 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 87 22 M 1− = bcad − 1 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − ac bd = 7.28.2 1 − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 27 28 = 2 1 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 27 28 = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − 1 2 1 3 14 jawabannya adalah D UAN2007 8. Diketahui matriks A = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 41 12 ; B = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + y yx 3 2 dan C = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 13 27 apabila B – A = Ct dan Ct = transpose matriks C, maka nilai x. y = … A. 10. B. 15 C. 20 D. 25 E. 30 jawab: teori : Jika A = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ dc ba , maka =t A ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ db ca C = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 13 27 Ct = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 12 37
4.
www.matematika-sma.com - 4 B
– A = Ct ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + y yx 3 2 - ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − 41 12 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 12 37 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − −+ 42 32 y yx = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 12 37 y – 4 = 1 y = 5 x + y – 2 = 7 x + 5 – 2 = 7 x = 7 – 5 +2 x = 4 x . y = 4 . 5 = 20 jawabannya dalah C EBTANAS1992 9. Matriks X berordo 2 x 2 yang memenuhi persamaan ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 43 21 X = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 12 34 adalah… A. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 10 14 C. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 45 56 E. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 54 65 B. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 01 12 D. ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − 2 1 1 2 1 12 Jawab: Teori: Jika A.B = C maka 1. A = C . 1− B 2. B = 1− A . C ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 43 21 X = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 12 34 Misal A = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 43 21 dan C = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 12 34 Maka X = 1− A . C 1− A = bcad − 1 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − ac bd 1− A = 64 1 − . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 13 24 = 2 1 − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 13 24 = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − 2 1 2 3 12 X = 1− A . C = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − 2 1 2 3 12 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 12 34 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −− 45 56 Jawabannya adalah C UMPTN1990 10. Jika B = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 53 21 dan AB 1− = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 34 12 , maka A =… A. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 2313 95 C. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 239 53 E. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 312 59 B. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 139 35 D. ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 102 513 Jawab: A.B 1− = C A = C . (B 1− ) 1− (B 1− ) 1− = B 11 −− x = B maka A = C .B = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 34 12 . ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 53 21 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 2313 95 Jawabannya adalah A bukti: AB 1− = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 34 12 , B 1− = 65 1 − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 13 25 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 13 25
5.
www.matematika-sma.com - 5 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 2313 95 .
⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − 13 25 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −++− −++− )1(232.133.23)5.(13 )1(92.53.9)5(5 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −+− −+− 23266965 9102725 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 34 12 terbukti
Download