SlideShare a Scribd company logo
Mechanical vibration is the motion of a particle or body which oscillates
about a position of equilibrium.
Time interval required for a system to complete a full cycle of the motion is the period
of the vibration.
Number of cycles per unit time defines the frequency of the vibrations.
Maximum displacement of the system from the equilibrium position is the amplitude
of the vibration.
When the motion is maintained by the restoring forces only, the vibration is
called free vibration. When a periodic force is applied to the system, the
motion is described as forced vibration.
When the frictional dissipation of energy is neglected, the motion is said to
be undamped. Actually, all vibrations are damped to some degree.
• If a particle is displaced through a distance xm
from its equilibrium position and released with no
velocity, the particle will undergo simple harmonic
motion,
 
0








kx
x
m
kx
x
k
W
F
ma st



• General solution is the sum of two particular
solutions,
   
t
C
t
C
t
m
k
C
t
m
k
C
x
n
n 
 cos
sin
cos
sin
2
1
2
1




















• x is a periodic function and n is the natural
circular frequency of the motion.
• C1 and C2 are determined by the initial conditions:
   
t
C
t
C
x n
n 
 cos
sin 2
1 
 0
2 x
C 
n
v
C 
0
1 
   
t
C
t
C
x
v n
n
n
n 


 sin
cos 2
1 

 
 

 
 t
x
x n
m sin


n
n



2 period





 2
1 n
n
n
f natural frequency
  

 2
0
2
0 x
v
x n
m  amplitude
 
 
n
x
v 
 0
0
1
tan phase angle
• Displacement is equivalent to the x component of the sum of two vectors
which rotate with constant angular velocity
2
1 C
C



.
n

0
2
0
1
x
C
v
C
n



 

 
 t
x
x n
m sin
• Velocity-time and acceleration-time curves can
be represented by sine curves of the same
period as the displacement-time curve but
different phase angles.
 
 
2
sin
cos













t
x
t
x
x
v
n
n
m
n
n
m

 
 














t
x
t
x
x
a
n
n
m
n
n
m
sin
sin
2
2


• Results obtained for the spring-mass system can
be applied whenever the resultant force on a
particle is proportional to the displacement and
directed towards the equilibrium position.
for small
angles,
 
g
l
t
l
g
n
n
n
m










2
2
sin
0








:
t
t ma
F 

• Consider tangential components of acceleration
and force for a simple pendulum,
0
sin
sin








l
g
ml
W




0
sin 
 

l
g


An exact solution
for
leads to
 



2
0
2
2
sin
2
sin
1
4





m
n
d
g
l
which requires numerical solution.









g
l
K
n 

 2
2
• If an equation of motion takes the form
0
or
0 2
2



 


 n
n x
x 



the corresponding motion may be
considered as simple harmonic motion.
• Analysis objective is to determine n.
   
  mg
W
mb
b
b
m
I 


 ,
2
2
but 2
3
2
2
2
12
1
0
5
3
sin
5
3



 



b
g
b
g 



g
b
b
g
n
n
n
3
5
2
2
,
5
3
then 



 


• For an equivalent simple pendulum,
3
5b
l 
• Consider the oscillations of a square plate
    

 


 I
mb
b
W 

 sin
• Resultant force on a mass in simple harmonic
motion is conservative - total energy is
conserved.
constant

V
T




2
2
2
2
2
1
2
2
1 constant
x
x
kx
x
m
n



• Consider simple harmonic motion of the square
plate,
0
1 
T
   
 
2
2
1
2
1 2
sin
2
cos
1
m
m
Wb
Wb
Wb
V







   
  2
2
3
5
2
1
2
2
3
2
2
1
2
2
1
2
2
1
2
2
1
2
m
m
m
m
m
mb
mb
b
m
I
v
m
T










 0
2 
V
  0
0 2
2
2
3
5
2
1
2
2
1
2
2
1
1






n
m
m mb
Wb
V
T
V
T


 b
g
n 5
3


:
ma
F 

  x
m
x
k
W
t
P st
f
m 




 

sin
t
P
kx
x
m f
m 
sin




  x
m
t
x
k
W f
m
st 




 

 sin
t
k
kx
x
m f
m 
 sin




Forced vibrations - Occur
when a system is subjected
to a periodic force or a
periodic displacement of a
support.

f
 forced frequency
  t
x
t
C
t
C
x
x
x
f
m
n
n
particular
ary
complement


 sin
cos
sin 2
1 




   2
2
2
1
1 n
f
m
n
f
m
f
m
m
k
P
m
k
P
x





 





t
k
kx
x
m f
m 
 sin




t
P
kx
x
m f
m 
sin




At f = n, forcing input is in
resonance with the system.
t
P
t
kx
t
x
m f
m
f
m
f
m
f 


 sin
sin
sin
2



Substituting particular solution into governing
equation,
• With viscous damping due to fluid friction,
:
ma
F 
  
0







kx
x
c
x
m
x
m
x
c
x
k
W st







• Substituting x = elt and dividing through by
elt yields the characteristic equation,
m
k
m
c
m
c
k
c
m 












2
2
2
2
0 l
l
l
• Define the critical damping coefficient such
that
n
c
c m
m
k
m
c
m
k
m
c

2
2
0
2
2










• All vibrations are damped to some degree by
forces due to dry friction, fluid friction, or
internal friction.
• Characteristic equation,
m
k
m
c
m
c
k
c
m 












2
2
2
2
0 l
l
l

 n
c m
c 
2 critical damping coefficient
• Heavy damping: c > cc
t
t
e
C
e
C
x 2
1
2
1
l
l

 - negative roots
- nonvibratory motion
• Critical damping: c = cc
  t
n
e
t
C
C
x 


 2
1 - double roots
- non-vibratory motion
• Light damping: c < cc
   
t
C
t
C
e
x d
d
t
m
c

 cos
sin 2
1
2

 











2
1
c
n
d
c
c

 damped
frequency
 
    
 
  
 








2
2
2
2
1
2
tan
2
1
1
n
f
n
f
c
n
f
c
n
f
m
m
m
c
c
c
c
x
k
P
x










magnification
factor
phase difference between forcing and
steady state response
t
P
kx
x
c
x
m f
m 
sin


 

 particular
ary
complement x
x
x 

• Consider an electrical circuit consisting of an
inductor, resistor and capacitor with a source of
alternating voltage
0
sin 



C
q
Ri
dt
di
L
t
E f
m 
• Oscillations of the electrical system are analogous to
damped forced vibrations of a mechanical system.
t
E
q
C
q
R
q
L f
m 
sin
1


 


The analogy between electrical and mechanical
systems also applies to transient as well as steady
state oscillations -
• With a charge q = q0 on the capacitor, closing the
switch is analogous to releasing the mass of the
mechanical system with no initial velocity at x =
x0.
• If the circuit includes a battery with constant
voltage E, closing the switch is analogous to
suddenly applying a force of constant
magnitude P to the mass of the mechanical
system.
• The electrical system analogy provides a means of
experimentally determining the characteristics of a
given mechanical system.
• For the mechanical system,
    0
2
1
2
1
1
2
1
2
1
1
1
1 





 x
x
k
x
k
x
x
c
x
c
x
m 




    t
P
x
x
k
x
x
c
x
m f
m 
sin
1
2
2
1
2
2
2
2 



 



• For the electrical system,
  0
2
2
1
1
1
2
1
1
1
1 





C
q
q
C
q
q
q
R
q
L 



  t
E
C
q
q
q
q
R
q
L f
m 
sin
2
1
2
1
2
2
2
2 



 



• The governing equations are equivalent. The
characteristics of the vibrations of the mechanical
system may be inferred from the oscillations of the
electrical system.
Chandan Pal
Roll-10800711025
Reg. No.- 111080110392

More Related Content

Similar to 13200777.ppt

Oscillations
OscillationsOscillations
Oscillations
Julieber Bersabe
 
Mechanical_vibration_basics_and_single_d.pptx
Mechanical_vibration_basics_and_single_d.pptxMechanical_vibration_basics_and_single_d.pptx
Mechanical_vibration_basics_and_single_d.pptx
ponnaganti gopinadh chowdary
 
Shm
ShmShm
Shm
nlahoud
 
Meeting w4 chapter 2 part 2
Meeting w4   chapter 2 part 2Meeting w4   chapter 2 part 2
Meeting w4 chapter 2 part 2Hattori Sidek
 
Meeting w4 chapter 2 part 2
Meeting w4   chapter 2 part 2Meeting w4   chapter 2 part 2
Meeting w4 chapter 2 part 2mkazree
 
Introduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionIntroduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motion
Michael Marty
 
2nd order ode applications
2nd order ode applications2nd order ode applications
2nd order ode applications
Muhammad Zulfazli
 
IST module 2
IST module 2IST module 2
IST module 2
Vijaya79
 
lecture2.pdf
lecture2.pdflecture2.pdf
lecture2.pdf
ssuserab8987
 
Ch 1-3.ppt
Ch 1-3.pptCh 1-3.ppt
Ch 1-3.ppt
Rituparna Mitra
 
Simple Harmonic Motion
Simple Harmonic MotionSimple Harmonic Motion
Simple Harmonic MotionChris Staines
 
Vibtraion notes
Vibtraion notesVibtraion notes
Vibtraion notes
binil babu
 
Chapter 1A (1).pptx
Chapter 1A (1).pptxChapter 1A (1).pptx
Chapter 1A (1).pptx
MDUMISENIMTUNGWA
 
4.1 simple harmonic motion
4.1 simple harmonic motion4.1 simple harmonic motion
4.1 simple harmonic motion
JohnPaul Kennedy
 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
harshsharma5537
 
Class 12 Physics Study Material on Alternating Current
Class 12 Physics Study Material on Alternating CurrentClass 12 Physics Study Material on Alternating Current
Class 12 Physics Study Material on Alternating Current
Vivekanand Anglo Vedic Academy
 
IC8451 Control Systems
IC8451 Control SystemsIC8451 Control Systems
IC8451 Control Systems
rmkceteee
 
Beams on Elastic Foundation2.pdf
Beams on Elastic Foundation2.pdfBeams on Elastic Foundation2.pdf
Beams on Elastic Foundation2.pdf
ShubhamShirgire1
 
Teaching Slide1
Teaching Slide1Teaching Slide1
Teaching Slide1
Solomon Ojiemudia
 
Undamped Free Vibration
Undamped Free VibrationUndamped Free Vibration
Undamped Free Vibration
Urvish Patel
 

Similar to 13200777.ppt (20)

Oscillations
OscillationsOscillations
Oscillations
 
Mechanical_vibration_basics_and_single_d.pptx
Mechanical_vibration_basics_and_single_d.pptxMechanical_vibration_basics_and_single_d.pptx
Mechanical_vibration_basics_and_single_d.pptx
 
Shm
ShmShm
Shm
 
Meeting w4 chapter 2 part 2
Meeting w4   chapter 2 part 2Meeting w4   chapter 2 part 2
Meeting w4 chapter 2 part 2
 
Meeting w4 chapter 2 part 2
Meeting w4   chapter 2 part 2Meeting w4   chapter 2 part 2
Meeting w4 chapter 2 part 2
 
Introduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionIntroduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motion
 
2nd order ode applications
2nd order ode applications2nd order ode applications
2nd order ode applications
 
IST module 2
IST module 2IST module 2
IST module 2
 
lecture2.pdf
lecture2.pdflecture2.pdf
lecture2.pdf
 
Ch 1-3.ppt
Ch 1-3.pptCh 1-3.ppt
Ch 1-3.ppt
 
Simple Harmonic Motion
Simple Harmonic MotionSimple Harmonic Motion
Simple Harmonic Motion
 
Vibtraion notes
Vibtraion notesVibtraion notes
Vibtraion notes
 
Chapter 1A (1).pptx
Chapter 1A (1).pptxChapter 1A (1).pptx
Chapter 1A (1).pptx
 
4.1 simple harmonic motion
4.1 simple harmonic motion4.1 simple harmonic motion
4.1 simple harmonic motion
 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
 
Class 12 Physics Study Material on Alternating Current
Class 12 Physics Study Material on Alternating CurrentClass 12 Physics Study Material on Alternating Current
Class 12 Physics Study Material on Alternating Current
 
IC8451 Control Systems
IC8451 Control SystemsIC8451 Control Systems
IC8451 Control Systems
 
Beams on Elastic Foundation2.pdf
Beams on Elastic Foundation2.pdfBeams on Elastic Foundation2.pdf
Beams on Elastic Foundation2.pdf
 
Teaching Slide1
Teaching Slide1Teaching Slide1
Teaching Slide1
 
Undamped Free Vibration
Undamped Free VibrationUndamped Free Vibration
Undamped Free Vibration
 

More from EpparapallySaiKrishn

kinematicsofmachinery-161110151759.pptx
kinematicsofmachinery-161110151759.pptxkinematicsofmachinery-161110151759.pptx
kinematicsofmachinery-161110151759.pptx
EpparapallySaiKrishn
 
Material Handling Equipment.pptx
Material Handling Equipment.pptxMaterial Handling Equipment.pptx
Material Handling Equipment.pptx
EpparapallySaiKrishn
 
13200777.ppt
13200777.ppt13200777.ppt
13200777.ppt
EpparapallySaiKrishn
 
END EFFECTORS.pptx
END EFFECTORS.pptxEND EFFECTORS.pptx
END EFFECTORS.pptx
EpparapallySaiKrishn
 
5795660.ppt
5795660.ppt5795660.ppt
END EFFECTORS.pptx
END EFFECTORS.pptxEND EFFECTORS.pptx
END EFFECTORS.pptx
EpparapallySaiKrishn
 
STRAIN GAUGES-ppt1.ppt
STRAIN GAUGES-ppt1.pptSTRAIN GAUGES-ppt1.ppt
STRAIN GAUGES-ppt1.ppt
EpparapallySaiKrishn
 

More from EpparapallySaiKrishn (7)

kinematicsofmachinery-161110151759.pptx
kinematicsofmachinery-161110151759.pptxkinematicsofmachinery-161110151759.pptx
kinematicsofmachinery-161110151759.pptx
 
Material Handling Equipment.pptx
Material Handling Equipment.pptxMaterial Handling Equipment.pptx
Material Handling Equipment.pptx
 
13200777.ppt
13200777.ppt13200777.ppt
13200777.ppt
 
END EFFECTORS.pptx
END EFFECTORS.pptxEND EFFECTORS.pptx
END EFFECTORS.pptx
 
5795660.ppt
5795660.ppt5795660.ppt
5795660.ppt
 
END EFFECTORS.pptx
END EFFECTORS.pptxEND EFFECTORS.pptx
END EFFECTORS.pptx
 
STRAIN GAUGES-ppt1.ppt
STRAIN GAUGES-ppt1.pptSTRAIN GAUGES-ppt1.ppt
STRAIN GAUGES-ppt1.ppt
 

Recently uploaded

Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 

Recently uploaded (20)

Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 

13200777.ppt

  • 1.
  • 2. Mechanical vibration is the motion of a particle or body which oscillates about a position of equilibrium. Time interval required for a system to complete a full cycle of the motion is the period of the vibration. Number of cycles per unit time defines the frequency of the vibrations. Maximum displacement of the system from the equilibrium position is the amplitude of the vibration. When the motion is maintained by the restoring forces only, the vibration is called free vibration. When a periodic force is applied to the system, the motion is described as forced vibration. When the frictional dissipation of energy is neglected, the motion is said to be undamped. Actually, all vibrations are damped to some degree.
  • 3. • If a particle is displaced through a distance xm from its equilibrium position and released with no velocity, the particle will undergo simple harmonic motion,   0         kx x m kx x k W F ma st    • General solution is the sum of two particular solutions,     t C t C t m k C t m k C x n n   cos sin cos sin 2 1 2 1                     • x is a periodic function and n is the natural circular frequency of the motion. • C1 and C2 are determined by the initial conditions:     t C t C x n n   cos sin 2 1   0 2 x C  n v C  0 1      t C t C x v n n n n     sin cos 2 1    
  • 4.       t x x n m sin   n n    2 period       2 1 n n n f natural frequency      2 0 2 0 x v x n m  amplitude     n x v   0 0 1 tan phase angle • Displacement is equivalent to the x component of the sum of two vectors which rotate with constant angular velocity 2 1 C C    . n  0 2 0 1 x C v C n   
  • 5.       t x x n m sin • Velocity-time and acceleration-time curves can be represented by sine curves of the same period as the displacement-time curve but different phase angles.     2 sin cos              t x t x x v n n m n n m                    t x t x x a n n m n n m sin sin 2 2  
  • 6. • Results obtained for the spring-mass system can be applied whenever the resultant force on a particle is proportional to the displacement and directed towards the equilibrium position. for small angles,   g l t l g n n n m           2 2 sin 0         : t t ma F   • Consider tangential components of acceleration and force for a simple pendulum, 0 sin sin         l g ml W    
  • 7. 0 sin     l g   An exact solution for leads to      2 0 2 2 sin 2 sin 1 4      m n d g l which requires numerical solution.          g l K n    2 2
  • 8. • If an equation of motion takes the form 0 or 0 2 2         n n x x     the corresponding motion may be considered as simple harmonic motion. • Analysis objective is to determine n.       mg W mb b b m I     , 2 2 but 2 3 2 2 2 12 1 0 5 3 sin 5 3         b g b g     g b b g n n n 3 5 2 2 , 5 3 then         • For an equivalent simple pendulum, 3 5b l  • Consider the oscillations of a square plate            I mb b W    sin
  • 9. • Resultant force on a mass in simple harmonic motion is conservative - total energy is conserved. constant  V T     2 2 2 2 2 1 2 2 1 constant x x kx x m n    • Consider simple harmonic motion of the square plate, 0 1  T       2 2 1 2 1 2 sin 2 cos 1 m m Wb Wb Wb V              2 2 3 5 2 1 2 2 3 2 2 1 2 2 1 2 2 1 2 2 1 2 m m m m m mb mb b m I v m T            0 2  V   0 0 2 2 2 3 5 2 1 2 2 1 2 2 1 1       n m m mb Wb V T V T    b g n 5 3  
  • 10. : ma F     x m x k W t P st f m         sin t P kx x m f m  sin       x m t x k W f m st          sin t k kx x m f m   sin     Forced vibrations - Occur when a system is subjected to a periodic force or a periodic displacement of a support.  f  forced frequency
  • 11.   t x t C t C x x x f m n n particular ary complement    sin cos sin 2 1         2 2 2 1 1 n f m n f m f m m k P m k P x             t k kx x m f m   sin     t P kx x m f m  sin     At f = n, forcing input is in resonance with the system. t P t kx t x m f m f m f m f     sin sin sin 2    Substituting particular solution into governing equation,
  • 12. • With viscous damping due to fluid friction, : ma F     0        kx x c x m x m x c x k W st        • Substituting x = elt and dividing through by elt yields the characteristic equation, m k m c m c k c m              2 2 2 2 0 l l l • Define the critical damping coefficient such that n c c m m k m c m k m c  2 2 0 2 2           • All vibrations are damped to some degree by forces due to dry friction, fluid friction, or internal friction.
  • 13. • Characteristic equation, m k m c m c k c m              2 2 2 2 0 l l l   n c m c  2 critical damping coefficient • Heavy damping: c > cc t t e C e C x 2 1 2 1 l l   - negative roots - nonvibratory motion • Critical damping: c = cc   t n e t C C x     2 1 - double roots - non-vibratory motion • Light damping: c < cc     t C t C e x d d t m c   cos sin 2 1 2               2 1 c n d c c   damped frequency
  • 14.                       2 2 2 2 1 2 tan 2 1 1 n f n f c n f c n f m m m c c c c x k P x           magnification factor phase difference between forcing and steady state response t P kx x c x m f m  sin       particular ary complement x x x  
  • 15. • Consider an electrical circuit consisting of an inductor, resistor and capacitor with a source of alternating voltage 0 sin     C q Ri dt di L t E f m  • Oscillations of the electrical system are analogous to damped forced vibrations of a mechanical system. t E q C q R q L f m  sin 1      
  • 16. The analogy between electrical and mechanical systems also applies to transient as well as steady state oscillations - • With a charge q = q0 on the capacitor, closing the switch is analogous to releasing the mass of the mechanical system with no initial velocity at x = x0. • If the circuit includes a battery with constant voltage E, closing the switch is analogous to suddenly applying a force of constant magnitude P to the mass of the mechanical system.
  • 17. • The electrical system analogy provides a means of experimentally determining the characteristics of a given mechanical system. • For the mechanical system,     0 2 1 2 1 1 2 1 2 1 1 1 1        x x k x k x x c x c x m          t P x x k x x c x m f m  sin 1 2 2 1 2 2 2 2          • For the electrical system,   0 2 2 1 1 1 2 1 1 1 1       C q q C q q q R q L       t E C q q q q R q L f m  sin 2 1 2 1 2 2 2 2          • The governing equations are equivalent. The characteristics of the vibrations of the mechanical system may be inferred from the oscillations of the electrical system.