SlideShare a Scribd company logo
1 of 23
Critical-State Soil Mechanics
For Dummies
Prof. Samirsinh Parmar
Asst. Professor, Dept. of Civil Engg.
Dharmasinh Desai University, Nadiad, Gujarat, INDIA
Mail: samirddu@gmail.com
CONTENT OUTLINE
 Critical-state soil mechanics is an effective stress
framework describing mechanical soil response
 In its simplest form here, we consider only shear-
induced loading.
 We merely tie together two well-known concepts:
(1) one-dimensional consolidation behavior,
represented by e-logsv’ curves; and (2) shear
stress-vs. normal stress (t-sv’) from direct shear
box or simple shearing.
 Herein, only the bare essence of CSSM concepts
are presented, sufficient to describe strength &
compressibility response.
Critical State Soil Mechanics (CSSM)
 Experimental evidence provided by Hvorslev (1936; 1960,
ASCE); Henkel (1960, ASCE Boulder) Henkel & Sowa (1961,
ASTM STP 361)
 Mathematics presented elsewhere, including: Schofield &
Wroth (1968); Burland (1968); Wood (1990).
 In basic form: 3 material constants (f', Cc, Cs) plus initial
state (e0, svo', OCR)
 Constitutive Models, include: Original Cam-Clay, Modified Cam
Clay, NorSand, Bounding Surface, MIT-E3 (Whittle, 1993) &
MIT-S1 (Pestana) and others (Adachi, Oka, Ohta, Dafalias)
 "Undrained" is just one specific stress path
 Yet !!! CSSM is missing from most textbooks and undergrad &
grad curricula in the USA.
One-Dimensional Consolidation
Sandy Clay (CL), Surry, VA: Depth = 27 m
0.5
0.6
0.7
0.8
0.9
1.0
1 10 100 1000 10000
Effective Vertical Stress, svo' (kPa)
Void
Ratio,
e
Cc = 0.38
Cr = 0.04
svo'=300 kPa
sp'=900 kPa
Overconsolidation Ratio, OCR = 3
Cs = swelling index (= Cr)
cv = coef. of consolidation
D' = constrained modulus
Cae = coef. secondary compression
k ≈ hydraulic conductivity
sv’
Direct Shear Test Results
sv’
t
Direct Shear Box (DSB)
sv’
t
Direct Simple Shear (DSS)
t d
t
gs
Slow Direct Shear Tests on Triassic Clay,NC
0
20
40
60
80
100
120
140
0 1 2 3 4 5 6 7 8 9 10
Displacement, d (mm)
Shear
Stress,
t
(kPa)
sn'
(kPa)=
214.5
135.0
45.1
Slow Direct Shear Tests on Triassic Clay, Raleigh, NC
0
20
40
60
80
100
120
140
0 50 100 150 200 250
Effective Normal Stress, sn' (kPa)
Shear
Stress,
t
(kPa)
0.491 = tan f '
Strength Parameters:
c' = 0; f ' = 26.1 o
Peak
Peak
Peak
CSSM for Dummies
Log sv'
Effective stress sv'
Shear
stress
t
Void
Ratio,
e
NC
CC
tanf'
CSL
Effective stress sv'
Void
Ratio,
e
NC
CSL
CSSM Premise:
“All stress paths fail
on the critical state
line (CSL)”
CSL
f
c=0
CSSM for Dummies
Log sv'
Effective stress sv'
Shear
stress
t
Void
Ratio,
e
Void
Ratio,
e
NC
NC
CC
tanf'
CSL
CSL
CSL
STRESS PATH No.1
NC Drained Soil
Given: e0, svo’, NC (OCR=1)
e0
svo
svo
Drained Path: Du = 0
tmax = c + s tanf
ef
De
Volume Change is Contractive:
evol = De/(1+e0) < 0
Effective stress sv'
c’=0
CSSM for Dummies
Log sv'
Effective stress sv'
Shear
stress
t
Void
Ratio,
e
Void
Ratio,
e
NC
NC
CC
tanf'
CSL
CSL
CSL
STRESS PATH No.2
NC Undrained Soil
Given: e0, svo’, NC (OCR=1)
e0
svo
svo
Undrained Path: DV/V0 = 0
+Du = Positive Excess
Porewater Pressures
svf
svf
Du
tmax = cu=su
Effective stress sv'
CSSM for Dummies
Log sv'
Effective stress sv'
Shear
stress
t
Void
Ratio,
e
NC NC
CC
tanf'
CSL
CSL
CSL
Note: All NC undrained
stress paths are parallel
to each other, thus:
su/svo’ = constant
Effective stress sv'
DSS: su/svo’NC = ½sinf’
Void
Ratio,
e
CSSM for Dummies
Log sv' Effective stress sv'
Effective stress sv'
Shear
stress
t
Void
Ratio,
e
Void
Ratio,
e
NC NC
CC
tanf'
CSL
CSL
CSL
CS
sp'
sp'
OC
Overconsolidated States:
e0, svo’, and OCR = sp’/svo’
where sp’ = svmax’ = Pc’ =
preconsolidation stress;
OCR = overconsolidation ratio
CSSM for Dummies
Log sv'
Effective stress sv'
Shear
stress
t
Void
Ratio,
e
NC NC
CC
tanf'
CSL
CSL
CSL
CS
OC
Stress Path No. 3
Undrained OC Soil:
e0, svo’, and OCR
svo'
e0
svo'
Stress Path: DV/V0 = 0
Negative Excess Du
Effective stress sv'
svf'
Void
Ratio,
e
Du
CSSM for Dummies
Log sv'
Effective stress sv'
Shear
stress
t
Void
Ratio,
e
Void
Ratio,
e
NC NC
CC
tanf'
CSL
CSL
CSL
CS
OC
Stress Path No. 4
Drained OC Soil:
e0, svo’, and OCR
Stress Path: Du = 0
Dilatancy: DV/V0 > 0
svo'
e0
svo'
Effective stress sv'
Critical state soil mechanics
• Initial state: e0, svo’, and OCR = sp’/svo’
• Soil constants: f’, Cc, and Cs (L = 1-Cs/Cc)
• For NC soil (OCR =1):
 Undrained (evol = 0): +Du and tmax = su = cu
 Drained (Du = 0) and contractive (decrease evol)
• For OC soil:
 Undrained (evol = 0): -Du and tmax = su = cu
 Drained (Du = 0) and dilative (Increase evol)
There’s more ! Semi-drained, Partly undrained, Cyclic…..
Equivalent Stress Concept
Log sv'
Stress sv'
Shear
stress
t
Void
Ratio,
e
NC
NC
CC
tanf'
CSL
CSL
CSL
CS
OC
1. OC State (eo, svo’, sp’)
svo'
2. Project OC state to NC
line for equivalent stress, se’
3. se’ = svo’ OCR[1-Cs/Cc]
svo'
e0
Effective stress sv'
Void
Ratio,
e
sp' sp'
se'
se'
su
svf'
ep
De = Cs log(sp’/svo’)
De = Cc log(se’/sp’)
De
at se’
suOC = suNC
Critical state soil mechanics
• Previously: su/svo’ = constant for NC soil
• On the virgin compression line: svo’ = se’
• Thus: su/se’ = constant for all soil (NC & OC)
• For simple shear: su/se’ = ½sin f’
• Equivalent stress:
Normalized Undrained Shear Strength:
su/svo’ = ½ sinf’ OCRL
where L = (1-Cs/Cc)
se’ = svo’ OCR[1-Cs/Cc]
Undrained Shear Strength from CSSM
0.0
0.1
0.2
0.3
0.4
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
sinf'
s
u
/
s
vo
'
NC
(DSS)
AGS Plastic
Amherst
Ariake
Bootlegger
Bothkennar
Boston Blue
Cowden
Hackensack
James Bay
Mexico City
Onsoy
Porto Tolle
Portsmouth
Rissa
San Francisco
Silty Holocene
Wroth (1984)
su/svo'NC (DSS) =½sinf'
Undrained Shear Strength from CSSM
0.1
1
10
1 10 100
Overconsolidation Ratio, OCR
DSS
Undrained
Strength
,
s
u
/
s
vo
'
Amherst CVVC
Atchafalaya
Bangkok
Bootlegger Cove
Boston Blue
Cowden
Drammen
Hackensack
Haga
Lower Chek Lok
Maine
McManus
Paria
Portland
Portsmouth
Silty Holocene
Upper Chek Lok
20
30
40
f' = 40o
20o
30o
su/svo' = ½ sinf' OCRL
Note: L = 1 - Cs/Cc  0.8
Intact
Clays
Porewater Pressure Response from CSSM
-6
-5
-4
-3
-2
-1
0
1
1 10 100
Overconsolidation Ratio, OCR
Normalized
Porewater
Pressure,
Du
/
s
vo
'
Amherst CVVC
Atchafalaya
Bangkok
Bootlegger Cove
Boston Blue
Cowden
Drammen
Hackensack
Haga
Lower Chek Lok
Maine
McManus
Paria
Portland
Portsmouth
Silty Holocene
Upper Chek Lok
20
30
40
L = 0.9 0.8 0.7
Intact
f' = 20o
30o
40o
Dus/svo' = 1 - ½cosf'OCRL
Yield Surfaces
Log sv'
Normal stress sv'
Shear
stress
t
Void
Ratio,
e
NC NC
CSL
CSL
CSL
OC
Normal stress sv'
Void
Ratio,
e
sp'
sp'
OC
 Yield surface represents
3-d preconsolidation
 Quasi-elastic behavior
within the yield surface
Port of Anchorage, Alaska
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Effective Stress, p'* = (s1'+s2'+s3')/(3sp')
Deviatoric
Stress
=
q*
=
(
s
1
-
s
3
)/
s
p
'
Bootlegger
Cove Clay
Mc = (q/p')f = 1.10
Mc = 6sinf'/(3-sinf')
f' = 27.7o
0.1
1
10
1 10 100
Overconsolidation Ratio, OCR
Strength
Ratio,
s
u
/
s
vo
'
DSS Data
CIUC Data
MCC Pred CIUC
MCC Pred DSS
Critical State Soil Mechanics
(Modified Cam Clay)
f' = 27.7o
L = 0.75
Cavity Expansion – Critical State Model for Evaluating
OCR in Clays from Piezocone Tests
OCR
M
q u
T b
vo
=

-












2
1
195 1
1
. '
/
s
L
where M = 6 sinf’/(3-sinf’)
and L = 1 – Cs/Cc  0.8
qc
fs
ub
 qT
0
2
4
6
8
10
12
14
16
18
20
0 1 2 3 4 5 6
Overconsolidation Ratio, OCR
Depth
(meters)
CPTU
CRS
IL Oed
RF
Bothkennar, UK
Critical state soil mechanics
• Initial state: e0, svo’, and OCR = sp’/svo’
• Soil constants: f’, Cc, and Cs (L = 1-Cs/Cc)
• Using effective stresses, CSSM addresses:
 NC and OC behavior
 Undrained vs. Drained (and other paths)
 Positive vs. negative porewater pressures
 Volume changes (contractive vs. dilative)
 su/svo’ = ½ sinf’ OCRL
where L = 1-Cs/Cc
 Yield surface represents 3-d preconsolidation
Thank You

More Related Content

What's hot

Seismic ssi effects and liquification
Seismic ssi effects and liquificationSeismic ssi effects and liquification
Seismic ssi effects and liquification
Arpan Banerjee
 

What's hot (20)

Soil structure interaction
Soil   structure interactionSoil   structure interaction
Soil structure interaction
 
Lecture 8 consolidation and compressibility
Lecture 8  consolidation and compressibilityLecture 8  consolidation and compressibility
Lecture 8 consolidation and compressibility
 
Class 8 Triaxial Test ( Geotechnical Engineering )
Class 8    Triaxial Test ( Geotechnical Engineering )Class 8    Triaxial Test ( Geotechnical Engineering )
Class 8 Triaxial Test ( Geotechnical Engineering )
 
Lateral earth pressure theories by abhishek sharma
Lateral earth pressure theories by abhishek sharmaLateral earth pressure theories by abhishek sharma
Lateral earth pressure theories by abhishek sharma
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Seismic ssi effects and liquification
Seismic ssi effects and liquificationSeismic ssi effects and liquification
Seismic ssi effects and liquification
 
Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]
 
Slope stability
Slope stabilitySlope stability
Slope stability
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
 
Review of structural analysis
Review of structural analysisReview of structural analysis
Review of structural analysis
 
Method of-slices
Method of-slicesMethod of-slices
Method of-slices
 
Triaxial shear test of soils
Triaxial shear test of soilsTriaxial shear test of soils
Triaxial shear test of soils
 
Quick sand condation
Quick sand condationQuick sand condation
Quick sand condation
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
soil liquefaction and quicksand condition
soil liquefaction and quicksand conditionsoil liquefaction and quicksand condition
soil liquefaction and quicksand condition
 
Slope stability analysis methods
Slope stability analysis methodsSlope stability analysis methods
Slope stability analysis methods
 
Shear Strength of Soil
Shear Strength of SoilShear Strength of Soil
Shear Strength of Soil
 
Unit6 svd
Unit6 svdUnit6 svd
Unit6 svd
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Plaxis Advanced Course, New Delhi, India, (2014).pdf
Plaxis Advanced Course, New Delhi, India, (2014).pdfPlaxis Advanced Course, New Delhi, India, (2014).pdf
Plaxis Advanced Course, New Delhi, India, (2014).pdf
 

Similar to CSSM for Dummies.ppt

Mekanika Tanah - Triaxial shear test
Mekanika Tanah - Triaxial shear testMekanika Tanah - Triaxial shear test
Mekanika Tanah - Triaxial shear test
Reski Aprilia
 
Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentation
JamesSprittles
 

Similar to CSSM for Dummies.ppt (20)

smLecture7 Calculation of Settlement.pptx
smLecture7 Calculation of Settlement.pptxsmLecture7 Calculation of Settlement.pptx
smLecture7 Calculation of Settlement.pptx
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Mekanika Tanah - Triaxial shear test
Mekanika Tanah - Triaxial shear testMekanika Tanah - Triaxial shear test
Mekanika Tanah - Triaxial shear test
 
Applying Geo-mechanics to Well Modelling and Inflow Performance Relationships
Applying Geo-mechanics to Well Modelling and Inflow Performance RelationshipsApplying Geo-mechanics to Well Modelling and Inflow Performance Relationships
Applying Geo-mechanics to Well Modelling and Inflow Performance Relationships
 
transformer
transformertransformer
transformer
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
Geotechnical Engineering-II [Lec #4: Unconfined Compression Test]
 
Fracture Desing Variables, Building a Basis of Desing
Fracture Desing Variables, Building a Basis of DesingFracture Desing Variables, Building a Basis of Desing
Fracture Desing Variables, Building a Basis of Desing
 
Influence line for structure analysis in civil engineering
Influence line for structure analysis in civil engineeringInfluence line for structure analysis in civil engineering
Influence line for structure analysis in civil engineering
 
Resonant circuits
Resonant circuitsResonant circuits
Resonant circuits
 
Formulas for RCC.pdf
Formulas for RCC.pdfFormulas for RCC.pdf
Formulas for RCC.pdf
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Flow Induced vibration fundamentals present
Flow Induced vibration fundamentals presentFlow Induced vibration fundamentals present
Flow Induced vibration fundamentals present
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentation
 
Stress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsStress Analysis & Pressure Vessels
Stress Analysis & Pressure Vessels
 
7903549.ppt
7903549.ppt7903549.ppt
7903549.ppt
 

More from Samirsinh Parmar

More from Samirsinh Parmar (20)

MUDRA VIGYAN- SCIENCE OF HAND MUDRAS of ANCIENT INDIA.pdf
MUDRA VIGYAN- SCIENCE OF HAND MUDRAS of ANCIENT INDIA.pdfMUDRA VIGYAN- SCIENCE OF HAND MUDRAS of ANCIENT INDIA.pdf
MUDRA VIGYAN- SCIENCE OF HAND MUDRAS of ANCIENT INDIA.pdf
 
Effect_of_Gradation_and_Particle_Size_on_Correlations_between_DCP_Index_-ASTM...
Effect_of_Gradation_and_Particle_Size_on_Correlations_between_DCP_Index_-ASTM...Effect_of_Gradation_and_Particle_Size_on_Correlations_between_DCP_Index_-ASTM...
Effect_of_Gradation_and_Particle_Size_on_Correlations_between_DCP_Index_-ASTM...
 
Matdan Takavari (Voting Perecentage Guajarati) -2023-24.pdf
Matdan Takavari (Voting Perecentage Guajarati)  -2023-24.pdfMatdan Takavari (Voting Perecentage Guajarati)  -2023-24.pdf
Matdan Takavari (Voting Perecentage Guajarati) -2023-24.pdf
 
Election 2024 Presiding Duty Keypoints_01.pdf
Election 2024 Presiding Duty Keypoints_01.pdfElection 2024 Presiding Duty Keypoints_01.pdf
Election 2024 Presiding Duty Keypoints_01.pdf
 
Pre-Independence JWELLERY DESIGN of India.pptx
Pre-Independence JWELLERY DESIGN of India.pptxPre-Independence JWELLERY DESIGN of India.pptx
Pre-Independence JWELLERY DESIGN of India.pptx
 
Krishna- Jeevan Leela (Pictorial View).pdf
Krishna- Jeevan Leela (Pictorial View).pdfKrishna- Jeevan Leela (Pictorial View).pdf
Krishna- Jeevan Leela (Pictorial View).pdf
 
One more chance- Philosophy of Life.pptx
One more chance- Philosophy of Life.pptxOne more chance- Philosophy of Life.pptx
One more chance- Philosophy of Life.pptx
 
Pre-Independence Toys and Crafts designs in India.pptx
Pre-Independence Toys and Crafts designs in India.pptxPre-Independence Toys and Crafts designs in India.pptx
Pre-Independence Toys and Crafts designs in India.pptx
 
Peruvian Textile patterns before 1950.pptx
Peruvian Textile patterns before 1950.pptxPeruvian Textile patterns before 1950.pptx
Peruvian Textile patterns before 1950.pptx
 
INTRODUCTION TO GLOBAL POSITIONING SYSTEM (GPS).pptx
INTRODUCTION TO GLOBAL POSITIONING SYSTEM (GPS).pptxINTRODUCTION TO GLOBAL POSITIONING SYSTEM (GPS).pptx
INTRODUCTION TO GLOBAL POSITIONING SYSTEM (GPS).pptx
 
MANI MANDIR MORBI-STATE HERITAGE BUILDING.pptx
MANI MANDIR MORBI-STATE HERITAGE BUILDING.pptxMANI MANDIR MORBI-STATE HERITAGE BUILDING.pptx
MANI MANDIR MORBI-STATE HERITAGE BUILDING.pptx
 
ICAIIE–2023 Nano-Geo-Mechanics - Challenges to calculate friction for geomate...
ICAIIE–2023 Nano-Geo-Mechanics - Challenges to calculate friction for geomate...ICAIIE–2023 Nano-Geo-Mechanics - Challenges to calculate friction for geomate...
ICAIIE–2023 Nano-Geo-Mechanics - Challenges to calculate friction for geomate...
 
GABIONS -MESH FACED RETAINING STRUCTURES .pptx
GABIONS -MESH FACED RETAINING STRUCTURES .pptxGABIONS -MESH FACED RETAINING STRUCTURES .pptx
GABIONS -MESH FACED RETAINING STRUCTURES .pptx
 
BEAUTY OF MATHEMATICS- Tricks of Calculations.pptx
BEAUTY OF MATHEMATICS- Tricks of Calculations.pptxBEAUTY OF MATHEMATICS- Tricks of Calculations.pptx
BEAUTY OF MATHEMATICS- Tricks of Calculations.pptx
 
Personality Development- Self Improvement
Personality Development- Self ImprovementPersonality Development- Self Improvement
Personality Development- Self Improvement
 
TIBETIAN PERSONALITY TEST - FEW QUESTION ANSWERS
TIBETIAN PERSONALITY TEST - FEW QUESTION  ANSWERSTIBETIAN PERSONALITY TEST - FEW QUESTION  ANSWERS
TIBETIAN PERSONALITY TEST - FEW QUESTION ANSWERS
 
The Endangered And Extinct Languages Of India.pptx
The Endangered And Extinct Languages Of India.pptxThe Endangered And Extinct Languages Of India.pptx
The Endangered And Extinct Languages Of India.pptx
 
MODERN INVESTMENT TIPS FROM RAMAYANA.pptx
MODERN INVESTMENT TIPS FROM RAMAYANA.pptxMODERN INVESTMENT TIPS FROM RAMAYANA.pptx
MODERN INVESTMENT TIPS FROM RAMAYANA.pptx
 
TURKEY EARTHQUAKE- BUILDING COLLAPSE STRUCTURE FAILURE ANALYSIS.pptx
TURKEY EARTHQUAKE- BUILDING COLLAPSE STRUCTURE FAILURE ANALYSIS.pptxTURKEY EARTHQUAKE- BUILDING COLLAPSE STRUCTURE FAILURE ANALYSIS.pptx
TURKEY EARTHQUAKE- BUILDING COLLAPSE STRUCTURE FAILURE ANALYSIS.pptx
 
Empowering Women in the Digital Sphere.pdf
Empowering Women in the Digital Sphere.pdfEmpowering Women in the Digital Sphere.pdf
Empowering Women in the Digital Sphere.pdf
 

Recently uploaded

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 

Recently uploaded (20)

Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 

CSSM for Dummies.ppt

  • 1. Critical-State Soil Mechanics For Dummies Prof. Samirsinh Parmar Asst. Professor, Dept. of Civil Engg. Dharmasinh Desai University, Nadiad, Gujarat, INDIA Mail: samirddu@gmail.com
  • 2. CONTENT OUTLINE  Critical-state soil mechanics is an effective stress framework describing mechanical soil response  In its simplest form here, we consider only shear- induced loading.  We merely tie together two well-known concepts: (1) one-dimensional consolidation behavior, represented by e-logsv’ curves; and (2) shear stress-vs. normal stress (t-sv’) from direct shear box or simple shearing.  Herein, only the bare essence of CSSM concepts are presented, sufficient to describe strength & compressibility response.
  • 3. Critical State Soil Mechanics (CSSM)  Experimental evidence provided by Hvorslev (1936; 1960, ASCE); Henkel (1960, ASCE Boulder) Henkel & Sowa (1961, ASTM STP 361)  Mathematics presented elsewhere, including: Schofield & Wroth (1968); Burland (1968); Wood (1990).  In basic form: 3 material constants (f', Cc, Cs) plus initial state (e0, svo', OCR)  Constitutive Models, include: Original Cam-Clay, Modified Cam Clay, NorSand, Bounding Surface, MIT-E3 (Whittle, 1993) & MIT-S1 (Pestana) and others (Adachi, Oka, Ohta, Dafalias)  "Undrained" is just one specific stress path  Yet !!! CSSM is missing from most textbooks and undergrad & grad curricula in the USA.
  • 4. One-Dimensional Consolidation Sandy Clay (CL), Surry, VA: Depth = 27 m 0.5 0.6 0.7 0.8 0.9 1.0 1 10 100 1000 10000 Effective Vertical Stress, svo' (kPa) Void Ratio, e Cc = 0.38 Cr = 0.04 svo'=300 kPa sp'=900 kPa Overconsolidation Ratio, OCR = 3 Cs = swelling index (= Cr) cv = coef. of consolidation D' = constrained modulus Cae = coef. secondary compression k ≈ hydraulic conductivity sv’
  • 5. Direct Shear Test Results sv’ t Direct Shear Box (DSB) sv’ t Direct Simple Shear (DSS) t d t gs Slow Direct Shear Tests on Triassic Clay,NC 0 20 40 60 80 100 120 140 0 1 2 3 4 5 6 7 8 9 10 Displacement, d (mm) Shear Stress, t (kPa) sn' (kPa)= 214.5 135.0 45.1 Slow Direct Shear Tests on Triassic Clay, Raleigh, NC 0 20 40 60 80 100 120 140 0 50 100 150 200 250 Effective Normal Stress, sn' (kPa) Shear Stress, t (kPa) 0.491 = tan f ' Strength Parameters: c' = 0; f ' = 26.1 o Peak Peak Peak
  • 6. CSSM for Dummies Log sv' Effective stress sv' Shear stress t Void Ratio, e NC CC tanf' CSL Effective stress sv' Void Ratio, e NC CSL CSSM Premise: “All stress paths fail on the critical state line (CSL)” CSL f c=0
  • 7. CSSM for Dummies Log sv' Effective stress sv' Shear stress t Void Ratio, e Void Ratio, e NC NC CC tanf' CSL CSL CSL STRESS PATH No.1 NC Drained Soil Given: e0, svo’, NC (OCR=1) e0 svo svo Drained Path: Du = 0 tmax = c + s tanf ef De Volume Change is Contractive: evol = De/(1+e0) < 0 Effective stress sv' c’=0
  • 8. CSSM for Dummies Log sv' Effective stress sv' Shear stress t Void Ratio, e Void Ratio, e NC NC CC tanf' CSL CSL CSL STRESS PATH No.2 NC Undrained Soil Given: e0, svo’, NC (OCR=1) e0 svo svo Undrained Path: DV/V0 = 0 +Du = Positive Excess Porewater Pressures svf svf Du tmax = cu=su Effective stress sv'
  • 9. CSSM for Dummies Log sv' Effective stress sv' Shear stress t Void Ratio, e NC NC CC tanf' CSL CSL CSL Note: All NC undrained stress paths are parallel to each other, thus: su/svo’ = constant Effective stress sv' DSS: su/svo’NC = ½sinf’ Void Ratio, e
  • 10. CSSM for Dummies Log sv' Effective stress sv' Effective stress sv' Shear stress t Void Ratio, e Void Ratio, e NC NC CC tanf' CSL CSL CSL CS sp' sp' OC Overconsolidated States: e0, svo’, and OCR = sp’/svo’ where sp’ = svmax’ = Pc’ = preconsolidation stress; OCR = overconsolidation ratio
  • 11. CSSM for Dummies Log sv' Effective stress sv' Shear stress t Void Ratio, e NC NC CC tanf' CSL CSL CSL CS OC Stress Path No. 3 Undrained OC Soil: e0, svo’, and OCR svo' e0 svo' Stress Path: DV/V0 = 0 Negative Excess Du Effective stress sv' svf' Void Ratio, e Du
  • 12. CSSM for Dummies Log sv' Effective stress sv' Shear stress t Void Ratio, e Void Ratio, e NC NC CC tanf' CSL CSL CSL CS OC Stress Path No. 4 Drained OC Soil: e0, svo’, and OCR Stress Path: Du = 0 Dilatancy: DV/V0 > 0 svo' e0 svo' Effective stress sv'
  • 13. Critical state soil mechanics • Initial state: e0, svo’, and OCR = sp’/svo’ • Soil constants: f’, Cc, and Cs (L = 1-Cs/Cc) • For NC soil (OCR =1):  Undrained (evol = 0): +Du and tmax = su = cu  Drained (Du = 0) and contractive (decrease evol) • For OC soil:  Undrained (evol = 0): -Du and tmax = su = cu  Drained (Du = 0) and dilative (Increase evol) There’s more ! Semi-drained, Partly undrained, Cyclic…..
  • 14. Equivalent Stress Concept Log sv' Stress sv' Shear stress t Void Ratio, e NC NC CC tanf' CSL CSL CSL CS OC 1. OC State (eo, svo’, sp’) svo' 2. Project OC state to NC line for equivalent stress, se’ 3. se’ = svo’ OCR[1-Cs/Cc] svo' e0 Effective stress sv' Void Ratio, e sp' sp' se' se' su svf' ep De = Cs log(sp’/svo’) De = Cc log(se’/sp’) De at se’ suOC = suNC
  • 15. Critical state soil mechanics • Previously: su/svo’ = constant for NC soil • On the virgin compression line: svo’ = se’ • Thus: su/se’ = constant for all soil (NC & OC) • For simple shear: su/se’ = ½sin f’ • Equivalent stress: Normalized Undrained Shear Strength: su/svo’ = ½ sinf’ OCRL where L = (1-Cs/Cc) se’ = svo’ OCR[1-Cs/Cc]
  • 16. Undrained Shear Strength from CSSM 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 sinf' s u / s vo ' NC (DSS) AGS Plastic Amherst Ariake Bootlegger Bothkennar Boston Blue Cowden Hackensack James Bay Mexico City Onsoy Porto Tolle Portsmouth Rissa San Francisco Silty Holocene Wroth (1984) su/svo'NC (DSS) =½sinf'
  • 17. Undrained Shear Strength from CSSM 0.1 1 10 1 10 100 Overconsolidation Ratio, OCR DSS Undrained Strength , s u / s vo ' Amherst CVVC Atchafalaya Bangkok Bootlegger Cove Boston Blue Cowden Drammen Hackensack Haga Lower Chek Lok Maine McManus Paria Portland Portsmouth Silty Holocene Upper Chek Lok 20 30 40 f' = 40o 20o 30o su/svo' = ½ sinf' OCRL Note: L = 1 - Cs/Cc  0.8 Intact Clays
  • 18. Porewater Pressure Response from CSSM -6 -5 -4 -3 -2 -1 0 1 1 10 100 Overconsolidation Ratio, OCR Normalized Porewater Pressure, Du / s vo ' Amherst CVVC Atchafalaya Bangkok Bootlegger Cove Boston Blue Cowden Drammen Hackensack Haga Lower Chek Lok Maine McManus Paria Portland Portsmouth Silty Holocene Upper Chek Lok 20 30 40 L = 0.9 0.8 0.7 Intact f' = 20o 30o 40o Dus/svo' = 1 - ½cosf'OCRL
  • 19. Yield Surfaces Log sv' Normal stress sv' Shear stress t Void Ratio, e NC NC CSL CSL CSL OC Normal stress sv' Void Ratio, e sp' sp' OC  Yield surface represents 3-d preconsolidation  Quasi-elastic behavior within the yield surface
  • 20. Port of Anchorage, Alaska 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Effective Stress, p'* = (s1'+s2'+s3')/(3sp') Deviatoric Stress = q* = ( s 1 - s 3 )/ s p ' Bootlegger Cove Clay Mc = (q/p')f = 1.10 Mc = 6sinf'/(3-sinf') f' = 27.7o 0.1 1 10 1 10 100 Overconsolidation Ratio, OCR Strength Ratio, s u / s vo ' DSS Data CIUC Data MCC Pred CIUC MCC Pred DSS Critical State Soil Mechanics (Modified Cam Clay) f' = 27.7o L = 0.75
  • 21. Cavity Expansion – Critical State Model for Evaluating OCR in Clays from Piezocone Tests OCR M q u T b vo =  -             2 1 195 1 1 . ' / s L where M = 6 sinf’/(3-sinf’) and L = 1 – Cs/Cc  0.8 qc fs ub  qT 0 2 4 6 8 10 12 14 16 18 20 0 1 2 3 4 5 6 Overconsolidation Ratio, OCR Depth (meters) CPTU CRS IL Oed RF Bothkennar, UK
  • 22. Critical state soil mechanics • Initial state: e0, svo’, and OCR = sp’/svo’ • Soil constants: f’, Cc, and Cs (L = 1-Cs/Cc) • Using effective stresses, CSSM addresses:  NC and OC behavior  Undrained vs. Drained (and other paths)  Positive vs. negative porewater pressures  Volume changes (contractive vs. dilative)  su/svo’ = ½ sinf’ OCRL where L = 1-Cs/Cc  Yield surface represents 3-d preconsolidation