SlideShare a Scribd company logo
1 of 86
1
Fracture Design Variables
H , E , C , KIc-App m , Q, V
or
Building A “Basis of Design”
Fracturing – Physics
H, E, C, KIC m, Q, TP



































Sd
Sh
Net
App
Ic
Net
Net
Closure
P
P
P
P
f
H
H
K
E
L
Q
H
E
P
E
P
H
E
P
H
w
H
w
T
H
C
T
Q
L

m



4
/
1
2
4
4
4
'
2
'
2
)
(
3
Fracture Height =
Major Factors
Closure Stress Differences
 Formation Thickness Effects
 Fracture “Pressure”
 Modulus Contrasts
 Bedding Plane Slip
(Probably Only At Shallow Depths)
 Rock Ductility
 Stress/Fluid Pressure Gradients
 Strength (Toughness) Differences
In Situ Stress Differences
Major Factors
Closure Stress Differences
 Formation Thickness Effects
 Fracture “Pressure”
 Modulus Contrasts
 Bedding Plane Slip
(Probably Only At Shallow Depths)
 Rock Ductility
 Stress/Fluid Pressure Gradients
 Strength (Toughness) Differences
Effect of Formation Thickness
Pay Zone
2
0
3
0 5
0 1
0
0 2
0
0
3
0
0
2
0
0
3
0
0
5
0
0
1
,
0
0
0
2
,
0
0
0
3
,
0
0
0
F
r
a
c
t
u
r
e
H
e
i
g
h
t
,
H
(
f
t
)
P
n
e
t
,
N
e
t
P
r
e
s
s
u
r
e
(
p
s
i
)
Q
=
3
0
b
p
m
m
=
1
5
0
c
p
C
=
0
.
0
0
1
f
t
/

m
i
n
X
f
=
7
0
0
f
t
E
=
2
E
=
6
x
1
0
p
s
i
6
E
=
4
x
1
0
p
s
i
6
E
=
1
x
1
0
p
s
i
6
F
Net Pressure
for Near Perfect
Height
Confinement
Effect of Formation Thickness
Boundary Layers
Major Factors
Closure Stress Differences
 Formation Thickness Effects
 Fracture “Pressure”
 Modulus Contrasts
 Bedding Plane Slip
(Probably Only At Shallow Depths)
 Rock Ductility
 Stress/Fluid Pressure Gradients
 Strength (Toughness) Differences
Modulus Contrasts
Very Little Effect on Height
E2
E1
E2
xf
H
5 1
0 2
0 3
0
4
0
1
2
3
E
/
E
(
2
X
f
/
H
)
21
m
a
x
Major Factors
Closure Stress Differences
 Formation Thickness Effects
 Fracture “Pressure”
 Modulus Contrasts
 Bedding Plane Slip (Elastic Debonding)
(Probably Only At Shallow Depths)
 Rock Ductility
 Stress/Fluid Pressure Gradients
 Strength (Toughness) Differences
Bedding Plane Slip
Only At Shallow Depths
5
0
0 1
0
0
01
5
0
02
0
0
02
5
0
0
5
0
0
1
,
0
0
0
1
,
5
0
0
2
,
0
0
0
N
e
t
O
v
e
r
b
u
r
d
e
n
S
t
r
e
s
s
(
p
s
i
)
(
O
v
e
r
b
u
r
d
e
n
-
P
o
r
e
P
r
e
s
s
u
r
e
)
T
e
n
s
i
l
e
S
t
r
e
n
g
t
h
f
o
r
B
o
u
n
d
i
n
g
F
o
r
m
a
t
i
o
n
(
p
s
i
)
F
r
a
c
t
u
r
e
S
t
o
p
p
e
d
A
t
I
n
t
e
r
f
a
c
e
F
r
a
c
t
u
r
e
C
r
o
s
s
e
d
I
n
t
e
r
f
a
c
e
Interface Slip/Elastic Debonding
Mineback experiments,
BUT essentially “0”
Net Overburden
Major Factors
Closure Stress Differences
 Formation Thickness Effects
 Fracture “Pressure”
 Modulus Contrasts
 Bedding Plane Slip (Elastic Debonding)
(Probably Only At Shallow Depths)
 Rock Ductility
 Stress/Fluid Pressure Gradients
 Strength (Toughness) Differences
Stress/Pressure Gradients
Only Important After Massive Height Growth
Depth
Closure Stress
Fluid Pressure Gradient
A Fracture
WOULD Rather
Grow Up Than
Down.
Fracture Height Estimates
 Lithology Logs
(Bed Thickness)
 In Situ Stresses
(Pore Pressure, Pore Pressure Variations,
Stress Tests, Acid Breakdown Data)
 Special Stress Logs
(Must Be Calibrated)
 Modulus Contrasts
(Sonic Log Data)
Experience & Sound Engineering Judgement
20
Fracture Design Variables
Modulus
H , E , C , KIc m , Q
Modulus, E
Core Testing
 Must Use Confining Pressure
 Horizontal Core Plug
Desirable
(2 to 1 Length to Diameter)
 Must be “Moist”
 Temperature Typically Not
Critical
Effect of Modulus on Design
2 4 6
1
0
2
0
3
0
4
0
M
o
d
u
l
u
s
(
1
0
p
s
i
)
S
l
u
r
r
y
V
o
l
u
m
e
(
M
-
G
a
l
)
6
H
=
H
=
1
0
0
f
t
C
=
0
.
0
0
1
f
t
/

m
i
n
S
p
u
r
t
=
0
m
=
1
5
0
c
p
Q
=
3
0
b
p
m
D
e
s
i
g
n
X
f
=
7
0
0
f
t
L
Effect of Modulus on Fracture
2 4 6
1
0
0
2
0
0
3
0
0
4
0
0
5
0
0
6
0
0
7
0
0
8
0
0
0
.
1
0
.
2
0
.
3
0
.
4
0
.
5
0
.
6
0
.
7
0
.
8
M
o
d
u
l
u
s
(
1
0
p
s
i
)
P
n
e
t
,
N
e
t
P
r
e
s
s
u
r
e
(
p
s
i
)
6
M
a
x
W
i
d
t
h
(
i
n
)
Typical Values - Sandstone
2 4 6 8
2
4
6
8
N
e
t
O
v
e
r
b
u
r
d
e
n
(
1
,
0
0
0
p
s
i
)
Y
o
u
n
g
'
s
M
o
d
u
l
u
s
,
E
(
1
0
p
s
i
)
6
L
o
w
P
o
r
o
s
i
t
y
(
<
1
0
%
)
,
V
e
r
y
F
i
n
e
G
r
a
i
n
e
d
H
i
g
h
P
o
r
o
s
i
t
y
(
>
2
5
%
)
,
C
o
a
r
s
e
G
r
a
i
n
e
d
Typical Values - Carbonate
2 4 6 8
2
4
6
8
N
e
t
O
v
e
r
b
u
r
d
e
n
(
1
,
0
0
0
p
s
i
)
L
o
w
P
o
r
o
s
i
t
y
,
D
o
l
o
m
i
t
e
Y
o
u
n
g
'
s
M
o
d
u
l
u
s
,
E
(
1
0
p
s
i
)
6
H
i
g
h
P
o
r
o
s
i
t
y
Typical Values - Shale
 What is Porosity ?
 How Much Clays ?
 How Much Calcite ?
 What is Net Overburden ?
Special Values
 Chalks
Porosity 35 to 50%
E of 1.5 to 0.5x106 psi
 Diatomite
Porosity 40 to 50%
E of 1.0 to 0.3x106 psi
 Unconsolidated Sands, Porosity 20%+
E of 0.2 to 1.0x106 psi
E From Sonic Log Data ?
5
0 1
0
0 1
5
0 2
0
0
5
.
0
E
+
5
1
.
0
E
+
6
2
.
0
E
+
6
5
.
0
E
+
6
1
.
0
E
+
7
2
.
0
E
+
7
D
y
n
a
m
i
c
Y
o
u
n
g
'
s
M
o
d
u
l
u
s
(
p
s
i
)


=
0
.
1
0


=
0
.
3
0


=
0
.
2
0
G
r
a
i
n
D
e
n
s
i
t
y
=
2
.
6
5
P
o
i
s
s
o
n
'
s
R
a
t
i
o
n
A
s
s
u
m
e
d
=
0
.
2
S
o
n
i
c
T
r
a
v
e
l
T
i
m
e
(
m
-
s
e
c
/
f
t
)
Special Space Sonic Log Not Required
5
0 1
0
0 1
5
0 2
0
0
5
.
0
E
+
5
1
.
0
E
+
6
2
.
0
E
+
6
5
.
0
E
+
6
1
.
0
E
+
7
2
.
0
E
+
7
D
y
n
a
m
i
c
Y
o
u
n
g
'
s
M
o
d
u
l
u
s
(
p
s
i
)

=
0
.
1
5

=
0
.
2
5

=
0
.
2
0

=
0
.
2
0
G
r
a
i
n
D
e
n
s
i
t
y
=
2
.
6
5
-
-
-
-
-
-
-
P
o
i
s
s
o
n
'
s
R
a
t
i
o
n
h
a
s
l
i
t
t
l
e
e
f
f
e
c
t
o
n
r
e
l
a
t
i
o
n
b
e
t
w
e
e
n
s
o
n
i
c
m
o
d
u
l
u
s
a
n
d
s
o
n
i
c
v
e
l
o
c
i
t
y
.
S
o
n
i
c
T
r
a
v
e
l
T
i
m
e
(
m
-
s
e
c
/
f
t
)
Static Vs. Dynamic Modulus
Dynamic ALWAYS High
2
4
6
8
10
4 6
2 8 10 12 14
Lab Data - Dynamic Modulus
psi x 106
Lab
Data
-
Static
Modulus
psi
x
10
6
Sonic Log for Modulus ?
0.1 0.2 0.3 0.5 1 2 3 5 10
0.1
0.2
0.3
0.5
1
2
3
5
10
Dynamic Modulus (e6 psi)
Static
Modulus
(e6
psi) after Morales
SPE 26561
Porosity > 25%
Modulus From ?
 Core Data
(Most Desirable, This is the One
Value We Can Get From Core)
 Sonic Log Data
(Modulus is ALWAYS Too High)
 Guess
(Check Against Net Pressure Data)
34
Fracture Design Variables
Fluid Loss
H , E , C , KIc m , Q
Fluid Loss Mechanisms
3 Fluid Loss Coefficients
 Linear Flow ASSUMPTION
 Viscosity Control, CI (or CV)
(Effect of Viscous “Bank”)
 Reservoir Control, CII
 Filter Cake Control, CIII (or CW)
)
(
2
A
t
dA
C
QLoss



C/t --> Low Loss Near Well
1
0 2
0 3
0 4
0 5
0
0
.
0
5
0
.
1
0
0
.
1
5
0
.
2
0
0
.
2
0
.
4
0
.
6
0
.
8
T
I
M
E
(
m
i
n
)
Q
-
L
o
s
s
(
b
p
m
/
1
0
0
s
q
.
f
t
) C
=
0
.
0
0
3
f
t
/

m
i
n
V
-
L
o
s
s
(
b
b
l
/
1
0
0
s
q
.
f
t
)
CI , CII , & CIII
Lab Test For CW
CW + “Spurt” Loss

T
i
m
e
(
m
i
n
)
V
o
l
u
m
e
L
o
s
t
/
U
n
i
t
A
r
e
a
S
p
u
r
t
L
o
s
s
S
p
u
r
t
T
i
m
e
L
a
b
T
e
s
t
D
a
t
a
F
o
r
C
w
S
l
o
p
e
-
-
>
C
w
Typical CW Values
0
.
0
0
1 0
.
0
0
2
0
.
0
0
3
0
.
0
0
5 0
.
0
1 0
.
0
2
0
.
0
3
0
.
0
5 0
.
1
0
.
0
0
0
1
0
.
0
0
0
2
0
.
0
0
0
3
0
.
0
0
0
5
0
.
0
0
1
0
.
0
0
2
0
.
0
0
3
0
.
0
0
5
0
.
0
1
P
e
r
m
e
a
b
i
l
i
t
y
,
k
(
m
d
)
W
a
l
l
B
u
i
l
d
i
n
g
F
l
u
i
d
L
o
s
s
C
o
e
f
f
i
c
i
e
n
t
C
o
r
C
(
f
t
/
m
i
n
)
I
I
I
W T
y
p
i
c
a
l
L
a
b
C
V
a
l
u
e
s
-
1
5
0
°
F
W
C
r
o
s
s
l
i
n
k
C
e
l
l
u
l
o
s
e
X
-
L
i
n
k
G
u
a
r
G
u
m
P
o
l
y
m
e
r
E
m
u
l
s
i
o
n
X
-
L
i
n
k
G
u
a
r
G
u
m
+
5
%
D
i
e
s
e
l
Combined Fluid Loss , CT
f
r
I
p
k
C
m
 
 0015
.
0
m

Ct
k
p
CII 
 0012
.
0
)
( data
lab
from
C
C wall
III 
III
II
I
T C
C
C
C
1
1
1
1


 BUT
Spurt Loss
 Strange Behavior
 “0” for low permeability (small pore
throat diameter) cases
 Increases with k
 Returns to “0” for high k formations
Behavior somewhat “statistical in nature
Spurt Loss Lab Data
0
.
1
0
.
2
0
.
5
1
2 5
1
0
2
0
5
0
0
.
0
0
2
0
.
0
0
5
0
.
0
1
0
.
0
2
0
.
0
5
0
.
1
0
.
2
0
.
5
P
e
r
m
e
a
b
i
l
i
t
y
(
m
d
)
S
p
u
r
t
(
g
a
l
/
s
q
.
f
o
o
t
) 2
0
p
p
t
(
l
b
/
M
-
G
a
l
)
5
0
6
0
8
0
p
p
t
(
l
b
/
M
-
G
a
l
)
g
e
l
4
0
H
P
G
X
-
L
i
n
k
G
e
l
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
5
d
e
g
F
Effect of Temperature on Cw
1
0
01
5
02
0
02
5
03
0
0
1
2
3
T
e
m
p
e
r
a
t
u
r
e
(
d
e
g
F
)
T
e
m
p
e
r
a
t
u
r
e
E
f
f
e
c
t
o
n
C
w W
a
t
e
r
B
a
s
e
F
l
u
i
d
s
T
e
s
t
a
t
8
0
d
e
g
F
T
e
s
t
a
t
1
2
5
d
e
g
F
Effect of Temperature on Cw
1
0
0
1
5
0
2
0
0
2
5
0
3
0
0
0
.
0
0
2
0
.
0
0
4
0
.
0
0
6
0
.
0
0
8
0
.
0
1
T
e
m
p
e
r
a
t
u
r
e
(
d
e
g
F
)
C
w
(
f
t
/
m
i
n
^
1
/
2
) H
P
G
T
i
t
i
n
a
t
e
X
-
L
i
n
k
G
e
l
3
0
l
b
g
e
l
d
a
t
a
4
0
l
b
g
e
l
d
a
t
a
5
0
l
b
g
e
l
d
a
t
a
S
o
l
i
d
L
i
n
e
s
=
C
w
(
a
t
8
0
d
e
g
F
)
X
(
m
)
-
1
/
2
W
Fluid Loss Additives
 ONLY Two Types
- Solid
- Liquid (3 to 5% hydrocarbon)
 Solids
- Used to reduce or eliminate spurt loss
and
allow a wall cake to build
- Do NOT Reduce CW or CT
- Many flavors !
 Liquids
- Used to reduce CW
- Wall cake MUST from first
Solid FLA --> Reduce Spurt
1
0 2
0 3
0 4
0
0
.
0
0
0
5
0
.
0
0
1
0
.
0
0
2
0
.
0
0
3
0
.
0
0
5
0
.
0
1
F
L
A
C
o
n
c
e
n
t
r
a
t
i
o
n
(
l
b
o
r
g
a
l
/
M
-
G
a
l
)
)
C P
o
l
y
m
e
r
-
R
e
s
i
n
S
i
l
i
c
a
F
l
o
u
r
P
o
l
y
m
e
r
-
S
i
l
i
c
a
-
C
l
a
y
D
i
e
s
e
l
(
0
.
1
-
1
0
m
d
)
W
48
Fracture Design Variables
Tip Effects
H , E , C , KIc-App m , Q
Laboratory Toughness (KIc) Values
0 1000 2000 3000 4000 5000
0
1000
2000
3000
4000
Mesaverde
SS
Berea SS
Indiana LS
Mesaverde
Mudstone
Confining Pressure (psi)
K
(psi

in)
Ic
Basic Physics – Tip Effects
PTip
)
(
24
)
(
)
(
ft
H
inch
psi
K
psi
P App
Ic
Tip



20 40 60 80
20
40
60
80
100
120
140
160
180
Net
Pressure
(psi)
H (ft)
K-Ic = 4000
K-Ic = 2000
K-Ic = 1000
Warpinski (1985) field data
Khristianovitch-Zheltov (1955)
deeper:
more p
less lag
width profiles
KIc_app ~ plag sqrt (Llag) >> KIc_rock
residual
cakes
makes fracturing robust and negates tip and multi-frac effects
Fracture Propagation: fluid lag at tip -> KIc_apparent
pc
pi
fluid lag
press
tip
negative
net_press
Apparent Fracture Toughness
 Very Low Modulus
Formations
 Radial Fracture, No
Height
Confinement
 Very Low Fluid
Viscosity (water)
 “Normal” Modulus
Formation
 Treatments Using
Frac Fluid
 Some (not
necessarily
perfect) Height
Confinement
May Be Important Much Less Important
Fracture Design Variables
 H (Height or Geometry) =
f (PNet/Sand-Shale)
 E (Young’s Modulus,
a “pure” rock property)
 C (Fluid Loss)
 KIc-App (PTip or Tip Effects)
Basic Physics – Net Pressure,
PNet
4
/
1
4
2
4
4
'
'














O
Ic
O
Net
H
K
E
L
Q
H
E
P
m
Viscous Tip
Basic Physics – Net Pressure, PNet
)
(
),
(
),
(
),
(
),
(
),
(
'
576
'
'
015
.
0
)
(
4
/
1
2
4
2
4
4
in
psi
K
ft
L
bpm
Q
cp
ft
H
psi
E
H
K
E
L
Q
H
E
psi
P
IC
O
O
Ic
O
Net
m

m
















Viscous Tip
PNet Behavior – Confined Height
0.2 0.5 1 2 5 10 20 50 100
20
50
100
200
500
1,000
Pump Time (min)
"Time 0" When Gel On Perfs
Net
Pressure
(psi)
Data
Confined H
m Dominated
Confined H
Tip Dominated
West Africa Frac Pack
1+ Darcy Permeability
PNet Behavior - Radial
0.2 0.5 1 2 5 10 20 50 100
20
50
100
200
500
1,000
Pump Time (min)
"Time 0" When Gel On Perfs
Net
Pressure
(psi)
Tip Dominated
m Dominated
Nolte-Smith Behavior
Simulations
4
/
1
4
2
4
4
'
'














O
Ic
O
Net
H
K
E
L
Q
H
E
P
m
Basic Physics
4
/
1
2
4
4
4
'
'














O
Ic
O
Net
H
K
E
L
Q
H
E
P
m
Viscous Tip
H
w
H
S
T
H
C
T
Q
L
P
P
P
P
P




2
3
60
Fracture Design Variables
Fluid Viscosity
H , E , C , KIc m, Q
Fluid Viscosity
Why is it important ?
What is it ?
How do we measure it ?
How much do we need ?
How is it affected by time,
temperature, proppant, … ?
Viscosity
 Affects fracture net pressure & width
(but not very much, )
 May be important for fluid loss control
 Very important to proppant transport
4
/
1
)
( m
Q
w 
Viscosity
Strongly Changed
By Conditions
Must know viscosity
as a function of time
& temperature !
D
i
s
t
a
n
c
e
A
l
o
n
g
F
r
a
c
F
l
u
i
d
T
e
m
p
e
r
a
t
u
r
e
W
e
l
l
b
o
r
e
T
e
m
p
e
r
a
t
u
r
e
F
o
r
m
a
t
i
o
n
T
e
m
p
e
r
a
t
u
r
e
D
i
s
t
a
n
c
e
A
l
o
n
g
F
r
a
c
V
i
s
c
o
s
i
t
y
T
e
m
p
e
r
a
t
u
r
e
D
e
g
r
a
d
a
t
i
o
n
T
i
m
e
/
S
h
e
a
r
D
e
g
r
a
d
a
t
i
o
n
How Do We Measure It ?
d
F,
velocity
 , Shear Stress = F / A (psi)
(pressure drop or drag)
g , Shear Rate = vel / d (1/sec)
(for fracture = vel / (w/2)
A
v (x)
Ideal Test
Rotating Cup
& Bob
w (RPM)
Torque
What Do We Measure ?
S
h
e
a
r
R
a
t
e
(
1
/
s
e
c
)
S
h
e
a
r
S
t
r
e
s
s
(
p
s
i
)
N
e
w
t
o
n
i
a
n

=
m
g
m

i
s
v
i
s
c
o
s
i
t
y
S
l
o
p
e
=
m
S
h
e
a
r
R
a
t
e
(
1
/
s
e
c
)
S
h
e
a
r
S
t
r
e
s
s
(
p
s
i
)
B
i
n
g
h
a
m
P
l
a
s
t
i
c
S
l
o
p
e
=
P
l
a
s
t
i
c
V
i
s
c
o
s
i
t
y

=
Y
+
m
g
P
P
l
o
g
g
l
o
g

P
o
w
e
r
L
a
w
S
l
o
p
e
=
n
'

=
K
'
g
n
'
Most Common
Rheological Model
for Fracturing
Fluids
“Apparent” Viscosity

g
Slope = m app
)
(sec
),
/
sec
(
'
),
(
/
'
48000
)
(
1
2
'
'
1




g
m
g
m
g
g

m




ft
lb
K
cp
K
on
depends
n
f
n
app
app
Example
 Power Law Fluid
n’=0.6, ma=100 cp (at 170 sec-1)
 Find: K’ and ma at 50 sec -1
cp
ft
lb
K
a
n
163
100
50
170
)
/
sec
(
0163
.
0
48000
/
170
100
'
)
6
.
0
1
(
)
50
(
2
'
)
6
.
0
1
(















m
Slurry Viscosity
2 4 6 81
0
1
2
1
4
1
2
3
5
7
1
0
l
b
S
a
n
d
/
L
i
q
u
i
d
G
a
l
l
o
n
V
i
s
c
o
s
i
t
y
M
u
l
t
i
p
l
i
e
r
Fracturing - Fluid Viscosity
 Net Pressure/
Geometry
 Proppant Transport
(Prop Settling  to m)
 Fluid Loss Control
Why we WANT Viscosity
2 5 1
0 2
0 5
01
0
0
5
0
1
0
0
2
0
0
5
0
0
1
,
0
0
0
P
u
m
p
T
i
m
e
(
m
i
n
)
"
T
i
m
e
0
"
W
h
e
n
G
e
l
O
n
P
e
r
f
s
N
e
t
P
r
e
s
s
u
r
e
(
p
s
i
)
5
0
0
c
p
1
0
0
c
p
3
0
c
p
1
c
p
H
=
1
5
0
'
E
=
6
e
6
p
s
i
Q
=
3
0
b
p
m
4
/
1
' 








E
x
Q
P
f
Net
m
Fracturing - Fluid Viscosity
 COSTS
 Net Pressure/Geometry
 Proppant Pack Damage
(10 to 70% KFW Loss)
Why we DO NOT WANT Viscosity
Photo Courtesy of StimLab
Everything that increases viscosity
costs money & does damage!
How Much Viscosity Is Needed
 If n’=0.6 and g=50 sec-1, the final ref-
erence apparent viscosity is 81 cp
 1 PPG --> 10 PPG gives an average
concentration of 5 PPG, viscosity
multiplier of 2 --> 162 cp
Assume a fluid with 50 cp viscosity (at
170 sec-1) at the end of the job, just as
prop laden fluid is reaching the frac tip,
after being in the fracture for 4 hours.
How Much Viscosity Is Needed
 Fluid enters fracture with 500 cp and
degrades to 50, average of about 225
cp or a multiple of 4.5 --> 729 cp
 For many fluids (cross link gels,
foams) settling is much slower than
predicted by Stoke’s Law, assume a
factor of 2
--> 1,458 cp
How Much Viscosity Is Needed
Use 1,450 cp in Stoke’s Law
gives a predicted proppant
settling of only 15 feet during the
four hour period
Near perfect transport using
a fluid with a final lab viscosity
of only 50 cp !
Where Do We Get Data ?
 Routine data acceptable for
preliminary designs, scoping
studies, etc.
 SPECIFIC data required for final
design, mini-frac analysis, etc.
Lab Tests
75
Fracture Design Variables
Pump Rate
H , E , C , KIc m , Q
Pump Rate Affects EVERYTHING
 Fluid Loss
(VL = 3 C HL tp)
 Fracture Net Pressure and Width
(but not very much , )
 Very important to proppant
transport
 Dominant parameter for surface
pressure and treatment costs
4
/
1
)
( m
Q
w 
Pump Rate and Fluid Efficiency
4
/
1
'
3 









E
L
Q
L
H
Q
Vol
H
C
t
Q
or
Vol
Vol
Vol
L
p
FRAC
LOST
IN
m
Pump rate involved in ALL terms of
fracture material balance. Thus Q is a
dominant parameter affecting fluid
efficiency !
Pump Rate and Pressure
PSurface = C - Head + Pipe Friction + PNET
for turbulent flow, Friction  Q1.75 ,
HHP = PS * Q ,  Q2.75
Horsepower almost Pump Rate CUBED
---------------------------------------
PNet  (Q m L/E’) 1/4 , (relatively insensitive)
Example
 Q2 = 1.5 * Q1 (50% Increase)
Friction = 2 x , +100%
HHP = 3 x , +200%
PNet = 1.1 x , +10%
 Q2 = 0.7 Q1 (30% Reduction)
Friction = 0.54 x , - 460%
HHP = 0.37 x , - 63%
PNet = 0.91 x , - 9%
Pump Rate & Proppant Transport
V1
V2
H
D
D/H = V1 / V2
V1 = Fluid Velocity = Q/Hw  Q/H(m Q) 1/4  Q3/4/Hm1/4
V2 = Fall Rate (Stoke’s Law)  1/m
D/H  (Q m ) 3/4 / H
(INDEPENDENT of H , Q & mEqually Important ! )
Fracturing - Pump Rate
 Net Pressure/
Geometry
 Proppant
Transport
 Fluid Loss
Control
Why we WANT Pump Rate
2 5 1
0 2
0 5
01
0
0
5
0
1
0
0
2
0
0
5
0
0
1
,
0
0
0
P
u
m
p
T
i
m
e
(
m
i
n
)
"
T
i
m
e
0
"
W
h
e
n
G
e
l
O
n
P
e
r
f
s
N
e
t
P
r
e
s
s
u
r
e
(
p
s
i
)
6
0
b
p
m
3
0
b
p
m
1
0
b
p
m
H
=
1
5
0
'
E
=
6
e
6
p
s
i
m
=
1
0
0
c
p
4
/
1
' 








E
x
Q
P
f
Net
m
Fracturing - Pump Rate
 COSTS
 Net Pressure/
Geometry
 Equipment
Failure Possibility
Why we DO NOT WANT Pump Rate
2 5 1
0 2
0 5
01
0
0
5
0
1
0
0
2
0
0
5
0
0
1
,
0
0
0
P
u
m
p
T
i
m
e
(
m
i
n
)
"
T
i
m
e
0
"
W
h
e
n
G
e
l
O
n
P
e
r
f
s
N
e
t
P
r
e
s
s
u
r
e
(
p
s
i
)
6
0
b
p
m
3
0
b
p
m
1
0
b
p
m
H
=
1
5
0
'
E
=
6
e
6
p
s
i
m
=
1
0
0
c
p
3
Q
Q
P
HHP Surface 


Keys For Selecting Q
 Fluid Loss -- Efficiency
( < 20 to 30% , Increase Q
or > 70 to 80%, Consider Q
Reduction)
 Surface Treating Pressure
(Pressure limits & HHP costs)
 Proppant Transport
(Particularly in hot wells)
 Bottomhole Net Pressure
Fracturing – Physics
H, E, C, KIC m, Q, TP



































Sd
Sh
Net
App
Ic
Net
Net
Closure
P
P
P
P
f
H
H
K
E
L
Q
H
E
P
E
P
H
E
P
H
w
H
w
T
H
C
T
Q
L

m



4
/
1
2
4
4
4
'
2
'
2
)
(
3
The End
Typical CW Values
Crosslink Cellulose Derivative
Crosslink Guar Derivative
Polymer Emulsion
Crosslink Guar Derivative + Hydrocarbon
0.001 0.01 0.1
0.0001
0.001
0.01
Permeability, k (md)
Wall
Building
Loss
Coefficient
C
(ft
/

min)
III

More Related Content

Similar to Fracture Desing Variables, Building a Basis of Desing

Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)Amro Elfeki
 
Reconsidering some basic aspects of soil mechanics - Laurie Wesley, Universit...
Reconsidering some basic aspects of soil mechanics - Laurie Wesley, Universit...Reconsidering some basic aspects of soil mechanics - Laurie Wesley, Universit...
Reconsidering some basic aspects of soil mechanics - Laurie Wesley, Universit...scgcolombia
 
LVDT cell stress measurements for insitu rock stress measurement
LVDT cell stress measurements for insitu rock stress measurementLVDT cell stress measurements for insitu rock stress measurement
LVDT cell stress measurements for insitu rock stress measurementRomlaNoorHakim
 
Optimal debt maturity management
Optimal debt maturity managementOptimal debt maturity management
Optimal debt maturity managementADEMU_Project
 
structural-dynamics.pptx
structural-dynamics.pptxstructural-dynamics.pptx
structural-dynamics.pptxChromeSync
 
Epidemic processes on switching networks
Epidemic processes on switching networksEpidemic processes on switching networks
Epidemic processes on switching networksNaoki Masuda
 
Presentation IDETC
Presentation IDETCPresentation IDETC
Presentation IDETCXiao Wang
 
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...Luigi Vanfretti
 
Modeling of risers using hybrid fea
Modeling of risers using hybrid feaModeling of risers using hybrid fea
Modeling of risers using hybrid feaHugh Liu
 
Lecture pressure 2012
Lecture pressure 2012Lecture pressure 2012
Lecture pressure 2012Lorenzo Mazza
 
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Amro Elfeki
 
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptxContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptxSajjadAnwar25
 
Estimating the economic quantities of different concrete slab types
Estimating the economic quantities of different concrete slab typesEstimating the economic quantities of different concrete slab types
Estimating the economic quantities of different concrete slab typesAhmed Ebid
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Comparison of time domain techniques for the evaluation of the response and t...
Comparison of time domain techniques for the evaluation of the response and t...Comparison of time domain techniques for the evaluation of the response and t...
Comparison of time domain techniques for the evaluation of the response and t...Franco Bontempi
 
Modeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear WallsModeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear WallsSyed Karar Hussain
 
2013session4 3
2013session4 32013session4 3
2013session4 3acvq
 

Similar to Fracture Desing Variables, Building a Basis of Desing (20)

Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Reconsidering some basic aspects of soil mechanics - Laurie Wesley, Universit...
Reconsidering some basic aspects of soil mechanics - Laurie Wesley, Universit...Reconsidering some basic aspects of soil mechanics - Laurie Wesley, Universit...
Reconsidering some basic aspects of soil mechanics - Laurie Wesley, Universit...
 
LVDT cell stress measurements for insitu rock stress measurement
LVDT cell stress measurements for insitu rock stress measurementLVDT cell stress measurements for insitu rock stress measurement
LVDT cell stress measurements for insitu rock stress measurement
 
Optimal debt maturity management
Optimal debt maturity managementOptimal debt maturity management
Optimal debt maturity management
 
structural-dynamics.pptx
structural-dynamics.pptxstructural-dynamics.pptx
structural-dynamics.pptx
 
Epidemic processes on switching networks
Epidemic processes on switching networksEpidemic processes on switching networks
Epidemic processes on switching networks
 
Presentation IDETC
Presentation IDETCPresentation IDETC
Presentation IDETC
 
Modelling Stress Path and Fracture Pressure Hysteresis for CO2 Storage in Dep...
Modelling Stress Path and Fracture Pressure Hysteresis for CO2 Storage in Dep...Modelling Stress Path and Fracture Pressure Hysteresis for CO2 Storage in Dep...
Modelling Stress Path and Fracture Pressure Hysteresis for CO2 Storage in Dep...
 
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
 
frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
 
Modeling of risers using hybrid fea
Modeling of risers using hybrid feaModeling of risers using hybrid fea
Modeling of risers using hybrid fea
 
Lecture pressure 2012
Lecture pressure 2012Lecture pressure 2012
Lecture pressure 2012
 
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
 
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptxContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
 
Estimating the economic quantities of different concrete slab types
Estimating the economic quantities of different concrete slab typesEstimating the economic quantities of different concrete slab types
Estimating the economic quantities of different concrete slab types
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Bending-Deflection.pdf
Bending-Deflection.pdfBending-Deflection.pdf
Bending-Deflection.pdf
 
Comparison of time domain techniques for the evaluation of the response and t...
Comparison of time domain techniques for the evaluation of the response and t...Comparison of time domain techniques for the evaluation of the response and t...
Comparison of time domain techniques for the evaluation of the response and t...
 
Modeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear WallsModeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear Walls
 
2013session4 3
2013session4 32013session4 3
2013session4 3
 

More from ssuser886c55

Petrel_Fundamentals_An_Overview_Geology.pdf
Petrel_Fundamentals_An_Overview_Geology.pdfPetrel_Fundamentals_An_Overview_Geology.pdf
Petrel_Fundamentals_An_Overview_Geology.pdfssuser886c55
 
Geomechanical Modeling Abu Dhabi Comments
Geomechanical Modeling Abu Dhabi CommentsGeomechanical Modeling Abu Dhabi Comments
Geomechanical Modeling Abu Dhabi Commentsssuser886c55
 
2012 Visage Presentation Reservoir Geomechanics
2012 Visage Presentation Reservoir Geomechanics2012 Visage Presentation Reservoir Geomechanics
2012 Visage Presentation Reservoir Geomechanicsssuser886c55
 
0950_Rodriguez_200520_Work_done-GEOGalicia_ELAB-converted.pptx
0950_Rodriguez_200520_Work_done-GEOGalicia_ELAB-converted.pptx0950_Rodriguez_200520_Work_done-GEOGalicia_ELAB-converted.pptx
0950_Rodriguez_200520_Work_done-GEOGalicia_ELAB-converted.pptxssuser886c55
 
Hurtado 2000 Espiral Holística tesis de grado
Hurtado 2000 Espiral Holística tesis de gradoHurtado 2000 Espiral Holística tesis de grado
Hurtado 2000 Espiral Holística tesis de gradossuser886c55
 
ANALISIS DE DECLINACION.ppt
ANALISIS DE DECLINACION.pptANALISIS DE DECLINACION.ppt
ANALISIS DE DECLINACION.pptssuser886c55
 

More from ssuser886c55 (6)

Petrel_Fundamentals_An_Overview_Geology.pdf
Petrel_Fundamentals_An_Overview_Geology.pdfPetrel_Fundamentals_An_Overview_Geology.pdf
Petrel_Fundamentals_An_Overview_Geology.pdf
 
Geomechanical Modeling Abu Dhabi Comments
Geomechanical Modeling Abu Dhabi CommentsGeomechanical Modeling Abu Dhabi Comments
Geomechanical Modeling Abu Dhabi Comments
 
2012 Visage Presentation Reservoir Geomechanics
2012 Visage Presentation Reservoir Geomechanics2012 Visage Presentation Reservoir Geomechanics
2012 Visage Presentation Reservoir Geomechanics
 
0950_Rodriguez_200520_Work_done-GEOGalicia_ELAB-converted.pptx
0950_Rodriguez_200520_Work_done-GEOGalicia_ELAB-converted.pptx0950_Rodriguez_200520_Work_done-GEOGalicia_ELAB-converted.pptx
0950_Rodriguez_200520_Work_done-GEOGalicia_ELAB-converted.pptx
 
Hurtado 2000 Espiral Holística tesis de grado
Hurtado 2000 Espiral Holística tesis de gradoHurtado 2000 Espiral Holística tesis de grado
Hurtado 2000 Espiral Holística tesis de grado
 
ANALISIS DE DECLINACION.ppt
ANALISIS DE DECLINACION.pptANALISIS DE DECLINACION.ppt
ANALISIS DE DECLINACION.ppt
 

Recently uploaded

Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 

Recently uploaded (20)

Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 

Fracture Desing Variables, Building a Basis of Desing

  • 1. 1 Fracture Design Variables H , E , C , KIc-App m , Q, V or Building A “Basis of Design”
  • 2. Fracturing – Physics H, E, C, KIC m, Q, TP                                    Sd Sh Net App Ic Net Net Closure P P P P f H H K E L Q H E P E P H E P H w H w T H C T Q L  m    4 / 1 2 4 4 4 ' 2 ' 2 ) ( 3
  • 4. Major Factors Closure Stress Differences  Formation Thickness Effects  Fracture “Pressure”  Modulus Contrasts  Bedding Plane Slip (Probably Only At Shallow Depths)  Rock Ductility  Stress/Fluid Pressure Gradients  Strength (Toughness) Differences
  • 5. In Situ Stress Differences
  • 6.
  • 7.
  • 8. Major Factors Closure Stress Differences  Formation Thickness Effects  Fracture “Pressure”  Modulus Contrasts  Bedding Plane Slip (Probably Only At Shallow Depths)  Rock Ductility  Stress/Fluid Pressure Gradients  Strength (Toughness) Differences
  • 9. Effect of Formation Thickness Pay Zone 2 0 3 0 5 0 1 0 0 2 0 0 3 0 0 2 0 0 3 0 0 5 0 0 1 , 0 0 0 2 , 0 0 0 3 , 0 0 0 F r a c t u r e H e i g h t , H ( f t ) P n e t , N e t P r e s s u r e ( p s i ) Q = 3 0 b p m m = 1 5 0 c p C = 0 . 0 0 1 f t /  m i n X f = 7 0 0 f t E = 2 E = 6 x 1 0 p s i 6 E = 4 x 1 0 p s i 6 E = 1 x 1 0 p s i 6 F Net Pressure for Near Perfect Height Confinement
  • 10. Effect of Formation Thickness Boundary Layers
  • 11.
  • 12. Major Factors Closure Stress Differences  Formation Thickness Effects  Fracture “Pressure”  Modulus Contrasts  Bedding Plane Slip (Probably Only At Shallow Depths)  Rock Ductility  Stress/Fluid Pressure Gradients  Strength (Toughness) Differences
  • 13. Modulus Contrasts Very Little Effect on Height E2 E1 E2 xf H 5 1 0 2 0 3 0 4 0 1 2 3 E / E ( 2 X f / H ) 21 m a x
  • 14. Major Factors Closure Stress Differences  Formation Thickness Effects  Fracture “Pressure”  Modulus Contrasts  Bedding Plane Slip (Elastic Debonding) (Probably Only At Shallow Depths)  Rock Ductility  Stress/Fluid Pressure Gradients  Strength (Toughness) Differences
  • 15. Bedding Plane Slip Only At Shallow Depths 5 0 0 1 0 0 01 5 0 02 0 0 02 5 0 0 5 0 0 1 , 0 0 0 1 , 5 0 0 2 , 0 0 0 N e t O v e r b u r d e n S t r e s s ( p s i ) ( O v e r b u r d e n - P o r e P r e s s u r e ) T e n s i l e S t r e n g t h f o r B o u n d i n g F o r m a t i o n ( p s i ) F r a c t u r e S t o p p e d A t I n t e r f a c e F r a c t u r e C r o s s e d I n t e r f a c e
  • 16. Interface Slip/Elastic Debonding Mineback experiments, BUT essentially “0” Net Overburden
  • 17. Major Factors Closure Stress Differences  Formation Thickness Effects  Fracture “Pressure”  Modulus Contrasts  Bedding Plane Slip (Elastic Debonding) (Probably Only At Shallow Depths)  Rock Ductility  Stress/Fluid Pressure Gradients  Strength (Toughness) Differences
  • 18. Stress/Pressure Gradients Only Important After Massive Height Growth Depth Closure Stress Fluid Pressure Gradient A Fracture WOULD Rather Grow Up Than Down.
  • 19. Fracture Height Estimates  Lithology Logs (Bed Thickness)  In Situ Stresses (Pore Pressure, Pore Pressure Variations, Stress Tests, Acid Breakdown Data)  Special Stress Logs (Must Be Calibrated)  Modulus Contrasts (Sonic Log Data) Experience & Sound Engineering Judgement
  • 22. Core Testing  Must Use Confining Pressure  Horizontal Core Plug Desirable (2 to 1 Length to Diameter)  Must be “Moist”  Temperature Typically Not Critical
  • 23. Effect of Modulus on Design 2 4 6 1 0 2 0 3 0 4 0 M o d u l u s ( 1 0 p s i ) S l u r r y V o l u m e ( M - G a l ) 6 H = H = 1 0 0 f t C = 0 . 0 0 1 f t /  m i n S p u r t = 0 m = 1 5 0 c p Q = 3 0 b p m D e s i g n X f = 7 0 0 f t L
  • 24. Effect of Modulus on Fracture 2 4 6 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 M o d u l u s ( 1 0 p s i ) P n e t , N e t P r e s s u r e ( p s i ) 6 M a x W i d t h ( i n )
  • 25. Typical Values - Sandstone 2 4 6 8 2 4 6 8 N e t O v e r b u r d e n ( 1 , 0 0 0 p s i ) Y o u n g ' s M o d u l u s , E ( 1 0 p s i ) 6 L o w P o r o s i t y ( < 1 0 % ) , V e r y F i n e G r a i n e d H i g h P o r o s i t y ( > 2 5 % ) , C o a r s e G r a i n e d
  • 26. Typical Values - Carbonate 2 4 6 8 2 4 6 8 N e t O v e r b u r d e n ( 1 , 0 0 0 p s i ) L o w P o r o s i t y , D o l o m i t e Y o u n g ' s M o d u l u s , E ( 1 0 p s i ) 6 H i g h P o r o s i t y
  • 27. Typical Values - Shale  What is Porosity ?  How Much Clays ?  How Much Calcite ?  What is Net Overburden ?
  • 28. Special Values  Chalks Porosity 35 to 50% E of 1.5 to 0.5x106 psi  Diatomite Porosity 40 to 50% E of 1.0 to 0.3x106 psi  Unconsolidated Sands, Porosity 20%+ E of 0.2 to 1.0x106 psi
  • 29. E From Sonic Log Data ? 5 0 1 0 0 1 5 0 2 0 0 5 . 0 E + 5 1 . 0 E + 6 2 . 0 E + 6 5 . 0 E + 6 1 . 0 E + 7 2 . 0 E + 7 D y n a m i c Y o u n g ' s M o d u l u s ( p s i )   = 0 . 1 0   = 0 . 3 0   = 0 . 2 0 G r a i n D e n s i t y = 2 . 6 5 P o i s s o n ' s R a t i o n A s s u m e d = 0 . 2 S o n i c T r a v e l T i m e ( m - s e c / f t )
  • 30. Special Space Sonic Log Not Required 5 0 1 0 0 1 5 0 2 0 0 5 . 0 E + 5 1 . 0 E + 6 2 . 0 E + 6 5 . 0 E + 6 1 . 0 E + 7 2 . 0 E + 7 D y n a m i c Y o u n g ' s M o d u l u s ( p s i )  = 0 . 1 5  = 0 . 2 5  = 0 . 2 0  = 0 . 2 0 G r a i n D e n s i t y = 2 . 6 5 - - - - - - - P o i s s o n ' s R a t i o n h a s l i t t l e e f f e c t o n r e l a t i o n b e t w e e n s o n i c m o d u l u s a n d s o n i c v e l o c i t y . S o n i c T r a v e l T i m e ( m - s e c / f t )
  • 31. Static Vs. Dynamic Modulus Dynamic ALWAYS High 2 4 6 8 10 4 6 2 8 10 12 14 Lab Data - Dynamic Modulus psi x 106 Lab Data - Static Modulus psi x 10 6
  • 32. Sonic Log for Modulus ? 0.1 0.2 0.3 0.5 1 2 3 5 10 0.1 0.2 0.3 0.5 1 2 3 5 10 Dynamic Modulus (e6 psi) Static Modulus (e6 psi) after Morales SPE 26561 Porosity > 25%
  • 33. Modulus From ?  Core Data (Most Desirable, This is the One Value We Can Get From Core)  Sonic Log Data (Modulus is ALWAYS Too High)  Guess (Check Against Net Pressure Data)
  • 34. 34 Fracture Design Variables Fluid Loss H , E , C , KIc m , Q
  • 35. Fluid Loss Mechanisms 3 Fluid Loss Coefficients  Linear Flow ASSUMPTION  Viscosity Control, CI (or CV) (Effect of Viscous “Bank”)  Reservoir Control, CII  Filter Cake Control, CIII (or CW) ) ( 2 A t dA C QLoss   
  • 36. C/t --> Low Loss Near Well 1 0 2 0 3 0 4 0 5 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 0 . 4 0 . 6 0 . 8 T I M E ( m i n ) Q - L o s s ( b p m / 1 0 0 s q . f t ) C = 0 . 0 0 3 f t /  m i n V - L o s s ( b b l / 1 0 0 s q . f t )
  • 37. CI , CII , & CIII
  • 39. CW + “Spurt” Loss  T i m e ( m i n ) V o l u m e L o s t / U n i t A r e a S p u r t L o s s S p u r t T i m e L a b T e s t D a t a F o r C w S l o p e - - > C w
  • 40. Typical CW Values 0 . 0 0 1 0 . 0 0 2 0 . 0 0 3 0 . 0 0 5 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 5 0 . 1 0 . 0 0 0 1 0 . 0 0 0 2 0 . 0 0 0 3 0 . 0 0 0 5 0 . 0 0 1 0 . 0 0 2 0 . 0 0 3 0 . 0 0 5 0 . 0 1 P e r m e a b i l i t y , k ( m d ) W a l l B u i l d i n g F l u i d L o s s C o e f f i c i e n t C o r C ( f t / m i n ) I I I W T y p i c a l L a b C V a l u e s - 1 5 0 ° F W C r o s s l i n k C e l l u l o s e X - L i n k G u a r G u m P o l y m e r E m u l s i o n X - L i n k G u a r G u m + 5 % D i e s e l
  • 41. Combined Fluid Loss , CT f r I p k C m    0015 . 0 m  Ct k p CII   0012 . 0 ) ( data lab from C C wall III  III II I T C C C C 1 1 1 1    BUT
  • 42. Spurt Loss  Strange Behavior  “0” for low permeability (small pore throat diameter) cases  Increases with k  Returns to “0” for high k formations Behavior somewhat “statistical in nature
  • 43. Spurt Loss Lab Data 0 . 1 0 . 2 0 . 5 1 2 5 1 0 2 0 5 0 0 . 0 0 2 0 . 0 0 5 0 . 0 1 0 . 0 2 0 . 0 5 0 . 1 0 . 2 0 . 5 P e r m e a b i l i t y ( m d ) S p u r t ( g a l / s q . f o o t ) 2 0 p p t ( l b / M - G a l ) 5 0 6 0 8 0 p p t ( l b / M - G a l ) g e l 4 0 H P G X - L i n k G e l - - - - - - - - - - - - - - - 1 2 5 d e g F
  • 44. Effect of Temperature on Cw 1 0 01 5 02 0 02 5 03 0 0 1 2 3 T e m p e r a t u r e ( d e g F ) T e m p e r a t u r e E f f e c t o n C w W a t e r B a s e F l u i d s T e s t a t 8 0 d e g F T e s t a t 1 2 5 d e g F
  • 45. Effect of Temperature on Cw 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 0 . 0 0 2 0 . 0 0 4 0 . 0 0 6 0 . 0 0 8 0 . 0 1 T e m p e r a t u r e ( d e g F ) C w ( f t / m i n ^ 1 / 2 ) H P G T i t i n a t e X - L i n k G e l 3 0 l b g e l d a t a 4 0 l b g e l d a t a 5 0 l b g e l d a t a S o l i d L i n e s = C w ( a t 8 0 d e g F ) X ( m ) - 1 / 2 W
  • 46. Fluid Loss Additives  ONLY Two Types - Solid - Liquid (3 to 5% hydrocarbon)  Solids - Used to reduce or eliminate spurt loss and allow a wall cake to build - Do NOT Reduce CW or CT - Many flavors !  Liquids - Used to reduce CW - Wall cake MUST from first
  • 47. Solid FLA --> Reduce Spurt 1 0 2 0 3 0 4 0 0 . 0 0 0 5 0 . 0 0 1 0 . 0 0 2 0 . 0 0 3 0 . 0 0 5 0 . 0 1 F L A C o n c e n t r a t i o n ( l b o r g a l / M - G a l ) ) C P o l y m e r - R e s i n S i l i c a F l o u r P o l y m e r - S i l i c a - C l a y D i e s e l ( 0 . 1 - 1 0 m d ) W
  • 48. 48 Fracture Design Variables Tip Effects H , E , C , KIc-App m , Q
  • 49. Laboratory Toughness (KIc) Values 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 Mesaverde SS Berea SS Indiana LS Mesaverde Mudstone Confining Pressure (psi) K (psi  in) Ic
  • 50. Basic Physics – Tip Effects PTip ) ( 24 ) ( ) ( ft H inch psi K psi P App Ic Tip    20 40 60 80 20 40 60 80 100 120 140 160 180 Net Pressure (psi) H (ft) K-Ic = 4000 K-Ic = 2000 K-Ic = 1000
  • 51.
  • 52. Warpinski (1985) field data Khristianovitch-Zheltov (1955) deeper: more p less lag width profiles KIc_app ~ plag sqrt (Llag) >> KIc_rock residual cakes makes fracturing robust and negates tip and multi-frac effects Fracture Propagation: fluid lag at tip -> KIc_apparent pc pi fluid lag press tip negative net_press
  • 53. Apparent Fracture Toughness  Very Low Modulus Formations  Radial Fracture, No Height Confinement  Very Low Fluid Viscosity (water)  “Normal” Modulus Formation  Treatments Using Frac Fluid  Some (not necessarily perfect) Height Confinement May Be Important Much Less Important
  • 54. Fracture Design Variables  H (Height or Geometry) = f (PNet/Sand-Shale)  E (Young’s Modulus, a “pure” rock property)  C (Fluid Loss)  KIc-App (PTip or Tip Effects)
  • 55. Basic Physics – Net Pressure, PNet 4 / 1 4 2 4 4 ' '               O Ic O Net H K E L Q H E P m Viscous Tip
  • 56. Basic Physics – Net Pressure, PNet ) ( ), ( ), ( ), ( ), ( ), ( ' 576 ' ' 015 . 0 ) ( 4 / 1 2 4 2 4 4 in psi K ft L bpm Q cp ft H psi E H K E L Q H E psi P IC O O Ic O Net m  m                 Viscous Tip
  • 57. PNet Behavior – Confined Height 0.2 0.5 1 2 5 10 20 50 100 20 50 100 200 500 1,000 Pump Time (min) "Time 0" When Gel On Perfs Net Pressure (psi) Data Confined H m Dominated Confined H Tip Dominated West Africa Frac Pack 1+ Darcy Permeability
  • 58. PNet Behavior - Radial 0.2 0.5 1 2 5 10 20 50 100 20 50 100 200 500 1,000 Pump Time (min) "Time 0" When Gel On Perfs Net Pressure (psi) Tip Dominated m Dominated Nolte-Smith Behavior Simulations 4 / 1 4 2 4 4 ' '               O Ic O Net H K E L Q H E P m
  • 60. 60 Fracture Design Variables Fluid Viscosity H , E , C , KIc m, Q
  • 61. Fluid Viscosity Why is it important ? What is it ? How do we measure it ? How much do we need ? How is it affected by time, temperature, proppant, … ?
  • 62. Viscosity  Affects fracture net pressure & width (but not very much, )  May be important for fluid loss control  Very important to proppant transport 4 / 1 ) ( m Q w 
  • 63. Viscosity Strongly Changed By Conditions Must know viscosity as a function of time & temperature ! D i s t a n c e A l o n g F r a c F l u i d T e m p e r a t u r e W e l l b o r e T e m p e r a t u r e F o r m a t i o n T e m p e r a t u r e D i s t a n c e A l o n g F r a c V i s c o s i t y T e m p e r a t u r e D e g r a d a t i o n T i m e / S h e a r D e g r a d a t i o n
  • 64. How Do We Measure It ? d F, velocity  , Shear Stress = F / A (psi) (pressure drop or drag) g , Shear Rate = vel / d (1/sec) (for fracture = vel / (w/2) A v (x) Ideal Test Rotating Cup & Bob w (RPM) Torque
  • 65. What Do We Measure ? S h e a r R a t e ( 1 / s e c ) S h e a r S t r e s s ( p s i ) N e w t o n i a n  = m g m  i s v i s c o s i t y S l o p e = m S h e a r R a t e ( 1 / s e c ) S h e a r S t r e s s ( p s i ) B i n g h a m P l a s t i c S l o p e = P l a s t i c V i s c o s i t y  = Y + m g P P l o g g l o g  P o w e r L a w S l o p e = n '  = K ' g n ' Most Common Rheological Model for Fracturing Fluids
  • 66. “Apparent” Viscosity  g Slope = m app ) (sec ), / sec ( ' ), ( / ' 48000 ) ( 1 2 ' ' 1     g m g m g g  m     ft lb K cp K on depends n f n app app
  • 67. Example  Power Law Fluid n’=0.6, ma=100 cp (at 170 sec-1)  Find: K’ and ma at 50 sec -1 cp ft lb K a n 163 100 50 170 ) / sec ( 0163 . 0 48000 / 170 100 ' ) 6 . 0 1 ( ) 50 ( 2 ' ) 6 . 0 1 (                m
  • 68. Slurry Viscosity 2 4 6 81 0 1 2 1 4 1 2 3 5 7 1 0 l b S a n d / L i q u i d G a l l o n V i s c o s i t y M u l t i p l i e r
  • 69. Fracturing - Fluid Viscosity  Net Pressure/ Geometry  Proppant Transport (Prop Settling  to m)  Fluid Loss Control Why we WANT Viscosity 2 5 1 0 2 0 5 01 0 0 5 0 1 0 0 2 0 0 5 0 0 1 , 0 0 0 P u m p T i m e ( m i n ) " T i m e 0 " W h e n G e l O n P e r f s N e t P r e s s u r e ( p s i ) 5 0 0 c p 1 0 0 c p 3 0 c p 1 c p H = 1 5 0 ' E = 6 e 6 p s i Q = 3 0 b p m 4 / 1 '          E x Q P f Net m
  • 70. Fracturing - Fluid Viscosity  COSTS  Net Pressure/Geometry  Proppant Pack Damage (10 to 70% KFW Loss) Why we DO NOT WANT Viscosity Photo Courtesy of StimLab Everything that increases viscosity costs money & does damage!
  • 71. How Much Viscosity Is Needed  If n’=0.6 and g=50 sec-1, the final ref- erence apparent viscosity is 81 cp  1 PPG --> 10 PPG gives an average concentration of 5 PPG, viscosity multiplier of 2 --> 162 cp Assume a fluid with 50 cp viscosity (at 170 sec-1) at the end of the job, just as prop laden fluid is reaching the frac tip, after being in the fracture for 4 hours.
  • 72. How Much Viscosity Is Needed  Fluid enters fracture with 500 cp and degrades to 50, average of about 225 cp or a multiple of 4.5 --> 729 cp  For many fluids (cross link gels, foams) settling is much slower than predicted by Stoke’s Law, assume a factor of 2 --> 1,458 cp
  • 73. How Much Viscosity Is Needed Use 1,450 cp in Stoke’s Law gives a predicted proppant settling of only 15 feet during the four hour period Near perfect transport using a fluid with a final lab viscosity of only 50 cp !
  • 74. Where Do We Get Data ?  Routine data acceptable for preliminary designs, scoping studies, etc.  SPECIFIC data required for final design, mini-frac analysis, etc. Lab Tests
  • 75. 75 Fracture Design Variables Pump Rate H , E , C , KIc m , Q
  • 76. Pump Rate Affects EVERYTHING  Fluid Loss (VL = 3 C HL tp)  Fracture Net Pressure and Width (but not very much , )  Very important to proppant transport  Dominant parameter for surface pressure and treatment costs 4 / 1 ) ( m Q w 
  • 77. Pump Rate and Fluid Efficiency 4 / 1 ' 3           E L Q L H Q Vol H C t Q or Vol Vol Vol L p FRAC LOST IN m Pump rate involved in ALL terms of fracture material balance. Thus Q is a dominant parameter affecting fluid efficiency !
  • 78. Pump Rate and Pressure PSurface = C - Head + Pipe Friction + PNET for turbulent flow, Friction  Q1.75 , HHP = PS * Q ,  Q2.75 Horsepower almost Pump Rate CUBED --------------------------------------- PNet  (Q m L/E’) 1/4 , (relatively insensitive)
  • 79. Example  Q2 = 1.5 * Q1 (50% Increase) Friction = 2 x , +100% HHP = 3 x , +200% PNet = 1.1 x , +10%  Q2 = 0.7 Q1 (30% Reduction) Friction = 0.54 x , - 460% HHP = 0.37 x , - 63% PNet = 0.91 x , - 9%
  • 80. Pump Rate & Proppant Transport V1 V2 H D D/H = V1 / V2 V1 = Fluid Velocity = Q/Hw  Q/H(m Q) 1/4  Q3/4/Hm1/4 V2 = Fall Rate (Stoke’s Law)  1/m D/H  (Q m ) 3/4 / H (INDEPENDENT of H , Q & mEqually Important ! )
  • 81. Fracturing - Pump Rate  Net Pressure/ Geometry  Proppant Transport  Fluid Loss Control Why we WANT Pump Rate 2 5 1 0 2 0 5 01 0 0 5 0 1 0 0 2 0 0 5 0 0 1 , 0 0 0 P u m p T i m e ( m i n ) " T i m e 0 " W h e n G e l O n P e r f s N e t P r e s s u r e ( p s i ) 6 0 b p m 3 0 b p m 1 0 b p m H = 1 5 0 ' E = 6 e 6 p s i m = 1 0 0 c p 4 / 1 '          E x Q P f Net m
  • 82. Fracturing - Pump Rate  COSTS  Net Pressure/ Geometry  Equipment Failure Possibility Why we DO NOT WANT Pump Rate 2 5 1 0 2 0 5 01 0 0 5 0 1 0 0 2 0 0 5 0 0 1 , 0 0 0 P u m p T i m e ( m i n ) " T i m e 0 " W h e n G e l O n P e r f s N e t P r e s s u r e ( p s i ) 6 0 b p m 3 0 b p m 1 0 b p m H = 1 5 0 ' E = 6 e 6 p s i m = 1 0 0 c p 3 Q Q P HHP Surface   
  • 83. Keys For Selecting Q  Fluid Loss -- Efficiency ( < 20 to 30% , Increase Q or > 70 to 80%, Consider Q Reduction)  Surface Treating Pressure (Pressure limits & HHP costs)  Proppant Transport (Particularly in hot wells)  Bottomhole Net Pressure
  • 84. Fracturing – Physics H, E, C, KIC m, Q, TP                                    Sd Sh Net App Ic Net Net Closure P P P P f H H K E L Q H E P E P H E P H w H w T H C T Q L  m    4 / 1 2 4 4 4 ' 2 ' 2 ) ( 3
  • 86. Typical CW Values Crosslink Cellulose Derivative Crosslink Guar Derivative Polymer Emulsion Crosslink Guar Derivative + Hydrocarbon 0.001 0.01 0.1 0.0001 0.001 0.01 Permeability, k (md) Wall Building Loss Coefficient C (ft /  min) III