SlideShare a Scribd company logo
1 of 53
Recent trends in forage production,
quality and preservation
Sachin, K S
Sr. M.Sc. (Agri.)
MA1TAG0224
 Introduction
 Classifications of forage crops
 Problems and prospectus of forage production in India
 Supply and demand scenario of forage and roughages
 Recent trends in forage production
 Quality and preservation of forage crops
 Research studies
 Conclusion
Sequence of presentation
Introduction
 Livestock sector accounts for 24.72 per cent of agricultural GDP
and about 4.36 per cent of total GDP
 India has huge livestock population of 470.8 million (17 % of
world’s livestock population)
 According to NCA recommended area under fodder production
should be 10 per cent of aerable land (16. 5 m ha).
 Present area is 4.4 per cent (8.3 m ha)
 The challenges before us is to bridge the gap between a demand
of about 900 m t and supply of 550 m t. (Anon., 2015).
What is forage ?
Classifications of forage crops
Based on life span :
1) Annuals - Kharif annuals. Eg : Cowpea, Maize
- Rabi annuals. Eg : Oat, Berseem
- Summer annuals. Eg : Maize
2) Biennial - Eg : Forage carrot.
3) Perennial - Eg : Para grass, Anjan grass, Lucerne
Based on growth habits:
1) Herbs a) Grasses- Eg : Guinea grass
b) Legumes- Eg : Cowpea
2) Shrubs – Eg : Subabul, Glyricidia
3) Multi purpose trees – Eg : Ficus religiosa
Ficus bengalensis
Problems of forage production in India
 Non availability of suitable land.
 Growing in rainfed condition
 Non availability of good seed and planting material
 Lack of high yielding varieties
 Lack of improved production technologies
 Low productivity of forage crops
 Shrinking of grazing land
Table 1. Supply and demand scenario of forage (million tonnes)
Year
Supply (m t) Demand (m t) Deficit (m t)
Green Dry Green Dry Green Dry
2000 384.5 428 988 549 604 (61.10) 121(21.93)
2005 389.9 443 1025 569 635 (61.96) 126(22.06)
2010 395.2 451 1061 581 666 (62.76) 138(23.46)
2015 400.6 466 1097 609 696(63.50) 143(23.56)
2020 411.3 488 1170 650 759 (64.87) 162(24.92)
Anon., 2015
Sl. No. Particulars Green fodder
(m t)
Dry fodder
(m t)
Total
(m t)
1 Demand 121.75 23.86 145.61
2 Supply 85.00 15.00 100.00
3 Deficit 30 % 37 % 31.32 %
Table 2. Scenario of forage availability in Karnataka
Anon., 2015
Table 3. Area under different forage crops in Karnataka
Season Major crops Varieties
Area (lakh ha)
Irrigated Rainfed
Kharif
crops
Sorghum Local - 0.63
Maize African tall - 0.73
Bajra Local - 0.31
Cow pea Local - 0.16
Napier NB-21,CO-3l 0.2 -
Rabi
Sorghum Local - 0.3
Lucerne T-9 - 0.03
Maize African tall
/local
- 0.2
Anon., 2015
Recent approaches of forage production
technology
Sowing or planting
Seed priming
Optimum dates of sowing
 Staggered sowing
 Paired row planting
 Nursery
Nutrient management
Optimum dose of N ,P2O5, K2O
Micro nutrient application
Water management
Drip irrigation
Use of poor quality water
Improved agrotechniques
Table 4. Seed rate, fertilizer requirements, spacing and
yield of major forage crops
Crop Seed rate
(kg ha-1)
RDF
( N: P2O5 : K2O)
Spacing
(cm)
Yield (t ha-1)
Sorghum 40 30:20:20 30 x 10 36
Maize 40 60:40:20 30 x 10 42
Napier
hybrid
40000
rooted slips
50:50:40 50 x 50 25-300
Guniea
grass
3 kg seeds,
66000
rooted slips
50:50:40 50 x 30 50-60
Cowpea 40 25:40:20 30 x 10 18-20
Lucerene 20 25:120:40 25 x 5 70-80
Anon., 2015
Table 5. Important forage crops and their improved varieties
Forage crop Variety Special features Green fodder yield
(t ha-1)
Bajra
GFB-1 Multicut 50
Avika bajra chari
Entire growing
tract
36
Sorghum
Co FS 29 Multicut 150
CSH 24 MF Multicut 90
PCH 5 Multicut 80
Oat
Harita
(RO 19)
Entire country 60
Bundel jai 99 1 Entire country 32
Cowpea
Bundle lobia-1 (NC
Entire country
32
UPC 625
Entire country
35
Anon., 2012
Intensified forage production systems
 Round the year forage production system
 Food-fodder production systems
 Forages in non- food crop production system
 Forage production during lean period
 Perennial crop based forage-food production system
Production systems Green fodder yield
(t ha-1 year-1)
 Food fodder production system
Sorghum + fodder cowpea in paired row 17.3
Wheat + lucerene/ berseem (3:1) 4.6-7.8
 Forages in non food crop production system
Sugarcane + berseem/ lucerene 40-60
 Forage production during lean periods
Pearl millet + cluster bean (3:2) 30-35
 Orchard based production system
Guinea grass in coconut plantation 135
Congo signal gram in coconut plantation 75
 Perennial crop based forage-food production system
Pennisetum trispecific hybrid + Leucae Leucocephala
(fodder sorghum + pigeonpea)
53.27
Table 6. Intensive forage production systems
Anon., 2012
Forage production in coconut garden
Production potential of forage crops in rice
fallows
Sorghum + cowpea (3:1) Sorghum + mung bean (3:1)
Continued…
 Use of unproductive lands forage cultivation
eg: Problematic soils, degraded lands
 Forage production on terrace risers or bunds
eg: hilly regions
 Tree legume forages
eg: Subabul , Glyricidia
 Use of unconventional forage resources
eg: Raintree leaves, bamboo leaves
 Increased productivity of pasture and range in India
 Hydroponic fodder production
 Establishment of protein parks
 The word “hydroponics” - Greek language – Working water
 It is the method of growing plants in water media, with
dissolved nutrients without soil.
 Hydroponics was practiced many centuries ago in Amazon,
Babylon, Egypt, China and India.
 Later, when plant physiologists started to grow plants with
specific nutrients, they gave the name “nutriculture.”
Hydroponic fodder production
Hydroponic green fodder - why?
1. Efficiency
2. Space
3. Fodder yield and quality
4. Consistency of feeds
What can be grown as a hydroponic fodder
Moth bean Foxtail millet
Maize
Little millet
Jowar Ragi
Forage quality
Factors affecting forage quality
• Plant species
• Plant part
• Climate
• Stage of maturity
• Fertilization
• Diurnal fluctuations
Animal factors influencing forage quality
• Palatablity
• Ruminant digestion
• Forage constituents
Many ways to assess forage quality
• Human eye
• Laboratory
Fig. 1. Quality parameters of forage
Why we need to conservation forages
 To preserve forage when it is available in excess
 To maintain optimum nutritional value of forage
 To shift available forage from the present to the future.
 To move forage from one location to another location.
 To assist pasture management.
Why forage preservation on modern lines is
essential?
 Traditional farming imposed a continuous low
intensity management
 Better animal performance
 Reproductive performance
 Milk production
 More economic returns
Methods of conservation
Hay and silage are the main methods of
conserving forage
Hay is preserved by drying and will
generally keep while it is kept dry
Silage involves natural fermentation,
which produces lactic and other acids,
which ‘pickle’ or preserve the forage
Recent trends in hay making
Long, loose hay
1. Declined sharply in recent years
2. High labor cost
3. Too bulky for mechanized feeding
Loaf like staked hay
 Hay is transported to barn or stack, mechanically
pressed in to loaf shaped haystacks
Chopped hay
Two kinds
1. Green chop: 50-60 per cent moisture
2. Dry chop: 30-40 per cent moisture
Bales
• Rectangular bales 60-140 lbs
• Large round bale 850-2,000 lbs
• Large square bales, large rectangular
bales
Cubes
• Stationary or mobile cubers
• Mobile cubers pick up windrows of
forage and produce dense high-quality
forage cubes
• Add water to stick cubes together
• Have to dry cubes on a slab before
transporting
• Lower transportation, storage cost than
long hay
Pellets
• Pellet forages finely ground, then
condensed
• Recommend minimum of ¼ inch chop
Steps involved in silage making
Harvest forage at proper stage of maturity
Chop to proper length
Control of moisture content in raw materials
Control of water soluble carbohydrates
Filling packing and sealing
Principle of silage making
Phase-1: Aerobic phase
Phase-2: Fermentation phase
Phase-3: Stable phase
Phase-4: Feed out phase or aerobic spoilage
Sugars + oxygen Carbon di oxide + water + heat
Fig. 2. Chemical changes during fermentation
Days after ensiling
Singh et al.,2013
Silos
Stack silo Bunker silo
Plastic bag silo Tower silo
Table 8. Evaluation of silage quality
Parameter Properties
 Colour • Pale yellow
 Smell • Sweet sour pleasant
 Taste • Sour
 pH • 3.7 - 4.7
 Lactic acid • >50 % of total acids
 Propionic acid • <0.2-0.35 % of DM
 Acetic acid • >3-4 % of DM
Singh., et al 2011
Enhancement the quality of silage
• Ensile the forage when it has the proper moisture content (35 % DM).
• Filling a silo should be a continuous process : - The last load of the day
should be packed particularly well to reduced oxygen penetration
• Add dry matter to reduce moisture content
• Add water to increase moisture content
• Adding of molasses
• Acidifying the silage
• Inhibition of bacteria and mold growth
• Increasing the nutrient content of silage
Recent trends in silage
 Making silage package
which is transportable
 Small bag silages
 Drum silage
 Compressed bale silage
 Wrapped bales of silage
Research studies
Soaking
(hrs)
Volume of water
Half Equal Double Mean
Control 66.33 66.33 66.33 66.33
1 75.17 77.83 78.17 77.06
2 80.50 82.50 83.83 82.28
4 72.00 67.00 65.00 68.00
8 68.33 57.17 36.33 53.94
16 64.00 31.50 21.50 39.00
CD
(P=0.05)
1.24 1.76 3.05
Table 9. Effect of seed hydro priming on seedling
establishment fodder cowpea
Mor et al ., 2014Hissar
Varieties
Green
forage yield
(q ha-1)
Dry matter
yield (q ha-1)
Leaf-stem
ratio
Crude
protein yield
(q ha-1)
BNH-10 1431.41 269.02 0.76 18.41
NHN-9 1124.80 209.05 0.7 14.13
TNCN-07-3 1045.24 198.51 0.55 13.33
DHN-12 941.06 176.31 0.54 12.15
TNCN-07-1 907.04 171.54 0.61 12.06
TNCN-07-2 942.28 178.66 0.67 10.49
CO-3 972.04 183.52 0.64 12.51
PNB-233 1337.71 260.88 0.72 16.81
Mean 1083.25 204.87 0.64 13.99
S.Em+ 45.82 10.61 0.05 1.45
CD at 5% 135.16 31.29 0.15 4.28
Table 10. Performance of Bajra napier hybrid varieties in
Southern Dry Zone of Karnataka
V. C. Farm, Mandya Shashikanth et al., 2013
Effect of genotypes on yield and quality of multicut
sorghum
Hissar Satpal et al ., 2017
Treatments Green fodder yield (kg ha-1) Dry fodder
yield (kg ha-1)
HCN
(ppm)
T1 42627 13648 40.80
T2 41885 12597 40.65
T3 39847 12760 40.75
T4 39291 11824 40.70
T5 46333 14122 42.16
T6 40773 13168 40.18
T7 42256 13511 40.95
T8 36696 12047 39.24
T9 40959 12288 39.48
T10 40403 12074 39.50
T11 35769 11639 36.38
CONTROL 24649 7747 28.65
C.D (P=0.05) 6429.5 2233 2.332
Table 14. Effect of micronutrients application on fodder yield and HCN content in
fodder sorghum
Koushik et al. (2010)Udaipur
T1: RDF + 25 kg ZnSO4 ha
-1
soil
T2 : RDF + 25 kg FeSO4 ha
-1
soil
T3 : RDF + 0.2 % ZnSO4 foliar spray
T4: RDF + 0.5 % FeSO4 foliar spray
T5: RDF + 15 kg ZnSO4 ha
-1
soil + 0.2 % ZnSO4 foliar spray
T6: RDF + 15 kg FeSO4 ha
-1
soil + 0.5 % foliar spray of FeSO4
T7: RDF + 15 kg ZnSO4 + 15 kg FeSO4 ha
-1
soil
T8: RDF + 0.2 % ZnSO4 foliar spray + 0.5 % FeSO4 foliar spray
T9: RDF + 15 kg ZnSO4 ha
-1
soil + 0.5 % FeSO4 foliar spray
T10:RDF + 15kg FeSO4 ha
-1
soil+0.2%ZnSO4 foliar spray
T11: RDF alone( 40:20:20)
T12: Control
Treatments
Plant
height
(cm)
Green
fodder
yield q ha-1
Dry matter
yield q ha-1
T1- control 215.6 296.6 85.0
T2- RDF ( 80 kg N :30 kg P2o5) 248.6 471.6 133.3
T3- RDF + 0.5 % ZnSO4 foliarspray @ 35 DAS 253.3 480.0 138.3
T4- RDF + 0.5 % ZnSO4 foliarspray @ 45 DAS 255.6 486.6 140.0
T5- RDF + 0.5 % ZnSo4 FOLIAR SPRAY @ 35 DAS & 45 DAS 257.0 488.3 14.6
T6 - RDF + 0.5 % FeSo4 foliar spray @ 35 DAS 249.0 476.6 13.0
T7- RDF+0.5%Feso4 foliar spray @ 45 DAS 250 478.3 136.6
T8- RDF+0.5%FeSO4 foliar spray @ 35 das & 45 das 255.0 486.6 140.0
S. Em+ 3.4 7.1 3.3
CD at 5% 10.5 21.9 10.2
Table 15. Effect of foliar application of micronutrients on forage yield of forage
sorghum
HISSAR Rana et al ., 2014
Table 16 . Green forage yield, seed yield and straw yield of lucerne
influenced by different micronutrient levels
Rahuri
Treatment Green forage yield
(q ha-1 )
Seed yield
(q ha-1 )
Straw yield
(q ha-1 )
Molybdenum levels (kg ha-1 )
M-0 251 2.55 25.11
M-0.5 264 2.92 27.47
M-1.0 267 3.18 31.58
S.Em± 2.05 0.07 1.09
C .D(P=0.05) 5.86 0.19 3.11
Boron levels ( kg ha-1 )
B-0 258 2.51 24.90
B-2 260 2.91 28.70
B-4 264 3.22 31.48
S. Em± 2.05 0.07 1.10
C .D (P=0.05) 5.87 0.20 3.14
Pathan et al.(2012)
Table 17. Intensive Forage production through silvipasture system under rainfed ecosystem
Treatment
Green
Forage yield
(q ha-1)
Dry matter
yield (q ha-1)
Crude Protein
yield (q ha -1)
Net monetary
return
(Rs .ha -1)
B:C ratio
Subabul + Cenchrus ciliaris 193.00 42.5 5.78 7471 1.85
Subabul + Stylosanthes 305.93 64.99 13.50 18299 2.56
Subabul + Desmenthus virgatus 320.60 70.12 14.20 1954 2.85
Subabul + Cenchrus ciliaris
+Stylosanthes (3:1)
220.6 35.85 7.39 9288 1.99
Subabul + Cenchrus ciliaris +
Desmenthus (3:1)
245.62 50.81 9.04 12408 2.35
Subabul+Sorghum+ Horsegram
(3:1)
334.70 73.56 9.62 16043 2.47
Subabul +Pearl millet +
Horsegram (3:1)
410.93 87.58 10.25 22009 2.99
Subabul (Sole) 47.20 9.74 3.11 1487 1.34
S.EM± 18.1 5.62 0.66 - -
CD (P=0.05) 52.49 16.29 1.92 - -
Shekar et al., 2013V. C. Farm, Mandya
Table 18. Effect of dry matter intake and digestibility of nutrients and nutritive value
hydroponic fodder maize
Parameters Hydroponic fodder Conventional fodder
Mean BW (intial) 435.48 449.12
Dry matter intake (kg day-1)
Concentrate mixture 4.62 4.62
Green fodder 0.59 1.19
Jowar straw 3.64 3.89
Total roughage* 4.23 5.08
Total dm* 8.85 9.70
Roughage :concentration ratio* 48:52 52:48
Dm intake 100 kg-1 bw 2.05 2.17
Digestibility and nutritive value (%)
Dry matter 65.39 61.15
Organic matter 68.47 64.19
Crude protein* 72.46 68.86
Ether extract 87.69 82.05
Crude fiber* 59.21 53.25
Nitrogen free extract 70.47 67.37
Dcp* 9.65 8.61
TDN 68.52 64.00
Naik et al., 2014Goa Significantly different (p<0.05)
Table 19. Effect on milk yield, feed conversion ratio and economics of
feeding hydroponic fodder
Parameters Hydroponic fodder Conventional fodder
Milk yield kg day-1 4.64 + 1.21 4.08 + 0.11
 Feed conversion ratio (kg feed kg-1 milk yield)
Dry matter (on fresh basis) 2.12 + 0.40 2.37 + 0.08
Crude protien 0.29 + 0.06 0.30 + 0.00
Digestable CP 0.21 + 0.05 0.20 + 0.01
Total digestable nutrient 1.45 + 0.27 1.52 + 0.05
 Economics of feeding
Cost of feed 144.88 + 4.55 137.51 + 5.02
Feed cost kg milk-1
production
34.98 + 7.14 33.369 + 0.53
Cost of milk (@ Rs. 36kg-1) 166.92 + 43.73 146.88 + 3.85
Net profit animal -1 day-1 22.04 + 40.98 9.37 + 2.08
Naik et al., 2014Goa Significantly different(p<0.05)
Treatments
GREEN FODDER
YIELD
(GFY kg-1of seed)
DRY MATTER
YIELD
(DFY kg-1of seed)
CRUDE FIBRE
CONTENT %
CRUDE FIBRE
YIELD
(CFYkg-1of seed )
C1-Fodder maize 5.48 720.77 7.23 52.11
C2-Grain maize 5.37 704.96 7.17 50.55
C3-Fodder bajra 2.73 304.61 4.60 13.99
C4-Grain bajra 2.69 300.05 4.25 12.74
C5-Barley 3.19 382.05 6.17 23.57
C6-Wheat 3.14 372.68 6.12 22.79
C7-Oat 3.12 368.88 6.08 22.9
C8-Foddercowpea 4.20 502.28 6.92 22.41
C9 –Grain cowpea 5.29 692.53 7.16 34.73
C10-Horse gram s 5.24 689.80 7.18 49.55
C11-Soyabean 0.00 0.00 0.0 49.54
C12 Lucerne 0.00 0.00 0.00 0.00
S. Em+ 0.20 0.01 0.20 0.01
C D at 5% 0.42 0.02 0.42 0.02
Table 20. Performance of different crops under hydroponics
fodder production system
coimbatore Rajesh jolad et al.,2018
Wheat Moisture Crude
protein**
Ether
extract*
Ash NFE** Fresh
yield** (kg)
Seed 8.20±0.26 10.00a ± 0.06 1.80a ± 0.10 2.40 ± 0.09 83.40g ± 0.26
Day 1 48.60± 1.12 10.05a ± 0.29 1.90ab ± 0.10 2.42 ± 0.06 82.83fg 0.26 3.56a ± 0.09
Day 2 52.76±0.96 10.75a ± 0.14 2.00bc ± 0.06 2.44 ± 0.06 81.90 f ± 0.14 3.88a ±0.06
Day 3 67.00±2.14 12.20b ± 0.72 2.13cd ± 0.09 2.50 ± 0.10 80.17e ± 0.29 4.26b ± 0.09
Day 4 70.56±1.28 12.25b ± 0.36 2.24d ± 0.16 2.53 ± 0.09 79.81e ± 0.26 5.09c ± 0.09
Day 5 82.38±4.44 13.12c ± 0.12 2.41e ± 0.06 2.61 ± 0.12 78.36d ± 0.12 5.67d ± 0.11
Day 6 83.29±0.52 14.07d ± 0.26 2.59 f ± 0.12 2.67 ± 0.12 76.47c ± 0.19 6.40e ± 0.14
Day 7 86.36 ± 1.26 15.03e ± 0.38 2.72g ± 0.12 2.88 ± 0.09 74.67b ± 0.11 7.10t ± 0.12
Day 8 87.66 ± 1.26 15.75e ± 0.44 2.80g ±0.09 3.00 ± 0.09 73.25a ± 0.26 7.12f ± 0.26
Conventio
nal Wheat
Fodder
72.26 ± 3.14 11.02 ± 0.32 2.02 ± 0.06 8.28 ± 0.12 52.97 ± 0.44
Table 21. Chemical composition (% DM basis) of hydroponics wheat fodder
Kanthale et al., 2017Nagpur
Means bearing abc differs significantly ** (P<0.01), * (P<0.05)
Treatments Dry matter(%) pH TOTAL
ASH(%)
ACID
INSOLULE
ASH %
CRUDE
PROTEIN(%)
CRUDE
FIBRE(%)
 Season
Rabi 3963. 4.27 8.46 1.79 4.46 40.44
Kharif 39.72 4.24 8.20 2.06 4.20 40.30
CD NS NS NS NS NS NS
 Fodder crops
Hybrid napier 35.09 4.35 6.65 1.79 5.66 41.11
Guniea grass 44.26 4.17 10.0 2.06 2.99 39.64
CD at 5% 3.2 NS 1.44 NS 1.04 NS
 Silage additives
Urea 1% 36.79 4.29 7.21 1.66 4.72 40.04
Urea 2% 43.04 4.17 7.99 1.78 4.4 39.38
Urea 1%
+jaggery1%
38.61 4.38 8.31 2.21 3.79 41.91
Tapioc flour 1% 41.0 4.38 8.58 1.73 4.46 40.98
JAGGERY 2% 38.9 4.05 9.56 2.26 4.14 39.54
S. Em+ 3.8 2.83 5.23 6.99 7.28 3.68
CD at 5% NS NS 1.44 1.437 NS NS
Table 22. Effect of season, grass and additives on quality parameters of silage
kerala usha et al.,2018
Parameter Silage1
(maize fodder only)
Silage2
(maize fodder +
4%molasses)
Silage3
(maize fodder +
4%molasses+ 2%
urea)
pH 4.66b 4.08a 4.69b
DM (%) 21.51b 17.40a 18.28a
CP (%) 9.78a 9.80b 10.59c
CF (%) 34.04b 33.50b 28.23a
EE (%) 2.55a 2.64b 4.05c
ASH (%) 15.40 15.71 15.50
NFE (%) 38.23a 38.35b 41.63c
ME (kcal/kg) 1741.78a 1753.07b 1991.71c
Table 23. Effect of silage additives on different maize fodder
silage (g 100g-1 dm)
Khatun et al.,2015Chittagong
Treatments Dry matter
content(%)
pH Total ash
(%)
Acid insoluble
ash (%)
Crude
Protein (%)
Crude fibre %
BN hybrid + Urea 1% 30.75 4.38 5.92 1.843 5.63 41.2
BN hybrid + Urea 2% 36.95 4.04 6.12 1.52 5.22 41.44
BN hybrid + Urea 1%+ Jaggery
1%
33.73 4.29 7.27 1.96 5.07 40.45
B. BN hybrid+Tapioca flour 1% 38.67 4.47 7.41 1.84 6.15 39.33
BN hybrid+Jaggery 2% 35.33 4.54 6.5 1.81 6.24 43.68
Guinea grass+Urea 1% 42.83 4.21 8.51 1.47 3.81 38.88
Guinea grass + Urea 2% 49.13 4.30 9.82 2.04 3.85 37.31
Guinea grass + Urea1% + Jaggery
1%
43.5 4.48 9.35 2.46 2.52 43.37
C. Guinea grass + Tapioca flour
1%
43.33 4.29 9.75 1.62 2.78 42.63
Guinea grass + Tapioca flour 1% 42.5 3.57 12.62 2.72 2.03 35.99
C.D.(P=0.05) NS 0.28 1.07 0.305 0.733 NS
S. Em± 3.8 2.83 5.23 6.99 7.28 3.68
Table 24. Interaction effect of grasses and additives on quality parameters of silage
Usha et al., 2018Kerala
Tree leaves
Ingredients
DM
(%)
Ash (%) EE (%) CP (%) CF (%) NEF (%) ME (kcal
kg-1 DM)
Rain tree
leaves
30 9 2 11 31 34 1601
Mahogany
leaves
31 7 11 13 25 27 2104
Water
hyacinth
17.25 10.23 2.4 10.70 18.50 58.17 2418
Bamboo
leaves
25 14.5 1.0 9.2 24 51.3 2038
Jack fruit
leaves
27 13.5 1.2 12.5 25.30 47.5 2061
Dhaincha
leaves
24 7.5 4.5 25.5 18.5 44 2594.44
Table25.Chemical composition of selected tree leaves (g 100g-1)
Khatun et al., 2015Chittagong
CONCLUSION

More Related Content

What's hot

Feed Additives (Animal Nutrtion)
Feed Additives (Animal Nutrtion)Feed Additives (Animal Nutrtion)
Feed Additives (Animal Nutrtion)Osama Zahid
 
Integrated crop livestock system for sustainable crop production
Integrated crop livestock system for sustainable crop productionIntegrated crop livestock system for sustainable crop production
Integrated crop livestock system for sustainable crop productionShantu Duttarganvi
 
Farm Animal Reproduction
Farm Animal ReproductionFarm Animal Reproduction
Farm Animal ReproductionSUNY Ulster
 
Feeds, Nutrients and Animal Requirements
Feeds, Nutrients and Animal RequirementsFeeds, Nutrients and Animal Requirements
Feeds, Nutrients and Animal RequirementsNDSUExt
 
Climate Smart Livestock Production, by Dr Adil Rasool Paray
Climate Smart Livestock Production, by Dr Adil Rasool ParayClimate Smart Livestock Production, by Dr Adil Rasool Paray
Climate Smart Livestock Production, by Dr Adil Rasool ParayAdil Rasool Paray
 
Round-the-year-fodder-production.pptx
Round-the-year-fodder-production.pptxRound-the-year-fodder-production.pptx
Round-the-year-fodder-production.pptxVamshiKrishna173980
 
Major economic traits of cattle and buffalo
Major economic traits of cattle and buffaloMajor economic traits of cattle and buffalo
Major economic traits of cattle and buffalopratee5
 
Unit 20 General principles of computation of ration.pptx
Unit 20 General principles of computation of ration.pptxUnit 20 General principles of computation of ration.pptx
Unit 20 General principles of computation of ration.pptxRavikanth Reddy Poonooru
 
Integrated Crop-Livestock Farming Systems
Integrated Crop-Livestock Farming Systems Integrated Crop-Livestock Farming Systems
Integrated Crop-Livestock Farming Systems copppldsecretariat
 

What's hot (20)

Feed Additives (Animal Nutrtion)
Feed Additives (Animal Nutrtion)Feed Additives (Animal Nutrtion)
Feed Additives (Animal Nutrtion)
 
Facilities for Small-Scale Goat Farms
Facilities for Small-Scale Goat FarmsFacilities for Small-Scale Goat Farms
Facilities for Small-Scale Goat Farms
 
Integrated crop livestock system for sustainable crop production
Integrated crop livestock system for sustainable crop productionIntegrated crop livestock system for sustainable crop production
Integrated crop livestock system for sustainable crop production
 
Farm Animal Reproduction
Farm Animal ReproductionFarm Animal Reproduction
Farm Animal Reproduction
 
Fodder management for dairy farms
Fodder  management for dairy farmsFodder  management for dairy farms
Fodder management for dairy farms
 
Feeds, Nutrients and Animal Requirements
Feeds, Nutrients and Animal RequirementsFeeds, Nutrients and Animal Requirements
Feeds, Nutrients and Animal Requirements
 
Ration formulation
Ration formulationRation formulation
Ration formulation
 
ENHANCING FODDER PRODUCTION
ENHANCING FODDER PRODUCTIONENHANCING FODDER PRODUCTION
ENHANCING FODDER PRODUCTION
 
Climate Smart Livestock Production, by Dr Adil Rasool Paray
Climate Smart Livestock Production, by Dr Adil Rasool ParayClimate Smart Livestock Production, by Dr Adil Rasool Paray
Climate Smart Livestock Production, by Dr Adil Rasool Paray
 
Unit 16 Classification of feed stuff.pptx
Unit 16 Classification of feed stuff.pptxUnit 16 Classification of feed stuff.pptx
Unit 16 Classification of feed stuff.pptx
 
Buffalo breeds
Buffalo breedsBuffalo breeds
Buffalo breeds
 
Round-the-year-fodder-production.pptx
Round-the-year-fodder-production.pptxRound-the-year-fodder-production.pptx
Round-the-year-fodder-production.pptx
 
Major economic traits of cattle and buffalo
Major economic traits of cattle and buffaloMajor economic traits of cattle and buffalo
Major economic traits of cattle and buffalo
 
Unit 20 General principles of computation of ration.pptx
Unit 20 General principles of computation of ration.pptxUnit 20 General principles of computation of ration.pptx
Unit 20 General principles of computation of ration.pptx
 
Pasture plants, including alternative forages
Pasture plants, including alternative foragesPasture plants, including alternative forages
Pasture plants, including alternative forages
 
Integrated Crop-Livestock Farming Systems
Integrated Crop-Livestock Farming Systems Integrated Crop-Livestock Farming Systems
Integrated Crop-Livestock Farming Systems
 
Feed additives
Feed additivesFeed additives
Feed additives
 
POULTRY BREEDS
POULTRY BREEDSPOULTRY BREEDS
POULTRY BREEDS
 
fodder crops
fodder cropsfodder crops
fodder crops
 
Recent Developments in Feeds and Feeding Practices
Recent Developments in Feeds and Feeding PracticesRecent Developments in Feeds and Feeding Practices
Recent Developments in Feeds and Feeding Practices
 

Similar to recent trends in forage production

Mapping livestock feed resources and targeting technologies: Making the most ...
Mapping livestock feed resources and targeting technologies: Making the most ...Mapping livestock feed resources and targeting technologies: Making the most ...
Mapping livestock feed resources and targeting technologies: Making the most ...ILRI
 
Enhancing Global Food Resources: CGIAR Strategy and its future Portfolio of P...
Enhancing Global Food Resources: CGIAR Strategy and its future Portfolio of P...Enhancing Global Food Resources: CGIAR Strategy and its future Portfolio of P...
Enhancing Global Food Resources: CGIAR Strategy and its future Portfolio of P...CGIAR
 
Improving whole Farm Forage Utilization for Sheep and Goat
Improving whole Farm Forage Utilization for Sheep and GoatImproving whole Farm Forage Utilization for Sheep and Goat
Improving whole Farm Forage Utilization for Sheep and GoatGrey Bruce Farmers Week
 
Experiences irrigated forages
Experiences irrigated forages Experiences irrigated forages
Experiences irrigated forages ILRI
 
Agricultural Practices, Its Impact On Biodiversity & Agricultural Drought
Agricultural Practices,  Its Impact On Biodiversity & Agricultural DroughtAgricultural Practices,  Its Impact On Biodiversity & Agricultural Drought
Agricultural Practices, Its Impact On Biodiversity & Agricultural DroughtBangladesh Initiative Forum (BDIF)
 
Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...
Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...
Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...ILRI
 
Bangladesh - Successes, Lessons Learnt & Challenges Ahead
Bangladesh - Successes, Lessons Learnt & Challenges AheadBangladesh - Successes, Lessons Learnt & Challenges Ahead
Bangladesh - Successes, Lessons Learnt & Challenges AheadICARDA
 
Pasture Management and Fodder Production
Pasture Management and Fodder ProductionPasture Management and Fodder Production
Pasture Management and Fodder ProductionTanika O'Connor-Dennie
 
Soybean production technology saad
Soybean production technology saadSoybean production technology saad
Soybean production technology saadSaad Rafiq
 
The Lazy Farmer's Guide to Improving Crop Yields
The Lazy Farmer's Guide to Improving Crop YieldsThe Lazy Farmer's Guide to Improving Crop Yields
The Lazy Farmer's Guide to Improving Crop YieldsDr Aniruddha Malpani
 

Similar to recent trends in forage production (20)

Sustainable Agriculture - Christoph Wand - 21
Sustainable Agriculture - Christoph Wand - 21Sustainable Agriculture - Christoph Wand - 21
Sustainable Agriculture - Christoph Wand - 21
 
1027 Current State of Rice Production and Research in DPR Korea
1027 Current State of Rice Production and Research in DPR Korea1027 Current State of Rice Production and Research in DPR Korea
1027 Current State of Rice Production and Research in DPR Korea
 
Mapping livestock feed resources and targeting technologies: Making the most ...
Mapping livestock feed resources and targeting technologies: Making the most ...Mapping livestock feed resources and targeting technologies: Making the most ...
Mapping livestock feed resources and targeting technologies: Making the most ...
 
Enhancing Global Food Resources: CGIAR Strategy and its future Portfolio of P...
Enhancing Global Food Resources: CGIAR Strategy and its future Portfolio of P...Enhancing Global Food Resources: CGIAR Strategy and its future Portfolio of P...
Enhancing Global Food Resources: CGIAR Strategy and its future Portfolio of P...
 
Improving whole Farm Forage Utilization for Sheep and Goat
Improving whole Farm Forage Utilization for Sheep and GoatImproving whole Farm Forage Utilization for Sheep and Goat
Improving whole Farm Forage Utilization for Sheep and Goat
 
Master Seminar ppt
Master Seminar pptMaster Seminar ppt
Master Seminar ppt
 
Experiences irrigated forages
Experiences irrigated forages Experiences irrigated forages
Experiences irrigated forages
 
Agricultural Practices, Its Impact On Biodiversity & Agricultural Drought
Agricultural Practices,  Its Impact On Biodiversity & Agricultural DroughtAgricultural Practices,  Its Impact On Biodiversity & Agricultural Drought
Agricultural Practices, Its Impact On Biodiversity & Agricultural Drought
 
Wheat package of practices in general
Wheat package of practices in general  Wheat package of practices in general
Wheat package of practices in general
 
Wheat package of practices in general
Wheat package of practices in general  Wheat package of practices in general
Wheat package of practices in general
 
Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...
Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...
Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...
 
Bangladesh - Successes, Lessons Learnt & Challenges Ahead
Bangladesh - Successes, Lessons Learnt & Challenges AheadBangladesh - Successes, Lessons Learnt & Challenges Ahead
Bangladesh - Successes, Lessons Learnt & Challenges Ahead
 
Role of international collaboration towards improving crop productivity in th...
Role of international collaboration towards improving crop productivity in th...Role of international collaboration towards improving crop productivity in th...
Role of international collaboration towards improving crop productivity in th...
 
NEW TRENDS IN FEEDING LIVESTOCK
NEW TRENDS IN FEEDING LIVESTOCKNEW TRENDS IN FEEDING LIVESTOCK
NEW TRENDS IN FEEDING LIVESTOCK
 
Pasture Management and Fodder Production
Pasture Management and Fodder ProductionPasture Management and Fodder Production
Pasture Management and Fodder Production
 
Soybean production technology saad
Soybean production technology saadSoybean production technology saad
Soybean production technology saad
 
The Lazy Farmer's Guide to Improving Crop Yields
The Lazy Farmer's Guide to Improving Crop YieldsThe Lazy Farmer's Guide to Improving Crop Yields
The Lazy Farmer's Guide to Improving Crop Yields
 
Conservation Agriculture concepts and principles
Conservation Agriculture concepts and principlesConservation Agriculture concepts and principles
Conservation Agriculture concepts and principles
 
Ppt impact on green revolution
Ppt impact on green revolutionPpt impact on green revolution
Ppt impact on green revolution
 
Ppt impt green rev.
Ppt impt green rev.Ppt impt green rev.
Ppt impt green rev.
 

Recently uploaded

Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSilpa
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptxSilpa
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxSilpa
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptxArvind Kumar
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxANSARKHAN96
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Silpa
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxSilpa
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body Areesha Ahmad
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Silpa
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsbassianu17
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 

Recently uploaded (20)

Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Early Development of Mammals (Mouse and Human).pdf
Early Development of Mammals (Mouse and Human).pdfEarly Development of Mammals (Mouse and Human).pdf
Early Development of Mammals (Mouse and Human).pdf
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 

recent trends in forage production

  • 1.
  • 2. Recent trends in forage production, quality and preservation Sachin, K S Sr. M.Sc. (Agri.) MA1TAG0224
  • 3.  Introduction  Classifications of forage crops  Problems and prospectus of forage production in India  Supply and demand scenario of forage and roughages  Recent trends in forage production  Quality and preservation of forage crops  Research studies  Conclusion Sequence of presentation
  • 4. Introduction  Livestock sector accounts for 24.72 per cent of agricultural GDP and about 4.36 per cent of total GDP  India has huge livestock population of 470.8 million (17 % of world’s livestock population)  According to NCA recommended area under fodder production should be 10 per cent of aerable land (16. 5 m ha).  Present area is 4.4 per cent (8.3 m ha)  The challenges before us is to bridge the gap between a demand of about 900 m t and supply of 550 m t. (Anon., 2015).
  • 6. Classifications of forage crops Based on life span : 1) Annuals - Kharif annuals. Eg : Cowpea, Maize - Rabi annuals. Eg : Oat, Berseem - Summer annuals. Eg : Maize 2) Biennial - Eg : Forage carrot. 3) Perennial - Eg : Para grass, Anjan grass, Lucerne Based on growth habits: 1) Herbs a) Grasses- Eg : Guinea grass b) Legumes- Eg : Cowpea 2) Shrubs – Eg : Subabul, Glyricidia 3) Multi purpose trees – Eg : Ficus religiosa Ficus bengalensis
  • 7. Problems of forage production in India  Non availability of suitable land.  Growing in rainfed condition  Non availability of good seed and planting material  Lack of high yielding varieties  Lack of improved production technologies  Low productivity of forage crops  Shrinking of grazing land
  • 8. Table 1. Supply and demand scenario of forage (million tonnes) Year Supply (m t) Demand (m t) Deficit (m t) Green Dry Green Dry Green Dry 2000 384.5 428 988 549 604 (61.10) 121(21.93) 2005 389.9 443 1025 569 635 (61.96) 126(22.06) 2010 395.2 451 1061 581 666 (62.76) 138(23.46) 2015 400.6 466 1097 609 696(63.50) 143(23.56) 2020 411.3 488 1170 650 759 (64.87) 162(24.92) Anon., 2015
  • 9. Sl. No. Particulars Green fodder (m t) Dry fodder (m t) Total (m t) 1 Demand 121.75 23.86 145.61 2 Supply 85.00 15.00 100.00 3 Deficit 30 % 37 % 31.32 % Table 2. Scenario of forage availability in Karnataka Anon., 2015
  • 10. Table 3. Area under different forage crops in Karnataka Season Major crops Varieties Area (lakh ha) Irrigated Rainfed Kharif crops Sorghum Local - 0.63 Maize African tall - 0.73 Bajra Local - 0.31 Cow pea Local - 0.16 Napier NB-21,CO-3l 0.2 - Rabi Sorghum Local - 0.3 Lucerne T-9 - 0.03 Maize African tall /local - 0.2 Anon., 2015
  • 11. Recent approaches of forage production technology
  • 12. Sowing or planting Seed priming Optimum dates of sowing  Staggered sowing  Paired row planting  Nursery Nutrient management Optimum dose of N ,P2O5, K2O Micro nutrient application Water management Drip irrigation Use of poor quality water Improved agrotechniques
  • 13. Table 4. Seed rate, fertilizer requirements, spacing and yield of major forage crops Crop Seed rate (kg ha-1) RDF ( N: P2O5 : K2O) Spacing (cm) Yield (t ha-1) Sorghum 40 30:20:20 30 x 10 36 Maize 40 60:40:20 30 x 10 42 Napier hybrid 40000 rooted slips 50:50:40 50 x 50 25-300 Guniea grass 3 kg seeds, 66000 rooted slips 50:50:40 50 x 30 50-60 Cowpea 40 25:40:20 30 x 10 18-20 Lucerene 20 25:120:40 25 x 5 70-80 Anon., 2015
  • 14. Table 5. Important forage crops and their improved varieties Forage crop Variety Special features Green fodder yield (t ha-1) Bajra GFB-1 Multicut 50 Avika bajra chari Entire growing tract 36 Sorghum Co FS 29 Multicut 150 CSH 24 MF Multicut 90 PCH 5 Multicut 80 Oat Harita (RO 19) Entire country 60 Bundel jai 99 1 Entire country 32 Cowpea Bundle lobia-1 (NC Entire country 32 UPC 625 Entire country 35 Anon., 2012
  • 15. Intensified forage production systems  Round the year forage production system  Food-fodder production systems  Forages in non- food crop production system  Forage production during lean period  Perennial crop based forage-food production system
  • 16. Production systems Green fodder yield (t ha-1 year-1)  Food fodder production system Sorghum + fodder cowpea in paired row 17.3 Wheat + lucerene/ berseem (3:1) 4.6-7.8  Forages in non food crop production system Sugarcane + berseem/ lucerene 40-60  Forage production during lean periods Pearl millet + cluster bean (3:2) 30-35  Orchard based production system Guinea grass in coconut plantation 135 Congo signal gram in coconut plantation 75  Perennial crop based forage-food production system Pennisetum trispecific hybrid + Leucae Leucocephala (fodder sorghum + pigeonpea) 53.27 Table 6. Intensive forage production systems Anon., 2012
  • 17. Forage production in coconut garden
  • 18. Production potential of forage crops in rice fallows Sorghum + cowpea (3:1) Sorghum + mung bean (3:1)
  • 19. Continued…  Use of unproductive lands forage cultivation eg: Problematic soils, degraded lands  Forage production on terrace risers or bunds eg: hilly regions  Tree legume forages eg: Subabul , Glyricidia  Use of unconventional forage resources eg: Raintree leaves, bamboo leaves  Increased productivity of pasture and range in India  Hydroponic fodder production  Establishment of protein parks
  • 20.  The word “hydroponics” - Greek language – Working water  It is the method of growing plants in water media, with dissolved nutrients without soil.  Hydroponics was practiced many centuries ago in Amazon, Babylon, Egypt, China and India.  Later, when plant physiologists started to grow plants with specific nutrients, they gave the name “nutriculture.” Hydroponic fodder production
  • 21. Hydroponic green fodder - why? 1. Efficiency 2. Space 3. Fodder yield and quality 4. Consistency of feeds
  • 22. What can be grown as a hydroponic fodder Moth bean Foxtail millet Maize Little millet Jowar Ragi
  • 23. Forage quality Factors affecting forage quality • Plant species • Plant part • Climate • Stage of maturity • Fertilization • Diurnal fluctuations Animal factors influencing forage quality • Palatablity • Ruminant digestion • Forage constituents Many ways to assess forage quality • Human eye • Laboratory
  • 24. Fig. 1. Quality parameters of forage
  • 25. Why we need to conservation forages  To preserve forage when it is available in excess  To maintain optimum nutritional value of forage  To shift available forage from the present to the future.  To move forage from one location to another location.  To assist pasture management.
  • 26. Why forage preservation on modern lines is essential?  Traditional farming imposed a continuous low intensity management  Better animal performance  Reproductive performance  Milk production  More economic returns
  • 27. Methods of conservation Hay and silage are the main methods of conserving forage Hay is preserved by drying and will generally keep while it is kept dry Silage involves natural fermentation, which produces lactic and other acids, which ‘pickle’ or preserve the forage
  • 28. Recent trends in hay making Long, loose hay 1. Declined sharply in recent years 2. High labor cost 3. Too bulky for mechanized feeding Loaf like staked hay  Hay is transported to barn or stack, mechanically pressed in to loaf shaped haystacks Chopped hay Two kinds 1. Green chop: 50-60 per cent moisture 2. Dry chop: 30-40 per cent moisture
  • 29. Bales • Rectangular bales 60-140 lbs • Large round bale 850-2,000 lbs • Large square bales, large rectangular bales Cubes • Stationary or mobile cubers • Mobile cubers pick up windrows of forage and produce dense high-quality forage cubes • Add water to stick cubes together • Have to dry cubes on a slab before transporting • Lower transportation, storage cost than long hay Pellets • Pellet forages finely ground, then condensed • Recommend minimum of ¼ inch chop
  • 30. Steps involved in silage making Harvest forage at proper stage of maturity Chop to proper length Control of moisture content in raw materials Control of water soluble carbohydrates Filling packing and sealing
  • 31. Principle of silage making Phase-1: Aerobic phase Phase-2: Fermentation phase Phase-3: Stable phase Phase-4: Feed out phase or aerobic spoilage Sugars + oxygen Carbon di oxide + water + heat
  • 32. Fig. 2. Chemical changes during fermentation Days after ensiling Singh et al.,2013
  • 33. Silos Stack silo Bunker silo Plastic bag silo Tower silo
  • 34. Table 8. Evaluation of silage quality Parameter Properties  Colour • Pale yellow  Smell • Sweet sour pleasant  Taste • Sour  pH • 3.7 - 4.7  Lactic acid • >50 % of total acids  Propionic acid • <0.2-0.35 % of DM  Acetic acid • >3-4 % of DM Singh., et al 2011
  • 35. Enhancement the quality of silage • Ensile the forage when it has the proper moisture content (35 % DM). • Filling a silo should be a continuous process : - The last load of the day should be packed particularly well to reduced oxygen penetration • Add dry matter to reduce moisture content • Add water to increase moisture content • Adding of molasses • Acidifying the silage • Inhibition of bacteria and mold growth • Increasing the nutrient content of silage
  • 36. Recent trends in silage  Making silage package which is transportable  Small bag silages  Drum silage  Compressed bale silage  Wrapped bales of silage
  • 38. Soaking (hrs) Volume of water Half Equal Double Mean Control 66.33 66.33 66.33 66.33 1 75.17 77.83 78.17 77.06 2 80.50 82.50 83.83 82.28 4 72.00 67.00 65.00 68.00 8 68.33 57.17 36.33 53.94 16 64.00 31.50 21.50 39.00 CD (P=0.05) 1.24 1.76 3.05 Table 9. Effect of seed hydro priming on seedling establishment fodder cowpea Mor et al ., 2014Hissar
  • 39. Varieties Green forage yield (q ha-1) Dry matter yield (q ha-1) Leaf-stem ratio Crude protein yield (q ha-1) BNH-10 1431.41 269.02 0.76 18.41 NHN-9 1124.80 209.05 0.7 14.13 TNCN-07-3 1045.24 198.51 0.55 13.33 DHN-12 941.06 176.31 0.54 12.15 TNCN-07-1 907.04 171.54 0.61 12.06 TNCN-07-2 942.28 178.66 0.67 10.49 CO-3 972.04 183.52 0.64 12.51 PNB-233 1337.71 260.88 0.72 16.81 Mean 1083.25 204.87 0.64 13.99 S.Em+ 45.82 10.61 0.05 1.45 CD at 5% 135.16 31.29 0.15 4.28 Table 10. Performance of Bajra napier hybrid varieties in Southern Dry Zone of Karnataka V. C. Farm, Mandya Shashikanth et al., 2013
  • 40. Effect of genotypes on yield and quality of multicut sorghum Hissar Satpal et al ., 2017
  • 41. Treatments Green fodder yield (kg ha-1) Dry fodder yield (kg ha-1) HCN (ppm) T1 42627 13648 40.80 T2 41885 12597 40.65 T3 39847 12760 40.75 T4 39291 11824 40.70 T5 46333 14122 42.16 T6 40773 13168 40.18 T7 42256 13511 40.95 T8 36696 12047 39.24 T9 40959 12288 39.48 T10 40403 12074 39.50 T11 35769 11639 36.38 CONTROL 24649 7747 28.65 C.D (P=0.05) 6429.5 2233 2.332 Table 14. Effect of micronutrients application on fodder yield and HCN content in fodder sorghum Koushik et al. (2010)Udaipur T1: RDF + 25 kg ZnSO4 ha -1 soil T2 : RDF + 25 kg FeSO4 ha -1 soil T3 : RDF + 0.2 % ZnSO4 foliar spray T4: RDF + 0.5 % FeSO4 foliar spray T5: RDF + 15 kg ZnSO4 ha -1 soil + 0.2 % ZnSO4 foliar spray T6: RDF + 15 kg FeSO4 ha -1 soil + 0.5 % foliar spray of FeSO4 T7: RDF + 15 kg ZnSO4 + 15 kg FeSO4 ha -1 soil T8: RDF + 0.2 % ZnSO4 foliar spray + 0.5 % FeSO4 foliar spray T9: RDF + 15 kg ZnSO4 ha -1 soil + 0.5 % FeSO4 foliar spray T10:RDF + 15kg FeSO4 ha -1 soil+0.2%ZnSO4 foliar spray T11: RDF alone( 40:20:20) T12: Control
  • 42. Treatments Plant height (cm) Green fodder yield q ha-1 Dry matter yield q ha-1 T1- control 215.6 296.6 85.0 T2- RDF ( 80 kg N :30 kg P2o5) 248.6 471.6 133.3 T3- RDF + 0.5 % ZnSO4 foliarspray @ 35 DAS 253.3 480.0 138.3 T4- RDF + 0.5 % ZnSO4 foliarspray @ 45 DAS 255.6 486.6 140.0 T5- RDF + 0.5 % ZnSo4 FOLIAR SPRAY @ 35 DAS & 45 DAS 257.0 488.3 14.6 T6 - RDF + 0.5 % FeSo4 foliar spray @ 35 DAS 249.0 476.6 13.0 T7- RDF+0.5%Feso4 foliar spray @ 45 DAS 250 478.3 136.6 T8- RDF+0.5%FeSO4 foliar spray @ 35 das & 45 das 255.0 486.6 140.0 S. Em+ 3.4 7.1 3.3 CD at 5% 10.5 21.9 10.2 Table 15. Effect of foliar application of micronutrients on forage yield of forage sorghum HISSAR Rana et al ., 2014
  • 43. Table 16 . Green forage yield, seed yield and straw yield of lucerne influenced by different micronutrient levels Rahuri Treatment Green forage yield (q ha-1 ) Seed yield (q ha-1 ) Straw yield (q ha-1 ) Molybdenum levels (kg ha-1 ) M-0 251 2.55 25.11 M-0.5 264 2.92 27.47 M-1.0 267 3.18 31.58 S.Em± 2.05 0.07 1.09 C .D(P=0.05) 5.86 0.19 3.11 Boron levels ( kg ha-1 ) B-0 258 2.51 24.90 B-2 260 2.91 28.70 B-4 264 3.22 31.48 S. Em± 2.05 0.07 1.10 C .D (P=0.05) 5.87 0.20 3.14 Pathan et al.(2012)
  • 44. Table 17. Intensive Forage production through silvipasture system under rainfed ecosystem Treatment Green Forage yield (q ha-1) Dry matter yield (q ha-1) Crude Protein yield (q ha -1) Net monetary return (Rs .ha -1) B:C ratio Subabul + Cenchrus ciliaris 193.00 42.5 5.78 7471 1.85 Subabul + Stylosanthes 305.93 64.99 13.50 18299 2.56 Subabul + Desmenthus virgatus 320.60 70.12 14.20 1954 2.85 Subabul + Cenchrus ciliaris +Stylosanthes (3:1) 220.6 35.85 7.39 9288 1.99 Subabul + Cenchrus ciliaris + Desmenthus (3:1) 245.62 50.81 9.04 12408 2.35 Subabul+Sorghum+ Horsegram (3:1) 334.70 73.56 9.62 16043 2.47 Subabul +Pearl millet + Horsegram (3:1) 410.93 87.58 10.25 22009 2.99 Subabul (Sole) 47.20 9.74 3.11 1487 1.34 S.EM± 18.1 5.62 0.66 - - CD (P=0.05) 52.49 16.29 1.92 - - Shekar et al., 2013V. C. Farm, Mandya
  • 45. Table 18. Effect of dry matter intake and digestibility of nutrients and nutritive value hydroponic fodder maize Parameters Hydroponic fodder Conventional fodder Mean BW (intial) 435.48 449.12 Dry matter intake (kg day-1) Concentrate mixture 4.62 4.62 Green fodder 0.59 1.19 Jowar straw 3.64 3.89 Total roughage* 4.23 5.08 Total dm* 8.85 9.70 Roughage :concentration ratio* 48:52 52:48 Dm intake 100 kg-1 bw 2.05 2.17 Digestibility and nutritive value (%) Dry matter 65.39 61.15 Organic matter 68.47 64.19 Crude protein* 72.46 68.86 Ether extract 87.69 82.05 Crude fiber* 59.21 53.25 Nitrogen free extract 70.47 67.37 Dcp* 9.65 8.61 TDN 68.52 64.00 Naik et al., 2014Goa Significantly different (p<0.05)
  • 46. Table 19. Effect on milk yield, feed conversion ratio and economics of feeding hydroponic fodder Parameters Hydroponic fodder Conventional fodder Milk yield kg day-1 4.64 + 1.21 4.08 + 0.11  Feed conversion ratio (kg feed kg-1 milk yield) Dry matter (on fresh basis) 2.12 + 0.40 2.37 + 0.08 Crude protien 0.29 + 0.06 0.30 + 0.00 Digestable CP 0.21 + 0.05 0.20 + 0.01 Total digestable nutrient 1.45 + 0.27 1.52 + 0.05  Economics of feeding Cost of feed 144.88 + 4.55 137.51 + 5.02 Feed cost kg milk-1 production 34.98 + 7.14 33.369 + 0.53 Cost of milk (@ Rs. 36kg-1) 166.92 + 43.73 146.88 + 3.85 Net profit animal -1 day-1 22.04 + 40.98 9.37 + 2.08 Naik et al., 2014Goa Significantly different(p<0.05)
  • 47. Treatments GREEN FODDER YIELD (GFY kg-1of seed) DRY MATTER YIELD (DFY kg-1of seed) CRUDE FIBRE CONTENT % CRUDE FIBRE YIELD (CFYkg-1of seed ) C1-Fodder maize 5.48 720.77 7.23 52.11 C2-Grain maize 5.37 704.96 7.17 50.55 C3-Fodder bajra 2.73 304.61 4.60 13.99 C4-Grain bajra 2.69 300.05 4.25 12.74 C5-Barley 3.19 382.05 6.17 23.57 C6-Wheat 3.14 372.68 6.12 22.79 C7-Oat 3.12 368.88 6.08 22.9 C8-Foddercowpea 4.20 502.28 6.92 22.41 C9 –Grain cowpea 5.29 692.53 7.16 34.73 C10-Horse gram s 5.24 689.80 7.18 49.55 C11-Soyabean 0.00 0.00 0.0 49.54 C12 Lucerne 0.00 0.00 0.00 0.00 S. Em+ 0.20 0.01 0.20 0.01 C D at 5% 0.42 0.02 0.42 0.02 Table 20. Performance of different crops under hydroponics fodder production system coimbatore Rajesh jolad et al.,2018
  • 48. Wheat Moisture Crude protein** Ether extract* Ash NFE** Fresh yield** (kg) Seed 8.20±0.26 10.00a ± 0.06 1.80a ± 0.10 2.40 ± 0.09 83.40g ± 0.26 Day 1 48.60± 1.12 10.05a ± 0.29 1.90ab ± 0.10 2.42 ± 0.06 82.83fg 0.26 3.56a ± 0.09 Day 2 52.76±0.96 10.75a ± 0.14 2.00bc ± 0.06 2.44 ± 0.06 81.90 f ± 0.14 3.88a ±0.06 Day 3 67.00±2.14 12.20b ± 0.72 2.13cd ± 0.09 2.50 ± 0.10 80.17e ± 0.29 4.26b ± 0.09 Day 4 70.56±1.28 12.25b ± 0.36 2.24d ± 0.16 2.53 ± 0.09 79.81e ± 0.26 5.09c ± 0.09 Day 5 82.38±4.44 13.12c ± 0.12 2.41e ± 0.06 2.61 ± 0.12 78.36d ± 0.12 5.67d ± 0.11 Day 6 83.29±0.52 14.07d ± 0.26 2.59 f ± 0.12 2.67 ± 0.12 76.47c ± 0.19 6.40e ± 0.14 Day 7 86.36 ± 1.26 15.03e ± 0.38 2.72g ± 0.12 2.88 ± 0.09 74.67b ± 0.11 7.10t ± 0.12 Day 8 87.66 ± 1.26 15.75e ± 0.44 2.80g ±0.09 3.00 ± 0.09 73.25a ± 0.26 7.12f ± 0.26 Conventio nal Wheat Fodder 72.26 ± 3.14 11.02 ± 0.32 2.02 ± 0.06 8.28 ± 0.12 52.97 ± 0.44 Table 21. Chemical composition (% DM basis) of hydroponics wheat fodder Kanthale et al., 2017Nagpur Means bearing abc differs significantly ** (P<0.01), * (P<0.05)
  • 49. Treatments Dry matter(%) pH TOTAL ASH(%) ACID INSOLULE ASH % CRUDE PROTEIN(%) CRUDE FIBRE(%)  Season Rabi 3963. 4.27 8.46 1.79 4.46 40.44 Kharif 39.72 4.24 8.20 2.06 4.20 40.30 CD NS NS NS NS NS NS  Fodder crops Hybrid napier 35.09 4.35 6.65 1.79 5.66 41.11 Guniea grass 44.26 4.17 10.0 2.06 2.99 39.64 CD at 5% 3.2 NS 1.44 NS 1.04 NS  Silage additives Urea 1% 36.79 4.29 7.21 1.66 4.72 40.04 Urea 2% 43.04 4.17 7.99 1.78 4.4 39.38 Urea 1% +jaggery1% 38.61 4.38 8.31 2.21 3.79 41.91 Tapioc flour 1% 41.0 4.38 8.58 1.73 4.46 40.98 JAGGERY 2% 38.9 4.05 9.56 2.26 4.14 39.54 S. Em+ 3.8 2.83 5.23 6.99 7.28 3.68 CD at 5% NS NS 1.44 1.437 NS NS Table 22. Effect of season, grass and additives on quality parameters of silage kerala usha et al.,2018
  • 50. Parameter Silage1 (maize fodder only) Silage2 (maize fodder + 4%molasses) Silage3 (maize fodder + 4%molasses+ 2% urea) pH 4.66b 4.08a 4.69b DM (%) 21.51b 17.40a 18.28a CP (%) 9.78a 9.80b 10.59c CF (%) 34.04b 33.50b 28.23a EE (%) 2.55a 2.64b 4.05c ASH (%) 15.40 15.71 15.50 NFE (%) 38.23a 38.35b 41.63c ME (kcal/kg) 1741.78a 1753.07b 1991.71c Table 23. Effect of silage additives on different maize fodder silage (g 100g-1 dm) Khatun et al.,2015Chittagong
  • 51. Treatments Dry matter content(%) pH Total ash (%) Acid insoluble ash (%) Crude Protein (%) Crude fibre % BN hybrid + Urea 1% 30.75 4.38 5.92 1.843 5.63 41.2 BN hybrid + Urea 2% 36.95 4.04 6.12 1.52 5.22 41.44 BN hybrid + Urea 1%+ Jaggery 1% 33.73 4.29 7.27 1.96 5.07 40.45 B. BN hybrid+Tapioca flour 1% 38.67 4.47 7.41 1.84 6.15 39.33 BN hybrid+Jaggery 2% 35.33 4.54 6.5 1.81 6.24 43.68 Guinea grass+Urea 1% 42.83 4.21 8.51 1.47 3.81 38.88 Guinea grass + Urea 2% 49.13 4.30 9.82 2.04 3.85 37.31 Guinea grass + Urea1% + Jaggery 1% 43.5 4.48 9.35 2.46 2.52 43.37 C. Guinea grass + Tapioca flour 1% 43.33 4.29 9.75 1.62 2.78 42.63 Guinea grass + Tapioca flour 1% 42.5 3.57 12.62 2.72 2.03 35.99 C.D.(P=0.05) NS 0.28 1.07 0.305 0.733 NS S. Em± 3.8 2.83 5.23 6.99 7.28 3.68 Table 24. Interaction effect of grasses and additives on quality parameters of silage Usha et al., 2018Kerala
  • 52. Tree leaves Ingredients DM (%) Ash (%) EE (%) CP (%) CF (%) NEF (%) ME (kcal kg-1 DM) Rain tree leaves 30 9 2 11 31 34 1601 Mahogany leaves 31 7 11 13 25 27 2104 Water hyacinth 17.25 10.23 2.4 10.70 18.50 58.17 2418 Bamboo leaves 25 14.5 1.0 9.2 24 51.3 2038 Jack fruit leaves 27 13.5 1.2 12.5 25.30 47.5 2061 Dhaincha leaves 24 7.5 4.5 25.5 18.5 44 2594.44 Table25.Chemical composition of selected tree leaves (g 100g-1) Khatun et al., 2015Chittagong

Editor's Notes

  1. Ranjith Kumar T. M.