SlideShare a Scribd company logo
1 of 64
VIII - Flexible Manufacturing Systems
‫المرن‬ ‫التصنيع‬ ‫نظام‬
2- System planning Problems
‫النظام‬ ‫تخطيط‬ ‫مسائل‬
IE 469 Manufacturing Systems
469
‫التصنيع‬ ‫نظم‬ ‫صنع‬
1- FMS planning and implementation issues
‫المرنة‬ ‫التصنيع‬ ‫لنظم‬ ‫والتطبيق‬ ‫التخطيط‬ ‫موضوعات‬
The issues of flexible system are:
1- System design ‫النظام‬ ‫تصميم‬
• Production volume
• Process and equipment requirement
• Capacity (Machine Number)
• Part & Process family
• Tooling, fixtures
• Material handling (number of pallets, AGV)
• layout
• Control system and programs
• WIP & storage
2- Production Plans ‫اإلنتاج‬ ‫خطط‬
• Batching
• Loading
• Routing
3- Operation Plans ‫التشغيل‬ ‫خطط‬
• Sequencing
• Scheduling
• Dispatching
4- Performance Evaluations ‫تقييم‬
‫األداء‬
2a- FMS Layout ‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬
A- linear Single-raw machine Layout
1 2 3 4
AGV
B- Double-raw machine Layout
5 6 7 8
AGV
1 2 3 4
R
C- Cluster machine Layout
6
9
3 4
10
5
7
1 2
8
2a- FMS Layout ‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬
D- Circular machine layout
3
1
2
4
5
R
E- Carousel machine Layout
work
In.
1 2 3 4
work
out.
7
6
5 8
2b- arranging FMS machines layout ‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫ترتيب‬
MFC cell Arrangement according to the move flow: [see groover p447]
‫ترتيب‬
‫الماكينات‬
‫في‬
‫الموقع‬
‫وفقا‬
‫لتدفق‬
‫حركة‬
‫المشغوالت‬
‫بينها‬
Example
Parts flow in FMS cell
composed of 5 machines
according the given flow
matrix below. Find the flow
diagram and Arrangement
of the machines. Also find
the input and output of parts
from the system
From
To
1 2 3 4 5
1 0 5 0 25 5
2 30 0 0 15 10
3 10 40 0 0 10
4 10 0 0 0 0
5 5 10 0 10 0 1
0.2
∞
1
0.67
From/To
25
10
60
55
35
From’s
25
50
0
55
55
To’s
3 2 5 1 4
3 2 5 1 4
40 10 5 5
10
10
15
60 20
10
10
10
40
2b- arranging FMS machines layout ‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫ترتيب‬
3 2 5 1 4
40 10 5 5
10
10
15
60 20
10
10
10
40
3
1
2
5 4
10
60
5
10
10
40 15
10 10
20
40
Remarks:
o The 60 parts input the cell at
machine (3)
o The 60 parts output from the cell
from two machines:
 machine (4) with 40 parts
 Machine (1) with 20 parts
2c- general layout problem‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬
1- Mathematical model for single row FMS layout
‫النموذج‬
‫الرياضي‬
‫اليجاد‬
‫مواقع‬
‫الماكينات‬
‫في‬
‫صف‬
‫واحد‬
 

 



1
1 1
Minimize
m
i
m
i
j
j
i
ij
ij x
x
f
c
Z
Assume:
line
reference
from
machines
of
Distance
,
machines
between
Clearance
machine
th
of
length
machines
of
Pairs
between
ance
costs/dist
Handling
Material
machines
of
Pairs
between
trips
Frequency
machines
of
Number
i,j
x
x
i,j
d
i
l
i,j
c
i,j
f
m
j
i
ij
i
ij
ij






Machine i Machine j
i
l j
l
ij
d
i
x
j
x
 
,....,
2
,
1
,
0
,.....,
1
1
,....,
2
,
1
2
1
:
Subject to
m
i
x
m
i
j
m
i
d
l
l
x
x
i
ij
i
j
i
j
i













2c- general layout problem‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬
2- Mathematical model for 2 rows FMS layout
‫النموذج‬
‫الرياضي‬
‫اليجاد‬
‫مواقع‬
‫الماكينات‬
‫في‬
‫صفين‬
 

 



1
1 1
Minimize
m
i
m
i
j
j
i
ij
ij
x x
x
f
c
Z
Assume
    line
reference
from
machines
of
Distance
,
,
,
machines
between
Clearance
2
,
1
machine
th
of
length
machines
of
Pairs
between
ance
costs/dist
Handling
Material
machines
of
Pairs
between
trips
Frequency
machines
of
Number
i,j
y
x
y
x
i,j
c
c
i
l
i,j
c
i,j
f
m
j
j
i
i
ij
ij
i
ij
ij






 
,....,
2
,
1
,
0
,.....,
1
1
,....,
2
,
1
1
2
1
:
Subject to
m
i
x
m
i
j
m
i
c
l
l
x
x
i
ij
i
j
i
j
i













Machine j
j
l
j
x
j
w
j
y
ij
c1
Machine i
i
l
i
x
i
w
ij
c2
i
y
 

 



1
1 1
Minimize
m
i
m
i
j
j
i
ij
ij
y y
y
f
c
Z
 
,....,
2
,
1
,
0
,.....,
1
1
,....,
2
,
1
1
2
1
:
Subject to
m
i
y
m
i
j
m
i
c
w
w
y
y
i
ij
i
j
i
j
i













 
y
x Z
Z
Z 
 Minimize
Minimize
2d- general layout problem‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬
Example: Arrange the machines according the flow given below in single row
Frequency of Trips
From
To
1 2 3 4 5
1 - 20 70 50 30
2 20 - 10 40 15
3 70 10 - 18 21
4 50 40 18 - 35
5 30 15 21 35 -
Cost matrix
From
To
1 2 3 4 5
1 - 2 7 5 3
2 2 - 1 4 2
3 7 1 - 1 2
4 5 4 1 - 3
5 3 2 2 3 -
Clearance matrix
From
To
1 2 3 4 5
1 - 2 1 1 1
2 2 - 1 2 2
3 1 1 - 1 2
4 1 2 1 - 1
5 1 2 2 1 -
Machine Dimensions
Machine M1 M2 M3 M4 M5
Size 10x10 15x15 20x30 20x20 25x15
2d- general layout problem‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬
1- Calculate the flow matrix
Cost matrix
-
3
2
2
3
5
3
2
2
3
5
4 5 4 1 -
3 7 1 - 1
2 2 - 1 4
1 - 2 7 5
1 2 3 4
From
To
Adjusted flow matrix
-
105
42
30
90
5
105
42
30
90
5
4 250 160 18 -
3 490 10 - 18
2 40 - 10 160
1 - 40 490 250
1 2 3 4
From
To
2- select the largest value (Between M/c 1& 3) and put them together
M1
M2
M4
3- Find largest value between a machine and M/cs 1&3  M/c 4 and place it
beside the largest value
4- repeat step 3 and find the largest value between a machine and M/cs 1,3&4
 M/c 2
M3
M5
Frequency of Trips
-
35
21
15
30
35
21
15
30
5
50 40 18 -
70 10 - 18
20 - 10 40
- 20 70 50
1 2 3 4
To
=
5- for last M/c 5 , place it with largest values at the end of the line
1
1
2
2
3a- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
Introduction:
There are two types for such problem.
The first is a design issue and the second
is a tactical issue.
1) Part selection for FMS design: it is
the total set of the FMS system and
usually the group technology
techniques are used to build the
FMS and find the parts and
machines requirement.
2) Part selection for production on
FMS: This problem is concerned
with selection of Sub-set of parts to
be produced on FMS during a
production period.
‫مقدمة‬
:
‫ينقسم‬
‫هذا‬
‫النوع‬
‫من‬
‫المسائل‬
‫إلى‬
‫نوعين‬
‫أحدهما‬
‫تصميمي‬
‫واألخر‬
‫تكتيكي‬
:
-
(1
‫اختيار‬
‫المشغوالت‬
‫لتصميم‬
‫النظام‬
‫المر‬
‫ن‬
:
-
‫تعتبر‬
‫هذه‬
‫هو‬
‫حجر‬
‫األساس‬
‫التي‬
‫يتم‬
‫عل‬
‫يها‬
‫بناء‬
‫النظام‬
‫حيث‬
‫يتم‬
‫فيه‬
‫اختيار‬
‫المجم‬
‫وعة‬
‫المتكاملة‬
‫للمشغوالت‬
‫والماكينات‬
‫المرتب‬
‫طة‬
‫بها‬
,
‫ويستخدم‬
‫العديد‬
‫من‬
‫الطرق‬
‫لحل‬
‫هذه‬
‫المسألة‬
‫المسماة‬
‫بمسألة‬
‫تقنية‬
‫المجموع‬
‫ات‬
(2
‫اختيار‬
‫المشغوالت‬
‫المطلوب‬
‫إنتاجها‬
‫في‬
‫النظام‬
‫المرن‬
‫لفترة‬
‫انتاج‬
:
-
‫وهي‬
‫مسألة‬
‫اختيار‬
‫مجموعة‬
‫فرعية‬
Sub-set
‫من‬
‫المشغوالت‬
‫من‬
‫المجموعة‬
‫الكلية‬
‫الممكن‬
‫انتاجها‬
‫في‬
‫النظام‬
.
3b- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
Part selection for production on FMS
‫انتاج‬ ‫لفترة‬ ‫المرن‬ ‫النظام‬ ‫في‬ ‫إنتاجها‬ ‫المطلوب‬ ‫المشغوالت‬ ‫اختيار‬
Assume the following:-
The total number of A part should be produced if part is selected
P = The available productive Time is the key machine (bottle neck)
pi = The total processing time for part i (unit time x unit/period)
si = The Total saving if part is added to the system (unit saving x
unit/period)
Xi =Binary decision variable; 1 when part i is selected, otherwise 0



N
i
i
i X
s
Z
1
Minimize
 
1
,
0
:
Subject to
1




i
N
i
i
i
X
P
X
p
This is a knapsack problem, where:-
3c- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
The heuristic checks each part type in turn and assign it to the FMS if saving
are positive and sufficient capacity exists
Step One:- Order part types 1 to
N such that
n
n
p
s
p
s
p
s


 .
..........
2
2
1
1
Step Two:- For i=1 to N: Select part type i if si > o and inclusion is feasible
Example:
It is required to manufacture 8
parts in FMS during a period of
production = 250 hr. The FMS
operate with cost = 50 $/hr. Find
the parts to be produced during
this period according data give
in the table. Production
time, hr
1.0 2.0 4.0 1.0 2.0 1.0 1.0 0.5
Demand
rate
100 50 50 75 60 30 50 600
Material
cost
45 35 124 50 120 34 36 114
purchase
price
200 144 300 125 300 86 93 165
1 2 3 4 5 6 7 8
Part Type
Solution by Greedy Knapsack Heuristic ‫الحل‬
‫بطريقة‬
‫التنقيب‬
3e- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
Step One:- Order part types 1 to
N such that
1,5,4,2,7,6
Step Two:- Assignment
Solution:
1- Calculate saving for each part
as follow:
Saving/unit = [Purchase price –
Material Cost – Process cost]
Part 1 saving = 200 – 45 –
(1.0x50) =105
2- prepare the saving table
3- Use Knapsack approach
1-Assign Part 1 ,setting resource usage to 100 hr
2-Assign Part 5 ,setting resource usage to 100+120=220 hr
3-pass parts 4,2,7 ,since Time are exceeded
4-Assign Part 6 ,setting resource usage to 250 hr
4- calculate total saving as 1,2,6 are assigned. 105(100)+60(60)+30(2)=14,160
Total
process
time
100 100 200 75 120 30 50 300
Saving/hr 105 10 - 25 30 2 7 -
Unit
Saving
105 20 -24 25 60 2 7 26
Demand
rate
100 50 50 75 60 30 50 600
Material
cost
45 35 124 50 120 34 36 114
Production
time, hr
1.0 2.0 4.0 1.0 2.0 1.0 1.0 0.5
purchase
price
200 144 300 125 300 86 93 165
1 2 3 4 5 6 7 8
Part Type
3e- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
Introduction:
• A series of decisions are made.
• each decision is a stage based on some
input state. the state corresponds to
the amount of resource available.
• Decisions yield a return (value of time
due to assigning a part) but consume
resources thus changing the state for
next stage.
• A recursive equation computes the
return and ties the state variable
together between stages
• Stages and decisions must be picked
to satisfy of principle of optimality.
This principle states that for any
initial stage, state, and decision,
subsequent decisions must be optimal
for the remainder of the problem that
results from initial decision.
Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬
‫مقدمة‬
:
-
•
‫في‬
‫هذه‬
‫الطريقة‬
‫يتم‬
‫اتخاذ‬
‫قرارات‬
‫متتالي‬
‫ة‬
•
‫كل‬
‫قرار‬
‫يمثل‬
‫مرحلة‬
‫مبنية‬
‫على‬
‫مدخالت‬
‫حالة‬
‫معينة‬
(
‫زمن‬
)
.
‫حيث‬
‫تتوافقالحالة‬
‫م‬
‫ع‬
‫قيمة‬
‫المصدر‬
(
‫الزمن‬
)
‫المتاح‬
•
‫ينتج‬
‫عن‬
‫القرارات‬
‫عائد‬
(
‫قيمة‬
‫تعيين‬
‫نو‬
‫ع‬
‫مشغولة‬
)
‫وهي‬
‫مقدار‬
‫المصدر‬
‫المتاح‬
(
‫الزمن‬
‫المتاح‬
)
,
‫ولكن‬
‫تستهلك‬
‫المصدر‬
‫وعليه‬
‫ت‬
‫تغير‬
‫الحالة‬
(
‫تغير‬
‫الزمن‬
‫المتاح‬
‫نتيجة‬
‫تعيين‬
‫المشغولة‬
)
‫إلدخالها‬
‫في‬
‫المرحلة‬
‫التالية‬
.
•
‫تحسب‬
‫معادلة‬
‫التكرار‬
‫العائد‬
‫والمرتبطة‬
‫بمتغيرات‬
‫الحالة‬
‫بين‬
‫المراحل‬
•
‫يتم‬
‫إنتقاء‬
‫المراحل‬
‫والقرارات‬
‫المحققة‬
‫لألمثل‬
.
‫هذا‬
‫األساس‬
‫تقرر‬
‫أن‬
‫أي‬
‫مرحلة‬
‫؛‬
‫حالة‬
‫؛‬
‫قرار‬
‫أولي‬
‫يجب‬
‫ان‬
‫تكون‬
‫القرارات‬
‫التي‬
‫تليه‬
‫قرار‬
‫أمثل‬
‫لبقية‬
‫المسألة‬
‫والت‬
‫ي‬
‫ينتج‬
‫من‬
‫القرار‬
‫األولي‬
3e- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
The recursive equation is as follow:
Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬
The above equation acknowledges
that if part type 1 is considered, it
can be assigned to FMS provided
that this saved money and sufficient
time was available.
1
for 
i  






1
1
1
1
0 p
p
s
p
f


(1)
N
i 

2
for
 
 
 
 












1
1
1
1
1
,
0
p
p
f
X
p
p
f
X
s
Max
p
f
i
i
i
i
i
X
i
i

(2)
Notations:
fi (ρ) = the cost saving for optimal
decision regarding part type
1 to i, if they are allowed to
occupy ρ time/period on FMS
ρ = the state of time between 1 & 250
pi = the time used to process a part
P = the available time
si = saving of part type i
Xi = decision variable for part type
selection , 0 or 1
3f- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
1) The first equation starts the process.
2) The second equation controls the transitions between stages.
3) The problem is scaled such that all pi are integers.
4) Then f1 is found for all integers ρ  P. storing these results, ‫توجد‬
‫جميع‬
‫القيم‬
‫الصحيحة‬
‫وتخزينها‬
5) f2 (ρ) are found using all integers ρ  P using the second equation.
‫توجد‬
‫جميع‬
‫القيم‬
‫الصحيحة‬
‫من‬
‫المعادلة‬
‫التكرار‬
6) The process continues until fN (ρ ) is found. This is the maximum
saving, ‫للحل‬ ‫نكرر‬
‫الحل‬
‫لجميع‬
‫القيم‬
‫حتى‬
‫الوصول‬
7) The stored stage solutions are traced to find the optimal solution
‫إيجاد‬
‫الحل‬
‫األمثل‬
‫من‬
‫خالل‬
‫متابعة‬
‫ومراجعة‬
‫حلول‬
‫المراحل‬
Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬
3g- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
Total
process
time
100 100 200 75 120 30 50 300
Saving/hr 105 10 - 25 30 2 7 -
Unit
Saving
105 20 -24 25 60 2 7 26
Demand
rate
100 50 50 75 60 30 50 600
Material
cost
45 35 124 50 120 34 36 114
Production
time, hr
1.0 2.0 4.0 1.0 2.0 1.0 1.0 0.5
purchase
price
200 144 300 125 300 86 93 165
1 2 3 4 5 6 7 8
Part Type
Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬
Example:
It is required to manufacture 8 parts in FMS during a period of production = 250
hr. The FMS operate with cost = 50 $/hr. Find the parts to be produced during
this period according data give in the table.
Solution:
A) Find the saving & total
process time for each part
type.
Notice Number of part
type can be processed on
system = 6, [i.e. 6 stages
solution]
3h- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
Total
process
time
100 100 200 75 120 30 50 300
Saving/hr 105 10 - 25 30 2 7 -
Unit
Saving
105 20 -24 25 60 2 7 26
1 2 3 4 5 6 7 8
Part Type
Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬
o No part is assigned before the state ρ < 30, ‫ال‬
‫توجد‬
‫مشغولة‬
‫يمكن‬
‫تعيينها‬
‫قبل‬
‫الحالة‬
o At ρ = 30 part type 6 become eligible for assignment. ‫عند‬
‫هذه‬
‫الحالة‬
‫يمكن‬
‫تعيين‬
‫مشغولة‬
o The solution is not changed until ρ is increased to at least 50 hours, at this point
either part 6 or 7 can be selected ‫إمكانية‬
‫تعيين‬
‫أي‬
‫من‬
‫مشغولتي‬
6
‫و‬
7
‫عند‬
‫زيادة‬
‫الحلة‬
‫لقيمة‬
‫متوفرة‬
‫في‬
‫الجدول‬
o Next state ρ =75 and part 4 become also eligible for assignment
o Next state ρ =80 and parts 6 and 7 can be assigned together
Notice that the problem is of discrete nature and reduction of calculation can be made.
Hence the number of states can be determined as given in tables
B) Find Values of fi (ρ)
between 1  ρ  250 ,
depend on the state ρ
(total process time of a
part). Notice the
following:
3i- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
C) First stage: Assume only
part type 1 exist. (Part no.1 is to
be assigned with largest saving).
when ρ <100 no parts are
assigned (X1 = 0) and f1(ρ)=0
For ρ  100 (X1=1) and f1(ρ) =
100 *105 = 10,500
State p
0
30
50
75
100
130
150
175
200
205
220
250
D) Second stage: Solving the two-stage problem for part
types 1 & 2.
 For ρ <100 neither is feasible
 For ρ =100 select either part 1 or 2 - X1 = 0 or 1 , X2 =0 or 1
 Case 1: X1=1 & X2 =0. Then the state variable return is
f2(100) = f1(100) + 0 = 10,500 +0 =10,500
 Case 2: X1=0 & X2=1. Then the state variable return is
f2(100) =f1(0) + return of part 2 = 0 + 50*20=1000 ,
 Select Case 1
 On reaching ρ =200 part 2 can be selected for return of
f2(100) = f1(100) + return of part 2 = 10,500 +1000 =11,500
Then carry 3rd until 6th stage as given in the following table
F1(p)
0
0
0
0
10,500
10,500
10,500
10,500
10,500
10,500
10,500
10,500
F2(p)
0
0
0
0
10,500
10,500
10,500
10,500
11,500
11,500
11,500
11,500
Total
process
time
100 100 200 75 120 30 50 300
Unit
Saving
105 20 -24 25 60 2 7 26
1 2 3 4 5 6 7 8
Part Type
Demand
rate
100 50 50 75 60 30 50 600
3j- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬
Example to find the value at stage 5, f5(195)
X5=0 , f5(195)= [0+ f4(195)]=12,375
X5=1 , f5(195)= [60x60+ f4(195-120)]=3600+1875=5475
i.e. the hours 120 is subtracted from 195 in the state variable used for part 5,
hence part1,2,3 are not available
State p
0
30
50
75
100
130
150
175
200
205
220
250
F1(p)
0
0
0
0
10,500
10,500
10,500
10,500
10,500
10,500
10,500
10,500
F2(p)
0
0
0
0
10,500
10,500
10,500
10,500
11,500
11,500
11,500
11,500
F3(p)
0
0
0
1,875
10,500
10,500
10,500
12,375
12,375
12,375
12,375
12,375
F4(p)
0
0
0
1,875
10,500
10,500
10,500
12,375
12,375
12,375
14,100
14,100
F5(p)
0
0
0
1,875
10,500
10,500
10,500
12,375
12,375
12,435
14,100
14,160
F6(p)
0
0
0
1,875
10,500
10,500
10,500
12,375
12,375
12,435
14,100
14,160
4a- Setup problems ‫النظام‬ ‫اعداد‬ ‫مسائل‬
‫مقدمة‬
‫هناك‬
‫مسألتين‬
‫أساسيتين‬
‫هما‬
:
-
.1
‫مسألة‬
‫الدفعات‬
‫هناك‬
‫بيئتين‬
‫لعمل‬
‫نظام‬
‫التصنيع‬
‫هما‬
•
‫البيئة‬
‫األولي‬
:
‫إمكانية‬
‫الماكينات‬
‫أن‬
‫تحمل‬
‫جميع‬
‫األدوات‬
‫المطلوب‬
‫ة‬
‫للعمليات‬
‫وعليه‬
‫يكون‬
‫هناك‬
‫دفعة‬
‫واحدة‬
‫فقط‬
.
•
‫البيئة‬
‫الثانية‬
:
‫عدم‬
‫إمكانية‬
‫الماكينات‬
‫أن‬
‫تحمل‬
‫جميع‬
‫األدوات‬
‫المطلوبة‬
‫للعمليات‬
‫وعليه‬
‫يجب‬
‫تعيين‬
‫مجموعة‬
‫من‬
‫الدفعات‬
‫تتم‬
‫بالتوالي‬
,
‫كما‬
‫أن‬
‫عملية‬
‫تعيين‬
‫ا‬
‫لدفعات‬
‫تساعد‬
‫في‬
‫توازن‬
‫التحميل‬
‫على‬
‫الماكينات‬
‫واس‬
‫تخدام‬
‫فترة‬
‫زمنية‬
(
‫من‬
‫يوم‬
‫إلى‬
‫أسبوع‬
)
‫بصورة‬
‫فاعل‬
‫ة‬
.
.2
‫مسألة‬
‫التحميل‬
:
-
‫هي‬
‫مسألة‬
‫تعيين‬
‫عمليات‬
‫المشغوالت‬
‫واألدوات‬
‫الالزمة‬
‫لها‬
‫علي‬
‫ماكينات‬
‫محددة‬
‫التي‬
,
‫باإلضاف‬
‫ة‬
‫إلى‬
‫إستاد‬
‫منصات‬
‫التحميل‬
‫إلى‬
‫المشغوالت‬
‫ال‬
‫تي‬
‫تحمل‬
‫على‬
‫الماكينات‬
.
‫وهذه‬
‫المسألة‬
‫تساعد‬
‫في‬
‫تعيين‬
‫مسار‬
‫المشغوالت‬
‫وتوالي‬
‫إدخالها‬
‫للنظ‬
‫ام‬
.
Introduction:
There are two main problems
1. batching Problem
Two environments can be recognized
 1st environment
Machines in FMS can carry out all tools
required for operations, this means that all
parts operations can be done only in one
batch
 2nd environment
Machines in FMS can not carry out all tools
required for operations, Hence the parts
should be grouped in batches and produced
sequentially. The process of batching help
in line balancing and use of available time
effectively.
2. Loading Problem
This concerned with assignment problems
of operations and tools on machines and
Also assignment of pallets to parts loaded
on machines. This help to routing and
sequencing problems
4b- Batching Problem ‫الدفعات‬ ‫مسألة‬
Introduction:
The aim is to determine the sub group
of parts to be processed during a
period of time on machines with
limited tool magazine capacity.
Two type of problems can be
identified:
o Batching according certain
priority criteria with limited
production time and with limited
number of tool slot
o Batching with limited tool
magazine capacity
Solution is carried out by Analytical
Methods and/or Heuristic Methods
‫مقدمة‬
‫يهدف‬
‫تعيين‬
‫الدفعات‬
‫هو‬
‫تحديد‬
‫المشغوالت‬
‫في‬
‫مجموعة‬
‫من‬
‫الدفعات‬
‫حيث‬
‫كل‬
‫دفعة‬
‫بها‬
‫عدد‬
‫من‬
‫المشغوالت‬
‫تستخدم‬
‫الماكينات‬
‫ذات‬
‫ذات‬
‫سعة‬
‫المحدودة‬
‫لعدد‬
‫من‬
‫األدوات‬
‫خالل‬
‫فترة‬
‫زمنية‬
‫هناك‬
‫نوعين‬
‫أساسيين‬
‫للمسألة‬
:
o
‫تعيين‬
‫الدفعات‬
‫وفقا‬
‫لخاصية‬
‫أولوية‬
‫خالل‬
‫فترة‬
‫زمنية‬
‫محدودة‬
‫وبسعة‬
‫محدودة‬
‫من‬
‫األدوات‬
o
‫تعيين‬
‫دفعات‬
‫بسعة‬
‫محدودة‬
‫من‬
‫األدوات‬
.
‫ويمكن‬
‫حل‬
‫هذه‬
‫المسائل‬
‫بطرق‬
‫التنقيب‬
,
‫و‬
‫الطرق‬
‫التحليلية‬
.
4c- Batching Problem ‫الدفعات‬ ‫مسألة‬
Solving using heuristic solution
Example:
Set of parts shown in table below are to be processed in FMS consisting of 3
M/cs of type (A), and one M/c of Type (B). Each machine of both type can
hold 2 tools and the available daily time is 12 hours. Select the part to be
produced today.
Part
Type
Order Size
Due
Date
Unit Process Time,
hrs Tools
M/C (A) M/C (B)
a 5 0 0.1 0.3 A1,B2
b 10 1 1.2 --- A2
c 25 1 0.7 0.4 A3,B4
d 10 1 0.1 0.2 A1,B2
e 4 2 0.3 0.2 A5,B3
a 10 4 0.3 0.2 A1,B2
4d- Batching Problem ‫الدفعات‬ ‫مسألة‬
Part Type Order Size Due Date
Unit Process Time, hrs
Tools
M/C (A) M/C (B)
a 5 0 0.1 0.3 A1,B2
b 10 1 1.2 --- A2
c 25 1 0.7 0.4 A3,B4
d 10 1 0.1 0.2 A1,B2
e 4 2 0.3 0.2 A5,B3
a 10 4 0.3 0.2 A1,B2
6 a, b, c, d(2/10) 30.2 11.9 A1,A2,A3 B2,B4
5 a, b, c, d(2/10) 30.2 11.9 A1,A2,A3 B2,B4
4 a, b, c, d(2/10) 30.2 11.9 A1,A2,A3 B2,B4
3 a, b, c 30.0 11.5 A1,A2,A3 B2,B4
2 a, b 12.5 1.5 A1,A2 B2
1 a 0.5 1.5 A1 B2
A B A B
Step Assigned Parts
Time Assigned Tools Assigned
Iterative Selection
4e- Batching Problem ‫الدفعات‬ ‫مسألة‬
Notations used in formulation the problem ‫المصلحات‬
‫المستخدمة‬
‫لصياغة‬
‫المسألة‬
:
‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬ ‫حل‬
Mixed Integer Programming For Batching

it
D

j
P

ij
p

it
x

ij
y

j
K

lj
k
  
i
lj

i
h

N 
T
Part orders for part (i) in period (t)
Available Time for machine type (j)
Process Time for part (i) on machine type (j)
Number of part (i) made in period (t)
Available tool slots for machine type (j)
Number of tool slots required by tool (l) on machine type (j)
Set of tools (l) required on machine type (j) to produce part type(i)
1 if tool(l) is assigned to machine type(j) in period(t), Otherwise =0
Total number of part types Total Periods
Holding Cost per period (t) for part (i)
Problem formulation
The Objective Function is minimizing inventory costs while meeting due date
during production period, as holding costs accumulate for each period the
production larger than demand. Shortage is prevented by constraints.
‫تكون‬
‫دالة‬
‫المسألة‬
‫هي‬
‫خفض‬
‫تكلفة‬
‫التخزين‬
‫بينما‬
‫تفي‬
‫بموعد‬
‫الطلب‬
‫حيث‬
‫تتراكم‬
‫تكلفة‬
‫كل‬
‫فتر‬
‫ة‬
‫التي‬
‫يزيد‬
‫فيها‬
‫اإلنتاج‬
‫عن‬
‫الطلب‬
,
‫ويتم‬
‫منع‬
‫النقص‬
‫في‬
‫اإلنتاج‬
‫بواسطة‬
‫شروط‬
‫مقيدة‬
4f- Batching Problem ‫الدفعات‬ ‫مسألة‬
‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬ ‫حل‬
Mixed Integer Programming For Batching
 
 

 



N
i
t
r
ir
ir
T
t
i D
x
h
Z
Minimize
1 1
1
1
or
0
0 ljt
it y
x

i,t
D
x
o
Subject t
t
r
ir
t
r
ir all
for
1
1

 


1. Production  Demand (prevent shortage)
‫يحدد‬
‫هذا‬
‫الشرط‬
‫بأن‬
‫تكون‬
‫كمية‬
‫اإلنتاج‬
‫لمشغولة‬
(i)
‫لفترة‬
(t)
‫مساوية‬
‫للكمية‬
‫المطلوبة‬
.
j,t
P
x
p j
N
i
it
ij all
for
1



2. Production time  Available time
(avoid overloading machines)
‫يعمل‬
‫على‬
‫تفادي‬
‫التحميل‬
‫الزائد‬
‫عن‬
‫سعة‬
‫أي‬
‫ماكينة‬
(j)
‫في‬
‫أي‬
‫وقت‬
.
 ,t
i
lj
y
M
x ljt
it all
for


3. parts assigned  tools assigned
(ensure that all tools are assigned to machines)
‫يؤكد‬
‫تعيين‬
‫جميع‬
‫األدوات‬
‫المطلوبة‬
‫في‬
‫الماكينات‬
‫قبل‬
‫جدولة‬
‫اإلن‬
‫تاج‬
,
‫حيث‬
M
‫عدد‬
‫كبير‬
‫قيمته‬
‫أكبر‬
‫من‬
‫مجموع‬
‫تراكم‬
‫الطلب‬
.
j,t
K
y
k j
L
t
ljt
lj all
for
1



4. Tools assigned  tool slots
(restrict assigned tool to the slots available)
‫يعمل‬
‫هذا‬
‫الشرط‬
‫على‬
‫عدم‬
‫التعيين‬
‫الزائد‬
‫لألدوات‬
‫عن‬
‫األماكن‬
‫المتاح‬
‫ة‬
‫لألدوات‬
‫خالل‬
‫فترة‬
(t)
.
4g- Batching Problem ‫الدفعات‬ ‫مسألة‬
‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬ ‫حل‬
Mixed Integer Programming For Batching
The difficulty with formulation lies in the large number of binary variables
required for tooling decisions. ‫صعوبة‬
‫هذه‬
‫الصياغة‬
‫هو‬
‫كبر‬
‫حجم‬
‫المتغيرات‬
‫المطلوبة‬
‫لقرارات‬
‫األدوات‬
However, if the capacity of certain periods is the major concern and
sufficient tool space exists on machines for desired part mixes, the tooling
variable ylkt and constraints 3, 4 can be dropped. The remaining linear
program is easily solved
‫ومع‬
‫ذلك‬
‫ففي‬
‫حالة‬
‫توفر‬
‫السعة‬
‫في‬
‫فترات‬
‫معينة‬
‫واألماكن‬
‫المتاحة‬
‫لألدوات‬
‫في‬
‫الماكينات‬
‫ف‬
‫أنه‬
‫يمكن‬
‫االستغناء‬
‫عن‬
‫الشرطين‬
(
3
‫؛‬
4
)
‫ومث‬
‫حل‬
‫المعادالت‬
‫كمعادالت‬
‫برمجة‬
‫خطية‬
.
4h- Batching Problem ‫الدفعات‬ ‫مسألة‬
Hwang’s Integer Programming ‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬


N
i
i
z
Maximize
1
t
y
d
o
Subject t c
t
c
c 

1
:
i,c
z
y
b i
i
ic all


N Part Types 
C Tool Types 
t Tool Magazine Capacity


ic
b
1 if Part type (i) require tool (c)
0 Otherwise

c
d Number of Tool Slots to hold tool (c) in tool magazine of required machine


i
z
1 if Part type (i) is selected in the batch
0 Otherwise


c
y
1 if Tool (c) is loaded on a machine
0 Otherwise
c
or
yc all
1
0

c
or
zi all
1
0

Problem formulation
The Objective Function is maximizing the number of parts is a batch (i.e.
minimizing number of batches) . Tooling increase more than capacity is
prevented by constraints.
‫تكون‬
‫دالة‬
‫المسألة‬
‫هي‬
‫التوصل‬
‫إلى‬
‫أكبر‬
‫أنواع‬
‫من‬
‫المشغوالت‬
‫في‬
‫الدفعة‬
(
‫أي‬
‫خفض‬
‫عدد‬
‫الدفع‬
‫ات‬
‫ألنواع‬
‫المشغوالت‬
‫المعطاة‬
)
‫ويتم‬
‫وضع‬
‫شروط‬
‫مقيدة‬
‫لمنع‬
‫زيادة‬
‫األدوات‬
‫عن‬
‫السعة‬
4i- Batching Problem ‫الدفعات‬ ‫مسألة‬
‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬
Hwang’s Integer Programming
Example:
The table below gives the required tools for 8 parts and magazine capacity in each
machine. Find the number of matches and its parts
Part types P1 P2 P3 P4 P5 P6 P7 P8
Types of tools
required
t1(1) t2(1) t3(1) t4(1)
t1(1) ,
t2(1)
t3(1) ,
t5(1)
t6(2)
t1(1) , t2(1) ,
t7(2)
Problem formulation:
8
2
1
1
....... z
z
z
z
Maximize
N
i
i 





5
2
2
,
: 7
6
5
4
3
2
1
1










y
y
y
y
y
y
y
t
y
d
o
Subject t c
t
c
c
i,c
z
y
b i
i
ic
all
For
,

0
,
0
,
0
,
0
0
,
0
,
0
,
0
0
,
0
,
0
,
0
7
8
2
8
1
8
6
7
5
6
3
6
2
5
1
5
4
4
3
3
2
2
1
1
























y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
Batch 1: P1,P2,P3,P4,P5,P6 Batch 2: P7 Batch 3: P8
4j- Batching Problem ‫الدفعات‬ ‫مسألة‬
‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬
Modified Hwang’s Integer Programming
 
 






N
i
i
C
c
c
ic z
d
b
Maximize
1 1
t
y
d
o
Subject t c
t
c
c 

1
:

N Part Types 
C Tool Types 
t Tool Magazine Capacity


ic
b
1 if Part type (i) require tool (c)
0 Otherwise

c
d Number of Tool Slots to hold tool (c) in tool magazine of required machine


i
z
1 if Part type (i) is selected in the batch
0 Otherwise


c
y
1 if Tool (c) is loaded on a machine
0 Otherwise
Problem formulation
The Objective Function is maximizing the number of parts is a batch (i.e.
minimizing number of batches) . Tooling increase more than capacity is
prevented by constraints.
‫تكون‬
‫دالة‬
‫المسألة‬
‫هي‬
‫التوصل‬
‫إلى‬
‫أكبر‬
‫أنواع‬
‫من‬
‫المشغوالت‬
‫في‬
‫الدفعة‬
(
‫أي‬
‫خفض‬
‫عدد‬
‫الدفع‬
‫ات‬
‫ألنواع‬
‫المشغوالت‬
‫المعطاة‬
)
‫ويتم‬
‫وضع‬
‫شروط‬
‫مقيدة‬
‫لمنع‬
‫زيادة‬
‫األدوات‬
‫عن‬
‫السعة‬
i,c
z
y
b i
i
ic all

c
or
yc all
1
0

c
or
zi all
1
0

4k- Batching Problem ‫الدفعات‬ ‫مسألة‬
‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬
Modified Hwang’s Integer Programming
8
7
6
5
4
3
2
1
1 1
2
2
2
2 z
z
z
z
z
z
z
z
z
d
b
Maximize
N
i
i
C
c
c
ic 













 
 
5
2
2
,
: 7
6
5
4
3
2
1
1










y
y
y
y
y
y
y
t
y
d
o
Subject t c
t
c
c
i,c
z
y
b i
i
ic
all
For
,

0
,
0
,
0
,
0
0
,
0
,
0
,
0
0
,
0
,
0
,
0
7
8
2
8
1
8
6
7
5
6
3
6
2
5
1
5
4
4
3
3
2
2
1
1
























y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
y
z
Batch 1: P1,P2,P3,P5,P8 Batch 2: P4,P6,P7
Example:
The table below gives the required tools for 8 parts and magazine capacity in each
machine. Find the number of matches and its parts
Part types P1 P2 P3 P4 P5 P6 P7 P8
Types of tools
required
t1(1) t2(1) t3(1) t4(1)
t1(1) ,
t2(1)
t3(1) ,
t5(1)
t6(2)
t1(1) , t2(1) ,
t7(2)
Problem formulation:
5a- Loading Problem ‫التحميل‬ ‫مسألة‬
‫مقدمة‬
:
‫بمعرفة‬
‫المشغوالت‬
‫المطلوب‬
‫إنتاجها‬
‫في‬
‫فت‬
‫رة‬
‫زمنية‬
‫محدودة‬
,
‫يكون‬
‫الهدف‬
‫هو‬
‫كيفية‬
‫تحمي‬
‫لها‬
‫على‬
‫الماكينات‬
‫وفقا‬
‫لعملياتها‬
‫المختلفة‬
.
‫ويتم‬
‫التحميل‬
‫بواسطة‬
‫صياغة‬
‫المسألة‬
‫بأهد‬
‫اف‬
‫وشروط‬
‫معينة‬
‫للتوصل‬
‫إلى‬
‫التحميل‬
‫األفض‬
‫ل‬
,
‫وتختلف‬
‫الصياغة‬
‫من‬
‫نظام‬
‫إلى‬
‫آخر‬
‫وفقا‬
‫لمتطلبات‬
‫التحميل‬
‫واإلمكانيات‬
.
‫ويشمل‬
‫أهداف‬
‫الحل‬
‫التالي‬
:
•
‫خفض‬
‫التخزين‬
‫بين‬
‫العمليات‬
•
‫خفض‬
‫تكلفة‬
‫األدوات‬
‫خفض‬
‫تكلفة‬
‫تشغي‬
‫ل‬
‫اإلنتاج‬
•
‫توازن‬
‫الحمل‬
•
‫خفض‬
‫الزمن‬
‫خالل‬
‫اإلنتاج‬
•
‫خفض‬
‫امتداد‬
‫عمل‬
‫اإلنتاج‬
‫رفع‬
‫مرونة‬
‫المسار‬
•
‫رفع‬
‫استعمال‬
‫سعة‬
‫الماكينات‬
‫وتصاغ‬
‫هذه‬
‫المسألة‬
‫بطرق‬
‫البرمجة‬
‫أو‬
‫بطرق‬
‫التنقيب‬
Introduction:
By knowing the parts to be processed at
certain period, the aim is to load the parts
to machines according to its processes
The loading problem is formulated with
certain goal (s) and some constraints to find
the optimal loading policy.
The formulation change from system to
other depending on loading requirement
and existing facility. The goal of
formulation includes the following:
• Minimizing WIP
• Minimizing Tooling Costs
• Minimizing Variable Production Costs
• Load balancing
• Minimizing Through-put Time
• Minimizing Make-span
• Maximizing Routing Flexibility
• Maximizing Utilization of Capacity
The problem can be formulated by
analytical and/or heuristic methods
5b- Loading Problem ‫التحميل‬ ‫مسألة‬
Introduction:
The basic formulation of loading problems are as follow


ij
y
1 if tool 1 is assigned to individual machine (j)
0 Otherwise

ij
x Proportion of operation (i) assigned to machine (j)

ij
c The cost to perform operation (i) (all parts) on machine (j)

l(i) The tool required for operation (i)

l
n The number of type (l) tool available
 
 








I
i
J
j
ij
ijx
c
Maximize
1 1
The objective is minimizing
variable production cost
The constraints are as follow
5c- Loading Problem ‫التحميل‬ ‫مسألة‬
:
o
Subject t
1
0
,
1
0 or
y
x lj
ij 


i
x
J
j
ij all
for
,
1
1



1- ensure that each operation i is assigned to one or
more machine.
j
P
x
p j
ij
I
i
ij all
for
,
1



2- restrict the amount of processing time assigned to
each machine to be  available time.
j
K
y
k j
lj
L
l
lj all
for
,
1



3- ensure sufficient space in tool magazine to hold
those tool assigned to machine j.
  j
i
y
x j
i
l
ij ,
all
for
,
0
, 
 4- ensure that tools are actually mounted on the
necessary machines.
l
n
y l
J
j
lj all
for
,
1



5- recognize the limit on the number of tools
available for each tool type
 
l
L
x
p l
i
l
ij
ij all
for
,
1



6- recognize tool replacement on machine j
Constraints can be added if required. Example of that if the maximum allowable
usage per period Ll for tool l (Tool replacement)
5d- Loading Problem ‫التحميل‬ ‫مسألة‬
Solution is divided to two stages:
stage one: assign operation to machine
type ( machine selection)
1. Operations are ordered based on
the number of different machine
types to which they may be
assigned.
2. Select operations has lowest chance
to be assigned and then assign
operation with longest process time
(total batch time) at the machine
less utilized (balance loading, i.e.
provide equal work load)
‫يقسم‬
‫الحل‬
‫علي‬
‫مرحلتين‬
:
‫المرحلة‬
‫األولى‬
:
-
‫مرحلة‬
‫تعيين‬
‫العمليات‬
‫إلي‬
‫الماكينات‬
.1
‫ترتيب‬
‫العمليات‬
‫بناء‬
‫على‬
‫عدد‬
‫األنو‬
‫اع‬
‫المختلفة‬
‫للماكينات‬
‫الممكنة‬
‫لتعيي‬
‫ن‬
‫العمليات‬
‫لها‬
.2
‫اختيار‬
‫العمليات‬
‫التي‬
‫لها‬
‫أقل‬
‫فرص‬
‫للتعيين‬
‫على‬
‫الماكينات‬
‫المختلفة‬
،
‫ثم‬
‫اختيار‬
‫العملية‬
‫التي‬
‫لها‬
‫أطول‬
‫زمن‬
‫انتاج‬
‫للدفعة‬
‫لتعيينها‬
‫على‬
‫الماكي‬
‫نة‬
‫التي‬
‫يمكن‬
‫تكون‬
‫األقل‬
‫استعماال‬
‫لكي‬
‫يتم‬
‫توازن‬
‫الحمل‬
‫التحميل‬ ‫مسألة‬ ‫لحل‬ ‫تنقيبية‬ ‫طريقة‬
Heuristic method to solve the loading problem
5e- Loading Problem ‫التحميل‬ ‫مسألة‬
stage two: assign operation and tools for each
machine type (i)
1. Operations are combined as a cluster to
reduce handling transfer between
machines if sum total batch time of
operations does not exceed available time
of a machine. A Cluster is treated as single
station operation requiring all of the tools
needed. i.e. reducing problem size.
2. Form groups by identically tooling the
machines of the same types. This provide
routing flexibility but increase tooling
costs. When flexibility is important, the
number of groups is determined by
number of tool slots needed for operations
assigned to a machine type.
3. Assign operation to machine groups
within each machine type to equalize
work load. Routing flexibility can be
enhanced by some of these operations
requiring the same tool.
‫المرحلة‬
‫الثانية‬
:
-
‫مرحلة‬
‫تحديد‬
‫مجموعة‬
‫الماكينات‬
‫وأدواتها‬
‫وتشمل‬
‫ثالث‬
‫خطوات‬
:
.1
‫تجميع‬
‫العمليات‬
‫لتقليل‬
‫حركة‬
‫المناولة‬
‫ب‬
‫ين‬
‫الماكينات‬
‫في‬
‫مجموعات‬
‫عنقودية‬
‫في‬
‫حالة‬
‫مجموع‬
‫زمن‬
‫الدفعة‬
‫أقل‬
‫أو‬
‫يساوي‬
‫الزمن‬
‫المتاح‬
..
‫وتعامل‬
‫كل‬
‫مجموعة‬
‫كانها‬
‫محطة‬
‫عمل‬
‫واحدة‬
‫بعدد‬
‫من‬
‫األدوات‬
‫المطلوبة‬
‫للعملياتز‬
(
‫تخفض‬
‫من‬
‫حجم‬
‫المسألة‬
)
.2
‫تكوين‬
‫مجموعة‬
‫الماكينات‬
‫بمطابقة‬
‫األدوات‬
‫لنفس‬
‫النوع‬
‫للماكينات‬
,
‫مما‬
‫يعطي‬
‫مرونة‬
‫للمسار‬
‫مع‬
‫رفع‬
‫تكلفة‬
‫األدوات‬
,
‫فإذا‬
‫كانت‬
‫المرونة‬
‫أهم‬
‫يتم‬
‫تكوين‬
‫عدد‬
‫كبير‬
‫من‬
‫المجموعات‬
‫التي‬
‫يعتمد‬
‫تكوينها‬
‫على‬
‫عدد‬
‫اماكن‬
‫تخزين‬
‫األدوات‬
‫المطلوبة‬
‫للعمليات‬
‫والمتاحة‬
‫في‬
‫كل‬
‫ماكينة‬
.
.3
‫تعيين‬
‫العمليات‬
‫وأدواتها‬
‫إلى‬
‫المجموعات‬
‫مما‬
‫يحقق‬
‫توازن‬
‫الحمل‬
‫وذلك‬
‫بخفض‬
‫الزمن‬
‫خالل‬
‫اإلنتاج‬
‫كما‬
‫يساعد‬
‫على‬
‫تحسين‬
‫المرونة‬
‫لتعيين‬
‫مجموعة‬
‫العمليات‬
‫التي‬
‫تتطلب‬
‫نفس‬
‫األدوات‬
.
5f- Loading Problem example ‫التحميل‬ ‫لمسألة‬ ‫مثال‬
5g- Loading Problem example ‫التحميل‬ ‫لمسألة‬ ‫مثال‬
Initialize values
Available time of each machine; Ψ
ΨA = ΨB = ΨC = 800 min
Number of machines; M
MA = 2; MB = 2; MC = 1
Number of tools; К
КA = 3; КB = 1; КC = 4
The two stage solved by using the following table:
Remaining
per Mc
Selected
machine
type
Selected
operation
Possible machines by operation
Iteration Product 3
Product 2
Product 1
Tools
Time
33
32
31
22
21
13
12
11
3.0
400
C
33
C
AC
A
ABC
AB
AB
AB
ABC
1
2.5
550
A
32
-
A
A
AB
AB
AB
AB
ABC
2
2.0
350
A
31
-
-
A
AB
AB
AB
AB
ABC
3
1.0
520
B
13
-
-
-
AB
AB
AB
AB
ABC
4
0.0
260
B
12
-
-
-
AB
AB
-
AB
ABC
5
1.5
250
A
21
-
-
-
A
A
-
-
ABC
6
1.0
150
A
22
-
-
-
A
-
-
-
AC
7
2.0
0
C
11
-
-
-
-
-
-
-
C
8
6a- Performance Measures by Bottle-neck model
‫الزجاجة‬ ‫عنق‬ ‫بنموذج‬ ‫األداء‬ ‫قياس‬
I- FMS Operational Parameters ‫المرن‬ ‫النظام‬ ‫تشغيل‬ ‫معالم‬
1- The Average Workload, WLi -- (i) ‫محطة‬ ‫حمل‬ ‫متوسط‬
 
 j k i
ijk
ijk
i p
f
t
WL
tijk = Processing time for operation (k) ‫زمن‬
‫عملية‬ in process plan
(j) ‫لمشغولة‬ at station (i) ‫محطة‬
fijk = Operation frequency (Expected number of times a given
operation in the process routing is performed for each
work unit) for operation (k) ‫زمن‬
‫عملية‬ in process plan (j)
‫لمشغولة‬ at station (i) ‫محطة‬
pi = Part Mix fraction for part (j) ‫نسبة‬
‫المشغولة‬
‫لمجموع‬
‫المشغوالت‬
0
.
1

i i
p
6b- Performance Measures by Bottle-neck model
2- The Average of Transport required to complete the processing of
a work part, nt -- ‫متوسط‬
‫عدد‬
‫المناولة‬
‫المطلوبة‬
‫إلتمام‬
‫العمليات‬
‫على‬
‫المشغولة‬
1

   
i j k i
ijk
t p
f
n
tn+1 =Mean Transport time per move,min ‫متوسط‬
‫زمن‬
‫االنتقال‬
‫للحركة‬
3- The Workload of Handling System, WLn+1 -- ‫حمل‬
‫نظام‬
‫المناولة‬
‫باعتبار‬
‫نظام‬
‫االنتقال‬
‫كمحطة‬
‫للنظام‬
‫المرن‬
(n+1)
‫وتحتوي‬
‫على‬
‫عدد‬
‫من‬
‫الحامالت‬
Carriers
‫أو‬
‫العربات‬
Vehicles
(Sn+1)
1
1 
  n
t
n t
n
WL
6c- Performance Measures by Bottle-neck model
4- The FMS Maximum Production Rate of all part, Rp* ,
Pc/min -- ‫أقصى‬
‫معدل‬
‫لإلنتاج‬
‫في‬
‫النظام‬
*
*
*
WL
S
Rp 
WL* = Workload, min/Pc &
S* = Number of machines at the bottle-neck station.
II- Production Rate ‫اإلنتاج‬ ‫معدل‬
‫يتم‬
‫تعينها‬
‫بسعة‬
‫المحطة‬
‫الحرجة‬
-
‫عنق‬
‫الزجاجة‬
Bottle-neck Station Capacity
‫طالما‬
‫كان‬
‫خلطة‬
‫المشغوالت‬
(
‫قيم‬
pi
)
‫ثابتة‬
.
5- The Part (j) Maximum Production Rate, Rpi* , Pc/min --
‫أقصى‬
‫معدل‬
‫لإلنتاج‬
‫للمشغولة‬
 
*
*
*
*
WL
S
p
R
p
R i
pi
i
pi 

6d- Performance Measures by Bottle-neck model
6- Mean Utilization of a station (i) , Ui , -- ‫استخدام‬
‫محطة‬
‫عمل‬
 
*
*
*
WL
S
S
WL
R
S
WL
U
i
i
p
i
i
i 


WLi= Workload, min/Pc &
Si = Number of machines (servers) at station (i).
III- Utilization ‫االستخدام‬
‫يالحظ‬
‫أن‬
‫المحطة‬
‫الحرجة‬
-
‫عنق‬
‫الزجاجة‬
‫تستخدم‬
100%
7- Average Utilization of FMS
including Transport system ,
1
1
1





n
U
U
n
i
i
8- Overall FMS Utilization




 n
i
i
n
i
i
i
s
S
U
S
U
1
1
6e- Performance Measures by Bottle-neck model
9- Number of busy machines of a station (i) , BSi , --
 
*
*
*
WL
S
WL
R
WL
BS i
p
i
i 


IV- Number of Machines (servers) ‫الماكينات‬ ‫عدد‬
‫يالحظ‬
‫أن‬
‫جميع‬
‫الماكينات‬
‫مشغولة‬
‫عند‬
‫المحطة‬
‫الحرجة‬
-
‫عنق‬
‫الزجاجة‬
6f- Performance Measures by Bottle-neck model (example1)
FMS consists of loaf/unload station, two Milling stations, a drilling station,
and Handling system having 4 carriers the average transfer time = 3.0 min.
In the table below two products are to be produced on the FMS and related
operation data. Notice the all parts visits the station, i.e. frequency =1.0.
It is required to find the following:
1-FMS maximum production rate 2-Production rate of each station 3-
Utilization of each station 4- Number of busy machine
Part ,j
Part mix
pj
Operation k Description Station (i) Process Time ,min
A 0.4
1
2
3
4
Load
Mill
Drill
Unload
1
2
3
1
4
30
10
2
B 0.6
1
2
3
4
Load
Mill
Drill
Unload
1
2
3
1
4
40
15
2
6g- Performance Measures by Bottle-neck model (example1)
From data the following can be deduced:
• Production ratio is 2:3
• The slowest station is the Milling
Process Time of milling = {2/3(30) + 1(40)} = 60min
Production Rate of milling = 2{(2/3)+(1)} = 3.333 PC/h
Utilization of milling = 100%
• Process Time of the other stations
Load/unload station: {(4)+(1)} = 20 min 3.333
Drilling station: {4/3(10) + 2(15)} = 43.333 min
Handling system: {4/3(9) + 2(9)} = 30 min
• Utilization of the other stations
Load/unload station: 20/60 = 0.333
Drilling station: 43.333/60 = 0.722
Handling system: (30/60)/4 = 0.5/4 =0.125
6h- Performance Measures by Bottle-neck model (example1)
By using the equations
13/1=13
(10)(1.0)(0.4)+(15)(1.0)(0.6)=13
D 3
HS 4
nt = 3
(3)(3)(1.0){0.4+0.6}=9
9/4=2.25
M 2 (30)(1.0)(0.4)+(40)(1.0)(0.6)=36 36/2=18*
L/UL 1 (4+2)(1.0){0.4+0.6}=6 6/1=6
Station,
i
Workload, min,
Wli = Sumk,j {tijk * fijk * pj}
Bottle-neck Station,
Tp = Wli/Si
Part B production rate,
RpB = pB * Rp*
3.333 * 0.6 = 2.00 Pc/hr
Part A production rate, RpA
= pA * Rp*
3.333 * 0.4 = 1.333 Pc/hr
Maximum production rate,
Rp* = S*/WL*
2/36=0.05555 Pc/min = 3.333 Pc/hr
6i- Performance Measures by Bottle-neck model (example1)
(13)(0.05555)=0.722
(13/1)(0.05555)=0.722
D 3
HS 4 (9/4)(0.05555)=0.125 (9)(0.05555)=0.5
M 2 (36/2)(0.05555)=1.0 (36)(0.05555)=2.0
L/UL 1 (6/1)(0.05555)=0.33 (6)(0.05555)=0.33
Station,
i
Utilization,
Ui = (Wli /Si)(Rp* )
Number of Busy machines,
Bp = (Wli)(Rp* )
6j- Performance Measures by Bottle-neck model (example2)
FMS consists of loaf/unload station, three Milling stations, two drilling
stations, an inspection station, and Handling system having 2 carriers the
average transfer time = 3.5 min.
In the table below four products are to be produced on the FMS and related
operation data. Notice the all parts visits the station, i.e. frequency =1.0. exept
for the inspection station the visits less than 1.0
It is required to find the following:
1-FMS maximum production rate 2-Production rate of each station 3-
Utilization of each station 4- Number of busy machine
6k- Performance Measures by Bottle-neck model (example2)
1.0
1.0
0.5
1.0
4
23
8
2
1
3
4
1
Load
Drill
Inspect
Unload
1
2
3
4
0.3
C
1.0
1.0
0.333
1.0
4
30
12
2
1
2
4
1
Load
Mill
Inspect
Unload
1
2
3
4
0.4
D
1.0
1.0
1.0
1.0
0.2
1.0
B 0.2
1
2
3
4
5
6
Load
Drill
Mill
Drill
Inspect
Unload
1
3
2
3
4
1
4
16
25
14
15
2
1.0
1.0
1.0
0.5
1.0
A 0.1
1
2
3
4
5
Load
Mill
Drill
Inspect
Unload
1
2
3
4
1
4
20
15
12
2
Frequency
Part ,j
Part mix
pj
Operation
k
Description
Station
(i)
Process
Time ,min
6l- Performance Measures by Bottle-neck model (example2)
14.4/2=7.2*
(15)(1)(.1) + (16)(1)(.2) +
(14)(1)(.2) + (23)(1)(.3) =14.4
D 3
HS 5
nt = (3.5)(.1) +(4.2)(.2)
+(2.5)(.3) + (2.333)(.4) =2.873
(2.873)(3.5)=10.06
10.06/2=5.03
M 2
(20)(1)(.1) + (25)(1)(.2) +
(30)(1)(.4) =19
19/3=6.333
L/UL 1 (4+2)(1.0){.1+.4+.3+.6}=6 6/1=6
Station,
i
A) Workload, min,
Wli = Sumk,j {tijk * fijk * pj}
Bottle-neck Station,
Tp = Wli/Si
4/1=4
(12)(.5)(.1) + (15)(.2)(.2) +
(8)(.5)(.3) + (12)(.333)(.4) =4
I 4
6m- Performance Measures by Bottle-neck model (example2)
Part B production rate,
RpB = pB * Rp*
8.333 * 0.2 = 1.667 Pc/hr
Part A production rate, RpA
= pA * Rp*
8.333 * 0.1 = 0.8333 Pc/hr
Maximum production rate,
Rp* = S*/WL*
2/14.4=0.1389 Pc/min = 8.333
Pc/hr
Part C production rate,
RpC = pC * Rp*
8.333 * 0.3 = 2.500 Pc/hr
Part D production rate,
RpD = pD * Rp*
8.333 * 0.4 = 3.333 Pc/hr
6n- Performance Measures by Bottle-neck model (example2)
(14.4)(0.1389)=2.00
(14.4/1)(0.1389)=1.0
D 3
HS 5 (10.06/2)(0.1389)=0.699 (10.06)(0.1389)=1.397
M 2 (19/3)(0.1389)=0.879 (19)(0.1389)=2.639
L/UL 1 (6/1)(0.1389)=0.833 (6)(0.1389)=0.833
Station,
i
Utilization,
Ui = (Wli /Si)(Rp* )
Number of Busy machines,
Bp = (Wli)(Rp* )
I 4 (4/1)(0.1389)=0.555 (4)(0.1389)=0.555
Overall FMS Utilization




 n
i
i
n
i
i
i
s
S
U
S
U
1
1
861
.
0
7
)
555
.
0
(
1
)
0
.
1
(
2
)
879
.
0
(
3
)
833
.
0
(
1





6o- Performance Measures by Bottle-neck model (example3)
In the example 2 the utilization of station 2 is U2 = .789 . It is required to
make it 100%/%
solution
  
*
2
2
2 p
R
S
WL
U 
  
1389
.
0
3
0
.
1 2
WL

problem
previous
in
min.
19.0
min.
6
.
21
2 

WL
        min.
0
.
7
0
.
1
2
.
0
25
0
.
1
1
.
0
20
2 



 B
A
WL
  min.
6
.
14
0
.
7
6
.
21
on,
Utilizati
100%
at
Workload
For the 2 


 D
WL
  min.
0
.
12
0
.
7
0
.
19
on,
Utilizati
78.9%
at
Workload
For the 2 


 D
WL
   Pc/hr
055
.
4
333
.
3
0
.
12
6
.
14 

pD
R
Pc/hr
055
.
9
055
.
4
500
.
2
667
.
1
833
.
* 




p
R
092
.
0
055
.
9
833
. 

A
p 182
.
0
055
.
9
667
.
1 

B
p
276
.
0
055
.
9
500
.
2 

C
p 448
.
0
055
.
9
055
.
4 

D
p
6p- Performance Measures by Bottle-neck model
Calculation of MLT & WIP
10- Manufacturing Lead Time, MLT ‫زمن‬
‫التصنيع‬
‫المقدم‬
w
n
n
i
i T
WL
WL
MLT 

 

 1
1
WLn+1 =Workload of Handling System, -- ‫حمل‬
‫نظام‬
‫المناولة‬
tw =Mean waiting time per move,min ‫متوسط‬
‫زمن‬
‫االنتقال‬
‫للحركة‬


n
i
i
WL
1
=Workload of all stations in System, -- ‫مجموع‬
‫حمل‬
‫المحطات‬
11- Work In Process, N ‫كمية‬
‫المشغوالت‬
‫في‬
‫النظام‬
‫بين‬
‫العمليات‬
Remarks:
1- N is constant in the system. This means
that no new part enters the system until
a part in the system finish is processed
either has similar routing or not
dependant on product ratio. There is a
limited number in the system
‫مالحظات‬
:
1
-
N
‫ثابتة‬
‫في‬
‫النظام‬
‫أي‬
‫أن‬
‫مشغولة‬
‫جدي‬
‫دة‬
‫تدخل‬
‫النظام‬
‫عند‬
‫االنتهاء‬
‫من‬
‫إنتاج‬
‫مشغولة‬
‫سواء‬
‫لها‬
‫نفس‬
‫المسار‬
‫أو‬
‫ال‬
‫معتمدا‬
‫على‬
‫نسبة‬
‫المشغولة‬
pi
-
‫بمعني‬
‫أن‬
‫هناك‬
‫عدد‬
‫محدد‬
‫داخل‬
‫النظام‬
‫في‬
‫التصنيع‬
‫المرن‬
.
6q- Performance Measures by Bottle-neck model
‫مالحظات‬
:
2
-
‫تلعب‬
N
‫دورا‬
‫حرجا‬
‫في‬
‫النظام‬
‫كالتالي‬
:
•
‫في‬
‫حالة‬
N
‫صغيرة‬
:
‫يمكن‬
‫توقف‬
‫المحطات‬
‫لتعطشه‬
‫ا‬
‫لمشغوالت‬
‫ومن‬
‫ضمنها‬
‫المحطة‬
‫الحرجة‬
(
‫عنق‬
‫الزجاجة‬
)
‫؛‬
‫و‬
‫يصبح‬
‫معدل‬
‫اإلنتاج‬
‫للنظام‬
‫أقل‬
‫من‬
‫معدل‬
‫اإلنتاج‬
‫للمحطة‬
‫الحرجة‬
•
‫وفي‬
‫حالة‬
N
‫كبيرة‬
‫جدا‬
:
‫يكون‬
‫النظام‬
‫محمال‬
‫بالكامل‬
‫ويحتوي‬
‫على‬
‫خط‬
‫انتظار‬
Waiting line
‫؛‬
‫و‬
‫يصبح‬
‫معدل‬
‫إنتاج‬
‫النظام‬
‫متعلقا‬
‫بمعدل‬
‫إنتاج‬
‫المحطة‬
‫الحر‬
‫جة‬
(
‫عنق‬
‫الزجاجة‬
)
‫كتقدير‬
‫مناسب‬
‫ويكون‬
‫كمية‬
‫المشغوالت‬
‫في‬
‫النظام‬
WIP
‫كبيرة‬
‫منتظرة‬
‫التصنيع‬
‫عند‬
‫االنتهاء‬
‫من‬
‫إنتاج‬
‫مشغولة‬
–
‫ويصبح‬
‫زمن‬
‫التصنيع‬
‫المقدم‬
MLT
‫فترة‬
‫طويلة‬
.
3- N can be expressed by little law w
L 

In case that system operate with maximum production rate equal to critical
station production rate, the MLT equation will be
‫وفي‬
‫حالة‬
‫فرض‬
‫أن‬
‫النظام‬
‫يعمل‬
‫وفقا‬
‫للمحطة‬
‫الحرجة‬
(
‫عنق‬
‫الزجاجة‬
‫وبون‬
‫وجود‬
‫انتظار‬
‫للمشغوالت‬
‫تصبح‬
‫المعادلة‬
‫كالتالي‬
:
   
1
*
*
* 


  n
i
p
p WL
WL
R
MLT
R
N
Remarks:
2- N plays critical role as follow:
• In case N small: the stations may stops
as they are starved for parts including
the bottle neck station. The production
rat is less than production rate of
critical station.
• In case N is large: the machines in the
system are fully loaded and production
rate of the system is equal the
production rate of critical station &
part waiting to be processed (WIP) are
large. MLT is long period.
 
MLT
R
N p


6r- Performance Measures by Bottle-neck model
There are two cases: ‫ويكون‬
‫هناك‬
‫حالتين‬
‫للحل‬
‫هما‬
‫كالتالي‬
:
0

w
T
CASE - 1








 *
N
N
 
1
1 

  n
i WL
WL
MLT
  *
1 p
p
p R
MLT
N
R
R 

p
j
pj R
p
R 
- 1
2 MLT
MLT
Tw 
CASE - 1








 *
N
N
 
*
2 p
R
N
MLT 
 
*
*
* WL
S
Rp 
*
* p
j
pj R
p
R 
6s- Performance Measures by Bottle-neck model (example4)
Using the data of example (1), calculate for N =2.3.4 the following:
1- Maximum Production Rate of FMS
2- MLT
Pc/min
0555
.
0
*
p
R
  min
64
9
13
36
6
1
1 





 
 n
i WL
WL
MLT
  555
.
3
64
0555
.
0
*
* 1 


 MLT
R
N p
4>N* 64 Rp* =S*/ WL* = 3.33 4*60/3.33=72 8
3<N* 64 Rp =N/ MLT1 = 3*60/64 = 2.813 MLT1 0
2<N* 64 Rp =N/ MLT1 = 2*60/64 = 1.875 MLT1 0
N
MLT1,
min
Production Rate,Pc/hr MLT2, min
Tw,
min
6t- Performance Measures by Bottle-neck model (example)
From the example the behaviour of system depend on N as follow:
‫ومن‬
‫هذا‬
‫المثال‬
‫يتبن‬
‫أن‬
‫سلوك‬
‫النظام‬
‫وفقا‬
‫لحالة‬
N
‫كالتالي‬
:
MLT
N
Rp
N
N*
MLT1
N*
1- MLT is constant until reaching
N* and then increases
‫بقاء‬
‫الزمن‬
MLT
‫ثابتا‬
‫حتى‬
N*
‫ثم‬
‫يتزايد‬
2- production rate increases until
reaching N*, then is constant
‫تزايد‬
‫معدل‬
‫اإلنتاج‬
Rp
‫حتى‬
N*
‫ثم‬
‫يصبح‬
‫ثابت‬
‫بمعدل‬
‫إنتاج‬
‫المحطة‬
‫الحرجة‬
Rp*
6u- Performance Measures by Bottle-neck model
By comparing the values obtained from bottle neck model and simulation
model (Can Q) a adequacy factor is estimated as follow:
‫وبدراسة‬
‫مقارنة‬
‫بين‬
‫القيم‬
‫المحسوبة‬
‫من‬
‫نموذج‬
‫عنق‬
‫الزجاجة‬
‫ونموذج‬
‫المحاكاة‬
‫كان‬
-
‫كيو‬
‫تم‬
‫تقدي‬
‫ر‬
‫معامل‬
‫الكفاءة‬
‫كما‬
‫يلي‬
:
-
AF = Adequacy factor for the bottle neck model



 1
1
n
i
i
S
U
N
AF
N = Number of parts in the system
= Average overall utilization of the system
U
By achieving adequacy factor > 1.5, Bottle neck model is used with confidence. It
means that the number of parts N  number of machines S in the system.
‫وعليه‬
‫بتحقيق‬
‫معامل‬
‫كفاءة‬
‫أعلي‬
‫من‬
1.5
‫؛‬
‫يمكن‬
‫استخدام‬
‫نموذج‬
‫عنق‬
‫الزجاجة‬
‫بثقة‬
‫كبيرة‬
‫؛‬
‫ويعني‬
‫ذلك‬
‫أن‬
‫يكون‬
N
‫عدد‬
‫القطع‬
‫في‬
‫النظام‬
‫أكبر‬
‫من‬
‫مجموع‬
‫الماكينات‬
S
‫في‬
‫النظام‬
Adequacy Factor value Anticipated discrepancy with CAN-Q
AF < 0.9 Discrepancy < 5% are likely
0.9 =< AF => 1.5 Discrepancy => 5% are likely, User should view result carefully
AF > 1.5 Discrepancy < 5% are likely
Comparison Between Bottle-neck model and CAN-Q Model
‫كان‬ ‫نموذج‬ ‫مع‬ ‫الزجاجة‬ ‫عنق‬ ‫نموذج‬ ‫مقارنة‬
–
‫كيو‬
6x- Performance Measures by Bottle-neck model
Example (4)
Using product mix, routing and operation time data in example (2), find the
number of machines achieving yearly production of 60,000 Parts/yr .The
system works 24 hr/day, 5 day/wk, 50 wk/yr
1- compute production rate
solution
Pc/min
1754
.
0
pc/hr
527
.
10
95
.
0
000
,
6
000
,
60




p
R
2- Calculate number of machines M/c
2
053
.
1
0
.
6
1754
.
0
1 



S
M/c
4
333
.
3
0
.
19
1754
.
0
2 



S M/c
3
526
.
2
4
.
14
1754
.
0
3 



S
M/c
1
702
.
0
0
.
4
1754
.
0
4 



S M/c
2
765
.
1
06
.
0
1
1754
.
0
5 



S
Determination of number of machines (servers) in a station i
‫تقدير‬
‫عدد‬
‫الماكينات‬
‫في‬
‫محطة‬
i
 
i
p
i WL
R
S 
 Integer
Minimum
6y- Performance Measures by Bottle-neck model
Example (5): Using data of example (4), find the following:
1) Utilization of each station
2) Maximum possible production rate at each station, if the utilization of the
bottle-neck station increased to 100%.
The integer estimation of number of Machines (Servers) in a station resulting
that all stations are less than 100% . Hence the largest utilized station can be
considered a bottle neck station. The maximum production rate can be
computed to become 100% utilization.
‫ونظرا‬
‫ألن‬
‫تقدير‬
‫عدد‬
‫الماكينات‬
‫في‬
‫محطة‬
i
‫بعدد‬
‫صحيح‬
،
‫يكون‬
‫االستخدام‬
‫للمحطة‬
‫أقل‬
‫من‬
100%
‫وعليه‬
‫تحدد‬
‫المحطة‬
‫الحرجة‬
Bottle-neck station
‫باألكثر‬
‫استخداما‬
‫بين‬
‫جميع‬
‫المحطات؛‬
‫وإذا‬
‫كان‬
‫استخدامها‬
‫أقل‬
‫من‬
1.0
‫عليه‬
‫يمكن‬
‫زيادة‬
‫معدل‬
‫اإلنتاج‬
‫األقصى‬
‫حتى‬
‫يصبح‬
‫االستخدام‬
=
1.0
‫كما‬
‫في‬
‫المثال‬
‫التالي‬
:
Solution
526
.
0
2
053
.
1
1 

U 833
.
0
4
333
.
3
2 

U
42
8
.
0
3
526
.
2
3 

U 702
.
0
1
702
.
0
4 

U 883
.
0
2
765
.
1
5 

U
1- Utilization
Notice that station(5) is critical [Material handling
2- Maximum production rate
for 100% utilization
Pc/min
1988
.
0
pc/hr
93
.
11
883
.
0
526
.
10
* 


p
R
7a- guideline concluded from equation ‫المعادالت‬ ‫من‬ ‫المستنتجة‬ ‫االرشادات‬
• For a given product or part mix, the total
production rate of the FMS is limited by
the bottle-neck station, which is the station
with maximum work load per server.
• If product or part mix, It is possible to
increase total production rate by increasing
the utilization of non-bottle-neck
workstation.
• The number of parts in FMS at any time
should be greater than the number of
servers (processing machines) in the system.
A ratio of 2 parts/server is probably
optimum, assuming equal distribution
through the FMA to ensure that part is
waiting at every station. This is especially
critical at the bottle-neck station
•
‫يكون‬
‫أقصى‬
‫معدل‬
‫لإلنتاج‬
‫بحدود‬
‫سع‬
‫ة‬
‫المحطة‬
‫الحرجة‬
(
‫عنق‬
‫الزجاجة‬
)
‫وتمثل‬
‫الحمل‬
‫األقصى‬
‫لكل‬
‫ماكينة‬
‫خادمة‬
.
•
‫إذا‬
‫تم‬
‫استرخاء‬
‫شرط‬
‫نسبة‬
‫خلطة‬
‫المنتجات‬
‫يمكن‬
‫زيادة‬
‫معدل‬
‫اإلنتاج‬
‫بزيادة‬
‫استخدام‬
‫المحطات‬
‫الغير‬
‫حرجة‬
•
‫يجب‬
‫أن‬
‫تكون‬
‫عدد‬
‫المشغوالت‬
‫في‬
‫النظام‬
‫أكبر‬
‫من‬
‫عدد‬
‫الماكينات‬
‫الخادمة‬
‫في‬
‫جميع‬
‫المحطات‬
‫في‬
‫النظام‬
.
‫يحتمل‬
‫نسبة‬
‫المشغولة‬
/
‫الماكينة‬
=
2
‫قيمة‬
‫مثلى‬
‫يفرض‬
‫توزيع‬
‫المشغوالت‬
‫على‬
‫جميع‬
‫الماكينات‬
‫بالتساوي‬
‫للتأكد‬
‫من‬
‫وجود‬
‫مشغولة‬
‫عند‬
‫كل‬
‫ماكينة‬
.
7b- guideline concluded from equation ‫المعادالت‬ ‫من‬ ‫المستنتجة‬ ‫االرشادات‬
• If WIP (number of part in the system) is
kept at too low a value, production rate
of the system is impaired
• If WIP is allowed to be too high, then
manufacturing lead time will be long
with no improvement in production rate.
• As a first approximation, the bottleneck
model can be used to estimate the
number of servers at each station
(Number of machine of each type) to
achieve a specified overall production
rate of the system.
•
‫الصغر‬
‫المتناهي‬
‫لعدد‬
‫المشغوالت‬
‫في‬
‫النظام‬
(WIP)
‫يؤثر‬
‫على‬
‫معدالت‬
‫اإلنتاج‬
‫وتقليله‬
•
‫كبر‬
‫عدد‬
‫المشغوالت‬
‫في‬
‫النظام‬
(WIP)
‫يؤدي‬
‫إلى‬
‫طول‬
‫فترة‬
‫زمن‬
‫التصنيع‬
‫المقدم‬
(MLT)
‫بدون‬
‫تحسن‬
‫في‬
‫معدالت‬
‫اإلنتاج‬
•
‫يمكن‬
‫استخدام‬
‫المعادالت‬
‫لحساب‬
‫عدد‬
‫الماكينات‬
‫الخادمة‬
‫في‬
‫كل‬
‫محطة‬
‫المحقق‬
‫ة‬
‫لمعدل‬
‫إنتاج‬
‫محدد‬

More Related Content

What's hot

Group Technology, coding and cell design
Group Technology, coding and cell designGroup Technology, coding and cell design
Group Technology, coding and cell designNauman khan
 
COMPUTER AIDED PROCESS PLANNING
COMPUTER AIDED PROCESS PLANNINGCOMPUTER AIDED PROCESS PLANNING
COMPUTER AIDED PROCESS PLANNINGjntuhcej
 
Computer integrated Manufacturing
Computer integrated ManufacturingComputer integrated Manufacturing
Computer integrated ManufacturingVignesh Gopal Raja
 
Group technology, Production flow Analysis
Group technology, Production flow AnalysisGroup technology, Production flow Analysis
Group technology, Production flow AnalysisKEERTHIVASAN RAVI
 
Computer Integrated Manufacturing
Computer Integrated Manufacturing Computer Integrated Manufacturing
Computer Integrated Manufacturing Somashekar S.M
 
Cellular manufacturing and group technology
Cellular manufacturing and group technologyCellular manufacturing and group technology
Cellular manufacturing and group technologyHitendrasinh Zala
 
Chapter 7 automation techniques
Chapter 7  automation techniquesChapter 7  automation techniques
Chapter 7 automation techniquesMohamad Sahiedan
 
Cad lecture-5
Cad lecture-5Cad lecture-5
Cad lecture-527273737
 
Manufacturing System Introduction
Manufacturing System IntroductionManufacturing System Introduction
Manufacturing System IntroductionMuhammad Muddassir
 
Review on GROUP TECHNOLOGY & it’s implementation
Review on GROUP TECHNOLOGY & it’s implementationReview on GROUP TECHNOLOGY & it’s implementation
Review on GROUP TECHNOLOGY & it’s implementationManoj Gowda K
 
Introduction to automation - Module 01
Introduction to automation - Module 01Introduction to automation - Module 01
Introduction to automation - Module 01Ameya Nijasure
 
Computer- aided Manufacturing Resource Planning
Computer- aided Manufacturing Resource Planning Computer- aided Manufacturing Resource Planning
Computer- aided Manufacturing Resource Planning jntuhcej
 
Process Planning
Process PlanningProcess Planning
Process PlanningGuhan M
 
Group technology ppt @ bec doms
Group technology ppt @ bec domsGroup technology ppt @ bec doms
Group technology ppt @ bec domsBabasab Patil
 
Computer generated time standards
Computer  generated time standardsComputer  generated time standards
Computer generated time standardsVenu Yadav
 
06 group technology
06 group technology06 group technology
06 group technologyArif Rahman
 

What's hot (20)

Group Technology, coding and cell design
Group Technology, coding and cell designGroup Technology, coding and cell design
Group Technology, coding and cell design
 
Group technology and cellular manufacturing
Group technology and cellular manufacturingGroup technology and cellular manufacturing
Group technology and cellular manufacturing
 
COMPUTER AIDED PROCESS PLANNING
COMPUTER AIDED PROCESS PLANNINGCOMPUTER AIDED PROCESS PLANNING
COMPUTER AIDED PROCESS PLANNING
 
Group Technology
Group TechnologyGroup Technology
Group Technology
 
Computer integrated Manufacturing
Computer integrated ManufacturingComputer integrated Manufacturing
Computer integrated Manufacturing
 
Group technology, Production flow Analysis
Group technology, Production flow AnalysisGroup technology, Production flow Analysis
Group technology, Production flow Analysis
 
Computer Integrated Manufacturing
Computer Integrated Manufacturing Computer Integrated Manufacturing
Computer Integrated Manufacturing
 
Unit 3 cim
Unit 3  cimUnit 3  cim
Unit 3 cim
 
Cellular manufacturing and group technology
Cellular manufacturing and group technologyCellular manufacturing and group technology
Cellular manufacturing and group technology
 
Chapter 7 automation techniques
Chapter 7  automation techniquesChapter 7  automation techniques
Chapter 7 automation techniques
 
Unit 1 cim
Unit 1 cimUnit 1 cim
Unit 1 cim
 
Cad lecture-5
Cad lecture-5Cad lecture-5
Cad lecture-5
 
Manufacturing System Introduction
Manufacturing System IntroductionManufacturing System Introduction
Manufacturing System Introduction
 
Review on GROUP TECHNOLOGY & it’s implementation
Review on GROUP TECHNOLOGY & it’s implementationReview on GROUP TECHNOLOGY & it’s implementation
Review on GROUP TECHNOLOGY & it’s implementation
 
Introduction to automation - Module 01
Introduction to automation - Module 01Introduction to automation - Module 01
Introduction to automation - Module 01
 
Computer- aided Manufacturing Resource Planning
Computer- aided Manufacturing Resource Planning Computer- aided Manufacturing Resource Planning
Computer- aided Manufacturing Resource Planning
 
Process Planning
Process PlanningProcess Planning
Process Planning
 
Group technology ppt @ bec doms
Group technology ppt @ bec domsGroup technology ppt @ bec doms
Group technology ppt @ bec doms
 
Computer generated time standards
Computer  generated time standardsComputer  generated time standards
Computer generated time standards
 
06 group technology
06 group technology06 group technology
06 group technology
 

Similar to flexible-manufacturing-systems

6_2 Flexible MFG Performance.ppt
6_2 Flexible MFG Performance.ppt6_2 Flexible MFG Performance.ppt
6_2 Flexible MFG Performance.pptSabrySYoussef1
 
CIM report - final
CIM report - finalCIM report - final
CIM report - finalPraveen S R
 
Job shop scheduling
Job shop schedulingJob shop scheduling
Job shop schedulingSujeet TAMBE
 
Job Shop Scheduling.pptx
Job Shop Scheduling.pptxJob Shop Scheduling.pptx
Job Shop Scheduling.pptxSyedAmirIqbal3
 
Industrial engineeering pli
Industrial engineeering   pliIndustrial engineeering   pli
Industrial engineeering pliDhyey Shukla
 
Application Of Workstudy
Application Of WorkstudyApplication Of Workstudy
Application Of Workstudybejayrocks
 
Operational Research
Operational ResearchOperational Research
Operational ResearchBrendaGaytan6
 
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)LI HE
 
Systems modelling and simulation
Systems modelling and simulationSystems modelling and simulation
Systems modelling and simulationHassan Saif
 
Preliminary Study of an Assembling Plant
Preliminary Study of an Assembling Plant Preliminary Study of an Assembling Plant
Preliminary Study of an Assembling Plant MustafaElAkkad
 
SMA lab Manual JAN 2021.pdf
SMA lab Manual JAN 2021.pdfSMA lab Manual JAN 2021.pdf
SMA lab Manual JAN 2021.pdfFreekamaallare
 

Similar to flexible-manufacturing-systems (20)

6_2 Flexible MFG Performance.ppt
6_2 Flexible MFG Performance.ppt6_2 Flexible MFG Performance.ppt
6_2 Flexible MFG Performance.ppt
 
CIM report - final
CIM report - finalCIM report - final
CIM report - final
 
CIM report - final
CIM report - finalCIM report - final
CIM report - final
 
CIM Report
CIM ReportCIM Report
CIM Report
 
Tn6 facility layout
Tn6 facility layoutTn6 facility layout
Tn6 facility layout
 
Tn6 facility+layout
Tn6 facility+layoutTn6 facility+layout
Tn6 facility+layout
 
Job shop scheduling
Job shop schedulingJob shop scheduling
Job shop scheduling
 
5case
5case5case
5case
 
Job Shop Scheduling.pptx
Job Shop Scheduling.pptxJob Shop Scheduling.pptx
Job Shop Scheduling.pptx
 
Flexible Manufacturing System Design
Flexible Manufacturing System DesignFlexible Manufacturing System Design
Flexible Manufacturing System Design
 
Industrial engineeering pli
Industrial engineeering   pliIndustrial engineeering   pli
Industrial engineeering pli
 
Application Of Workstudy
Application Of WorkstudyApplication Of Workstudy
Application Of Workstudy
 
Operational Research
Operational ResearchOperational Research
Operational Research
 
K012556370
K012556370K012556370
K012556370
 
K012556370
K012556370K012556370
K012556370
 
FMS 1.pptx
FMS 1.pptxFMS 1.pptx
FMS 1.pptx
 
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
 
Systems modelling and simulation
Systems modelling and simulationSystems modelling and simulation
Systems modelling and simulation
 
Preliminary Study of an Assembling Plant
Preliminary Study of an Assembling Plant Preliminary Study of an Assembling Plant
Preliminary Study of an Assembling Plant
 
SMA lab Manual JAN 2021.pdf
SMA lab Manual JAN 2021.pdfSMA lab Manual JAN 2021.pdf
SMA lab Manual JAN 2021.pdf
 

More from sabry said

Design for MA.ppt
Design for MA.pptDesign for MA.ppt
Design for MA.pptsabry said
 
GPILS-Lab-Safety-Training.ppt
GPILS-Lab-Safety-Training.pptGPILS-Lab-Safety-Training.ppt
GPILS-Lab-Safety-Training.pptsabry said
 
Materials_Ch3.pdf
Materials_Ch3.pdfMaterials_Ch3.pdf
Materials_Ch3.pdfsabry said
 
Materials_Ch2.pdf
Materials_Ch2.pdfMaterials_Ch2.pdf
Materials_Ch2.pdfsabry said
 
Chapter 13 – Heat Treatment of Steels.ppt
Chapter 13 – Heat Treatment of Steels.pptChapter 13 – Heat Treatment of Steels.ppt
Chapter 13 – Heat Treatment of Steels.pptsabry said
 
Shaping, planing and slotting operations
Shaping, planing and slotting operationsShaping, planing and slotting operations
Shaping, planing and slotting operationssabry said
 
Machining techniques and equipments
Machining techniques and equipmentsMachining techniques and equipments
Machining techniques and equipmentssabry said
 
Friction stir welding process parameters for
Friction stir welding process parameters forFriction stir welding process parameters for
Friction stir welding process parameters forsabry said
 
Friction stir-processing
Friction stir-processingFriction stir-processing
Friction stir-processingsabry said
 

More from sabry said (12)

Design for MA.ppt
Design for MA.pptDesign for MA.ppt
Design for MA.ppt
 
GPILS-Lab-Safety-Training.ppt
GPILS-Lab-Safety-Training.pptGPILS-Lab-Safety-Training.ppt
GPILS-Lab-Safety-Training.ppt
 
Materials_Ch3.pdf
Materials_Ch3.pdfMaterials_Ch3.pdf
Materials_Ch3.pdf
 
Materials_Ch2.pdf
Materials_Ch2.pdfMaterials_Ch2.pdf
Materials_Ch2.pdf
 
Chapter 13 – Heat Treatment of Steels.ppt
Chapter 13 – Heat Treatment of Steels.pptChapter 13 – Heat Treatment of Steels.ppt
Chapter 13 – Heat Treatment of Steels.ppt
 
Lec.1.ppt
Lec.1.pptLec.1.ppt
Lec.1.ppt
 
Shaping, planing and slotting operations
Shaping, planing and slotting operationsShaping, planing and slotting operations
Shaping, planing and slotting operations
 
Machining techniques and equipments
Machining techniques and equipmentsMachining techniques and equipments
Machining techniques and equipments
 
Nc
NcNc
Nc
 
Cnc lab sheet
Cnc lab sheetCnc lab sheet
Cnc lab sheet
 
Friction stir welding process parameters for
Friction stir welding process parameters forFriction stir welding process parameters for
Friction stir welding process parameters for
 
Friction stir-processing
Friction stir-processingFriction stir-processing
Friction stir-processing
 

Recently uploaded

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 

Recently uploaded (20)

🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 

flexible-manufacturing-systems

  • 1. VIII - Flexible Manufacturing Systems ‫المرن‬ ‫التصنيع‬ ‫نظام‬ 2- System planning Problems ‫النظام‬ ‫تخطيط‬ ‫مسائل‬ IE 469 Manufacturing Systems 469 ‫التصنيع‬ ‫نظم‬ ‫صنع‬
  • 2. 1- FMS planning and implementation issues ‫المرنة‬ ‫التصنيع‬ ‫لنظم‬ ‫والتطبيق‬ ‫التخطيط‬ ‫موضوعات‬ The issues of flexible system are: 1- System design ‫النظام‬ ‫تصميم‬ • Production volume • Process and equipment requirement • Capacity (Machine Number) • Part & Process family • Tooling, fixtures • Material handling (number of pallets, AGV) • layout • Control system and programs • WIP & storage 2- Production Plans ‫اإلنتاج‬ ‫خطط‬ • Batching • Loading • Routing 3- Operation Plans ‫التشغيل‬ ‫خطط‬ • Sequencing • Scheduling • Dispatching 4- Performance Evaluations ‫تقييم‬ ‫األداء‬
  • 3. 2a- FMS Layout ‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬ A- linear Single-raw machine Layout 1 2 3 4 AGV B- Double-raw machine Layout 5 6 7 8 AGV 1 2 3 4 R C- Cluster machine Layout 6 9 3 4 10 5 7 1 2 8
  • 4. 2a- FMS Layout ‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬ D- Circular machine layout 3 1 2 4 5 R E- Carousel machine Layout work In. 1 2 3 4 work out. 7 6 5 8
  • 5. 2b- arranging FMS machines layout ‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫ترتيب‬ MFC cell Arrangement according to the move flow: [see groover p447] ‫ترتيب‬ ‫الماكينات‬ ‫في‬ ‫الموقع‬ ‫وفقا‬ ‫لتدفق‬ ‫حركة‬ ‫المشغوالت‬ ‫بينها‬ Example Parts flow in FMS cell composed of 5 machines according the given flow matrix below. Find the flow diagram and Arrangement of the machines. Also find the input and output of parts from the system From To 1 2 3 4 5 1 0 5 0 25 5 2 30 0 0 15 10 3 10 40 0 0 10 4 10 0 0 0 0 5 5 10 0 10 0 1 0.2 ∞ 1 0.67 From/To 25 10 60 55 35 From’s 25 50 0 55 55 To’s 3 2 5 1 4 3 2 5 1 4 40 10 5 5 10 10 15 60 20 10 10 10 40
  • 6. 2b- arranging FMS machines layout ‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫ترتيب‬ 3 2 5 1 4 40 10 5 5 10 10 15 60 20 10 10 10 40 3 1 2 5 4 10 60 5 10 10 40 15 10 10 20 40 Remarks: o The 60 parts input the cell at machine (3) o The 60 parts output from the cell from two machines:  machine (4) with 40 parts  Machine (1) with 20 parts
  • 7. 2c- general layout problem‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬ 1- Mathematical model for single row FMS layout ‫النموذج‬ ‫الرياضي‬ ‫اليجاد‬ ‫مواقع‬ ‫الماكينات‬ ‫في‬ ‫صف‬ ‫واحد‬         1 1 1 Minimize m i m i j j i ij ij x x f c Z Assume: line reference from machines of Distance , machines between Clearance machine th of length machines of Pairs between ance costs/dist Handling Material machines of Pairs between trips Frequency machines of Number i,j x x i,j d i l i,j c i,j f m j i ij i ij ij       Machine i Machine j i l j l ij d i x j x   ,...., 2 , 1 , 0 ,....., 1 1 ,...., 2 , 1 2 1 : Subject to m i x m i j m i d l l x x i ij i j i j i             
  • 8. 2c- general layout problem‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬ 2- Mathematical model for 2 rows FMS layout ‫النموذج‬ ‫الرياضي‬ ‫اليجاد‬ ‫مواقع‬ ‫الماكينات‬ ‫في‬ ‫صفين‬         1 1 1 Minimize m i m i j j i ij ij x x x f c Z Assume     line reference from machines of Distance , , , machines between Clearance 2 , 1 machine th of length machines of Pairs between ance costs/dist Handling Material machines of Pairs between trips Frequency machines of Number i,j y x y x i,j c c i l i,j c i,j f m j j i i ij ij i ij ij         ,...., 2 , 1 , 0 ,....., 1 1 ,...., 2 , 1 1 2 1 : Subject to m i x m i j m i c l l x x i ij i j i j i              Machine j j l j x j w j y ij c1 Machine i i l i x i w ij c2 i y         1 1 1 Minimize m i m i j j i ij ij y y y f c Z   ,...., 2 , 1 , 0 ,....., 1 1 ,...., 2 , 1 1 2 1 : Subject to m i y m i j m i c w w y y i ij i j i j i                y x Z Z Z   Minimize Minimize
  • 9. 2d- general layout problem‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬ Example: Arrange the machines according the flow given below in single row Frequency of Trips From To 1 2 3 4 5 1 - 20 70 50 30 2 20 - 10 40 15 3 70 10 - 18 21 4 50 40 18 - 35 5 30 15 21 35 - Cost matrix From To 1 2 3 4 5 1 - 2 7 5 3 2 2 - 1 4 2 3 7 1 - 1 2 4 5 4 1 - 3 5 3 2 2 3 - Clearance matrix From To 1 2 3 4 5 1 - 2 1 1 1 2 2 - 1 2 2 3 1 1 - 1 2 4 1 2 1 - 1 5 1 2 2 1 - Machine Dimensions Machine M1 M2 M3 M4 M5 Size 10x10 15x15 20x30 20x20 25x15
  • 10. 2d- general layout problem‫المرن‬ ‫التصنيع‬ ‫نظام‬ ‫ماكينات‬ ‫مواقع‬ ‫تخطيط‬ ‫مسألة‬ 1- Calculate the flow matrix Cost matrix - 3 2 2 3 5 3 2 2 3 5 4 5 4 1 - 3 7 1 - 1 2 2 - 1 4 1 - 2 7 5 1 2 3 4 From To Adjusted flow matrix - 105 42 30 90 5 105 42 30 90 5 4 250 160 18 - 3 490 10 - 18 2 40 - 10 160 1 - 40 490 250 1 2 3 4 From To 2- select the largest value (Between M/c 1& 3) and put them together M1 M2 M4 3- Find largest value between a machine and M/cs 1&3  M/c 4 and place it beside the largest value 4- repeat step 3 and find the largest value between a machine and M/cs 1,3&4  M/c 2 M3 M5 Frequency of Trips - 35 21 15 30 35 21 15 30 5 50 40 18 - 70 10 - 18 20 - 10 40 - 20 70 50 1 2 3 4 To = 5- for last M/c 5 , place it with largest values at the end of the line 1 1 2 2
  • 11. 3a- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ Introduction: There are two types for such problem. The first is a design issue and the second is a tactical issue. 1) Part selection for FMS design: it is the total set of the FMS system and usually the group technology techniques are used to build the FMS and find the parts and machines requirement. 2) Part selection for production on FMS: This problem is concerned with selection of Sub-set of parts to be produced on FMS during a production period. ‫مقدمة‬ : ‫ينقسم‬ ‫هذا‬ ‫النوع‬ ‫من‬ ‫المسائل‬ ‫إلى‬ ‫نوعين‬ ‫أحدهما‬ ‫تصميمي‬ ‫واألخر‬ ‫تكتيكي‬ : - (1 ‫اختيار‬ ‫المشغوالت‬ ‫لتصميم‬ ‫النظام‬ ‫المر‬ ‫ن‬ : - ‫تعتبر‬ ‫هذه‬ ‫هو‬ ‫حجر‬ ‫األساس‬ ‫التي‬ ‫يتم‬ ‫عل‬ ‫يها‬ ‫بناء‬ ‫النظام‬ ‫حيث‬ ‫يتم‬ ‫فيه‬ ‫اختيار‬ ‫المجم‬ ‫وعة‬ ‫المتكاملة‬ ‫للمشغوالت‬ ‫والماكينات‬ ‫المرتب‬ ‫طة‬ ‫بها‬ , ‫ويستخدم‬ ‫العديد‬ ‫من‬ ‫الطرق‬ ‫لحل‬ ‫هذه‬ ‫المسألة‬ ‫المسماة‬ ‫بمسألة‬ ‫تقنية‬ ‫المجموع‬ ‫ات‬ (2 ‫اختيار‬ ‫المشغوالت‬ ‫المطلوب‬ ‫إنتاجها‬ ‫في‬ ‫النظام‬ ‫المرن‬ ‫لفترة‬ ‫انتاج‬ : - ‫وهي‬ ‫مسألة‬ ‫اختيار‬ ‫مجموعة‬ ‫فرعية‬ Sub-set ‫من‬ ‫المشغوالت‬ ‫من‬ ‫المجموعة‬ ‫الكلية‬ ‫الممكن‬ ‫انتاجها‬ ‫في‬ ‫النظام‬ .
  • 12. 3b- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ Part selection for production on FMS ‫انتاج‬ ‫لفترة‬ ‫المرن‬ ‫النظام‬ ‫في‬ ‫إنتاجها‬ ‫المطلوب‬ ‫المشغوالت‬ ‫اختيار‬ Assume the following:- The total number of A part should be produced if part is selected P = The available productive Time is the key machine (bottle neck) pi = The total processing time for part i (unit time x unit/period) si = The Total saving if part is added to the system (unit saving x unit/period) Xi =Binary decision variable; 1 when part i is selected, otherwise 0    N i i i X s Z 1 Minimize   1 , 0 : Subject to 1     i N i i i X P X p This is a knapsack problem, where:-
  • 13. 3c- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ The heuristic checks each part type in turn and assign it to the FMS if saving are positive and sufficient capacity exists Step One:- Order part types 1 to N such that n n p s p s p s    . .......... 2 2 1 1 Step Two:- For i=1 to N: Select part type i if si > o and inclusion is feasible Example: It is required to manufacture 8 parts in FMS during a period of production = 250 hr. The FMS operate with cost = 50 $/hr. Find the parts to be produced during this period according data give in the table. Production time, hr 1.0 2.0 4.0 1.0 2.0 1.0 1.0 0.5 Demand rate 100 50 50 75 60 30 50 600 Material cost 45 35 124 50 120 34 36 114 purchase price 200 144 300 125 300 86 93 165 1 2 3 4 5 6 7 8 Part Type Solution by Greedy Knapsack Heuristic ‫الحل‬ ‫بطريقة‬ ‫التنقيب‬
  • 14. 3e- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ Step One:- Order part types 1 to N such that 1,5,4,2,7,6 Step Two:- Assignment Solution: 1- Calculate saving for each part as follow: Saving/unit = [Purchase price – Material Cost – Process cost] Part 1 saving = 200 – 45 – (1.0x50) =105 2- prepare the saving table 3- Use Knapsack approach 1-Assign Part 1 ,setting resource usage to 100 hr 2-Assign Part 5 ,setting resource usage to 100+120=220 hr 3-pass parts 4,2,7 ,since Time are exceeded 4-Assign Part 6 ,setting resource usage to 250 hr 4- calculate total saving as 1,2,6 are assigned. 105(100)+60(60)+30(2)=14,160 Total process time 100 100 200 75 120 30 50 300 Saving/hr 105 10 - 25 30 2 7 - Unit Saving 105 20 -24 25 60 2 7 26 Demand rate 100 50 50 75 60 30 50 600 Material cost 45 35 124 50 120 34 36 114 Production time, hr 1.0 2.0 4.0 1.0 2.0 1.0 1.0 0.5 purchase price 200 144 300 125 300 86 93 165 1 2 3 4 5 6 7 8 Part Type
  • 15. 3e- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ Introduction: • A series of decisions are made. • each decision is a stage based on some input state. the state corresponds to the amount of resource available. • Decisions yield a return (value of time due to assigning a part) but consume resources thus changing the state for next stage. • A recursive equation computes the return and ties the state variable together between stages • Stages and decisions must be picked to satisfy of principle of optimality. This principle states that for any initial stage, state, and decision, subsequent decisions must be optimal for the remainder of the problem that results from initial decision. Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬ ‫مقدمة‬ : - • ‫في‬ ‫هذه‬ ‫الطريقة‬ ‫يتم‬ ‫اتخاذ‬ ‫قرارات‬ ‫متتالي‬ ‫ة‬ • ‫كل‬ ‫قرار‬ ‫يمثل‬ ‫مرحلة‬ ‫مبنية‬ ‫على‬ ‫مدخالت‬ ‫حالة‬ ‫معينة‬ ( ‫زمن‬ ) . ‫حيث‬ ‫تتوافقالحالة‬ ‫م‬ ‫ع‬ ‫قيمة‬ ‫المصدر‬ ( ‫الزمن‬ ) ‫المتاح‬ • ‫ينتج‬ ‫عن‬ ‫القرارات‬ ‫عائد‬ ( ‫قيمة‬ ‫تعيين‬ ‫نو‬ ‫ع‬ ‫مشغولة‬ ) ‫وهي‬ ‫مقدار‬ ‫المصدر‬ ‫المتاح‬ ( ‫الزمن‬ ‫المتاح‬ ) , ‫ولكن‬ ‫تستهلك‬ ‫المصدر‬ ‫وعليه‬ ‫ت‬ ‫تغير‬ ‫الحالة‬ ( ‫تغير‬ ‫الزمن‬ ‫المتاح‬ ‫نتيجة‬ ‫تعيين‬ ‫المشغولة‬ ) ‫إلدخالها‬ ‫في‬ ‫المرحلة‬ ‫التالية‬ . • ‫تحسب‬ ‫معادلة‬ ‫التكرار‬ ‫العائد‬ ‫والمرتبطة‬ ‫بمتغيرات‬ ‫الحالة‬ ‫بين‬ ‫المراحل‬ • ‫يتم‬ ‫إنتقاء‬ ‫المراحل‬ ‫والقرارات‬ ‫المحققة‬ ‫لألمثل‬ . ‫هذا‬ ‫األساس‬ ‫تقرر‬ ‫أن‬ ‫أي‬ ‫مرحلة‬ ‫؛‬ ‫حالة‬ ‫؛‬ ‫قرار‬ ‫أولي‬ ‫يجب‬ ‫ان‬ ‫تكون‬ ‫القرارات‬ ‫التي‬ ‫تليه‬ ‫قرار‬ ‫أمثل‬ ‫لبقية‬ ‫المسألة‬ ‫والت‬ ‫ي‬ ‫ينتج‬ ‫من‬ ‫القرار‬ ‫األولي‬
  • 16. 3e- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ The recursive equation is as follow: Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬ The above equation acknowledges that if part type 1 is considered, it can be assigned to FMS provided that this saved money and sufficient time was available. 1 for  i         1 1 1 1 0 p p s p f   (1) N i   2 for                     1 1 1 1 1 , 0 p p f X p p f X s Max p f i i i i i X i i  (2) Notations: fi (ρ) = the cost saving for optimal decision regarding part type 1 to i, if they are allowed to occupy ρ time/period on FMS ρ = the state of time between 1 & 250 pi = the time used to process a part P = the available time si = saving of part type i Xi = decision variable for part type selection , 0 or 1
  • 17. 3f- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ 1) The first equation starts the process. 2) The second equation controls the transitions between stages. 3) The problem is scaled such that all pi are integers. 4) Then f1 is found for all integers ρ  P. storing these results, ‫توجد‬ ‫جميع‬ ‫القيم‬ ‫الصحيحة‬ ‫وتخزينها‬ 5) f2 (ρ) are found using all integers ρ  P using the second equation. ‫توجد‬ ‫جميع‬ ‫القيم‬ ‫الصحيحة‬ ‫من‬ ‫المعادلة‬ ‫التكرار‬ 6) The process continues until fN (ρ ) is found. This is the maximum saving, ‫للحل‬ ‫نكرر‬ ‫الحل‬ ‫لجميع‬ ‫القيم‬ ‫حتى‬ ‫الوصول‬ 7) The stored stage solutions are traced to find the optimal solution ‫إيجاد‬ ‫الحل‬ ‫األمثل‬ ‫من‬ ‫خالل‬ ‫متابعة‬ ‫ومراجعة‬ ‫حلول‬ ‫المراحل‬ Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬
  • 18. 3g- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ Total process time 100 100 200 75 120 30 50 300 Saving/hr 105 10 - 25 30 2 7 - Unit Saving 105 20 -24 25 60 2 7 26 Demand rate 100 50 50 75 60 30 50 600 Material cost 45 35 124 50 120 34 36 114 Production time, hr 1.0 2.0 4.0 1.0 2.0 1.0 1.0 0.5 purchase price 200 144 300 125 300 86 93 165 1 2 3 4 5 6 7 8 Part Type Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬ Example: It is required to manufacture 8 parts in FMS during a period of production = 250 hr. The FMS operate with cost = 50 $/hr. Find the parts to be produced during this period according data give in the table. Solution: A) Find the saving & total process time for each part type. Notice Number of part type can be processed on system = 6, [i.e. 6 stages solution]
  • 19. 3h- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ Total process time 100 100 200 75 120 30 50 300 Saving/hr 105 10 - 25 30 2 7 - Unit Saving 105 20 -24 25 60 2 7 26 1 2 3 4 5 6 7 8 Part Type Solution by Dynamic Programming ‫الديناميكية‬ ‫البرمجة‬ ‫طريقة‬ o No part is assigned before the state ρ < 30, ‫ال‬ ‫توجد‬ ‫مشغولة‬ ‫يمكن‬ ‫تعيينها‬ ‫قبل‬ ‫الحالة‬ o At ρ = 30 part type 6 become eligible for assignment. ‫عند‬ ‫هذه‬ ‫الحالة‬ ‫يمكن‬ ‫تعيين‬ ‫مشغولة‬ o The solution is not changed until ρ is increased to at least 50 hours, at this point either part 6 or 7 can be selected ‫إمكانية‬ ‫تعيين‬ ‫أي‬ ‫من‬ ‫مشغولتي‬ 6 ‫و‬ 7 ‫عند‬ ‫زيادة‬ ‫الحلة‬ ‫لقيمة‬ ‫متوفرة‬ ‫في‬ ‫الجدول‬ o Next state ρ =75 and part 4 become also eligible for assignment o Next state ρ =80 and parts 6 and 7 can be assigned together Notice that the problem is of discrete nature and reduction of calculation can be made. Hence the number of states can be determined as given in tables B) Find Values of fi (ρ) between 1  ρ  250 , depend on the state ρ (total process time of a part). Notice the following:
  • 20. 3i- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ C) First stage: Assume only part type 1 exist. (Part no.1 is to be assigned with largest saving). when ρ <100 no parts are assigned (X1 = 0) and f1(ρ)=0 For ρ  100 (X1=1) and f1(ρ) = 100 *105 = 10,500 State p 0 30 50 75 100 130 150 175 200 205 220 250 D) Second stage: Solving the two-stage problem for part types 1 & 2.  For ρ <100 neither is feasible  For ρ =100 select either part 1 or 2 - X1 = 0 or 1 , X2 =0 or 1  Case 1: X1=1 & X2 =0. Then the state variable return is f2(100) = f1(100) + 0 = 10,500 +0 =10,500  Case 2: X1=0 & X2=1. Then the state variable return is f2(100) =f1(0) + return of part 2 = 0 + 50*20=1000 ,  Select Case 1  On reaching ρ =200 part 2 can be selected for return of f2(100) = f1(100) + return of part 2 = 10,500 +1000 =11,500 Then carry 3rd until 6th stage as given in the following table F1(p) 0 0 0 0 10,500 10,500 10,500 10,500 10,500 10,500 10,500 10,500 F2(p) 0 0 0 0 10,500 10,500 10,500 10,500 11,500 11,500 11,500 11,500 Total process time 100 100 200 75 120 30 50 300 Unit Saving 105 20 -24 25 60 2 7 26 1 2 3 4 5 6 7 8 Part Type Demand rate 100 50 50 75 60 30 50 600
  • 21. 3j- Part selection problem ‫المشغوالت‬ ‫اختيار‬ ‫مسألة‬ Example to find the value at stage 5, f5(195) X5=0 , f5(195)= [0+ f4(195)]=12,375 X5=1 , f5(195)= [60x60+ f4(195-120)]=3600+1875=5475 i.e. the hours 120 is subtracted from 195 in the state variable used for part 5, hence part1,2,3 are not available State p 0 30 50 75 100 130 150 175 200 205 220 250 F1(p) 0 0 0 0 10,500 10,500 10,500 10,500 10,500 10,500 10,500 10,500 F2(p) 0 0 0 0 10,500 10,500 10,500 10,500 11,500 11,500 11,500 11,500 F3(p) 0 0 0 1,875 10,500 10,500 10,500 12,375 12,375 12,375 12,375 12,375 F4(p) 0 0 0 1,875 10,500 10,500 10,500 12,375 12,375 12,375 14,100 14,100 F5(p) 0 0 0 1,875 10,500 10,500 10,500 12,375 12,375 12,435 14,100 14,160 F6(p) 0 0 0 1,875 10,500 10,500 10,500 12,375 12,375 12,435 14,100 14,160
  • 22. 4a- Setup problems ‫النظام‬ ‫اعداد‬ ‫مسائل‬ ‫مقدمة‬ ‫هناك‬ ‫مسألتين‬ ‫أساسيتين‬ ‫هما‬ : - .1 ‫مسألة‬ ‫الدفعات‬ ‫هناك‬ ‫بيئتين‬ ‫لعمل‬ ‫نظام‬ ‫التصنيع‬ ‫هما‬ • ‫البيئة‬ ‫األولي‬ : ‫إمكانية‬ ‫الماكينات‬ ‫أن‬ ‫تحمل‬ ‫جميع‬ ‫األدوات‬ ‫المطلوب‬ ‫ة‬ ‫للعمليات‬ ‫وعليه‬ ‫يكون‬ ‫هناك‬ ‫دفعة‬ ‫واحدة‬ ‫فقط‬ . • ‫البيئة‬ ‫الثانية‬ : ‫عدم‬ ‫إمكانية‬ ‫الماكينات‬ ‫أن‬ ‫تحمل‬ ‫جميع‬ ‫األدوات‬ ‫المطلوبة‬ ‫للعمليات‬ ‫وعليه‬ ‫يجب‬ ‫تعيين‬ ‫مجموعة‬ ‫من‬ ‫الدفعات‬ ‫تتم‬ ‫بالتوالي‬ , ‫كما‬ ‫أن‬ ‫عملية‬ ‫تعيين‬ ‫ا‬ ‫لدفعات‬ ‫تساعد‬ ‫في‬ ‫توازن‬ ‫التحميل‬ ‫على‬ ‫الماكينات‬ ‫واس‬ ‫تخدام‬ ‫فترة‬ ‫زمنية‬ ( ‫من‬ ‫يوم‬ ‫إلى‬ ‫أسبوع‬ ) ‫بصورة‬ ‫فاعل‬ ‫ة‬ . .2 ‫مسألة‬ ‫التحميل‬ : - ‫هي‬ ‫مسألة‬ ‫تعيين‬ ‫عمليات‬ ‫المشغوالت‬ ‫واألدوات‬ ‫الالزمة‬ ‫لها‬ ‫علي‬ ‫ماكينات‬ ‫محددة‬ ‫التي‬ , ‫باإلضاف‬ ‫ة‬ ‫إلى‬ ‫إستاد‬ ‫منصات‬ ‫التحميل‬ ‫إلى‬ ‫المشغوالت‬ ‫ال‬ ‫تي‬ ‫تحمل‬ ‫على‬ ‫الماكينات‬ . ‫وهذه‬ ‫المسألة‬ ‫تساعد‬ ‫في‬ ‫تعيين‬ ‫مسار‬ ‫المشغوالت‬ ‫وتوالي‬ ‫إدخالها‬ ‫للنظ‬ ‫ام‬ . Introduction: There are two main problems 1. batching Problem Two environments can be recognized  1st environment Machines in FMS can carry out all tools required for operations, this means that all parts operations can be done only in one batch  2nd environment Machines in FMS can not carry out all tools required for operations, Hence the parts should be grouped in batches and produced sequentially. The process of batching help in line balancing and use of available time effectively. 2. Loading Problem This concerned with assignment problems of operations and tools on machines and Also assignment of pallets to parts loaded on machines. This help to routing and sequencing problems
  • 23. 4b- Batching Problem ‫الدفعات‬ ‫مسألة‬ Introduction: The aim is to determine the sub group of parts to be processed during a period of time on machines with limited tool magazine capacity. Two type of problems can be identified: o Batching according certain priority criteria with limited production time and with limited number of tool slot o Batching with limited tool magazine capacity Solution is carried out by Analytical Methods and/or Heuristic Methods ‫مقدمة‬ ‫يهدف‬ ‫تعيين‬ ‫الدفعات‬ ‫هو‬ ‫تحديد‬ ‫المشغوالت‬ ‫في‬ ‫مجموعة‬ ‫من‬ ‫الدفعات‬ ‫حيث‬ ‫كل‬ ‫دفعة‬ ‫بها‬ ‫عدد‬ ‫من‬ ‫المشغوالت‬ ‫تستخدم‬ ‫الماكينات‬ ‫ذات‬ ‫ذات‬ ‫سعة‬ ‫المحدودة‬ ‫لعدد‬ ‫من‬ ‫األدوات‬ ‫خالل‬ ‫فترة‬ ‫زمنية‬ ‫هناك‬ ‫نوعين‬ ‫أساسيين‬ ‫للمسألة‬ : o ‫تعيين‬ ‫الدفعات‬ ‫وفقا‬ ‫لخاصية‬ ‫أولوية‬ ‫خالل‬ ‫فترة‬ ‫زمنية‬ ‫محدودة‬ ‫وبسعة‬ ‫محدودة‬ ‫من‬ ‫األدوات‬ o ‫تعيين‬ ‫دفعات‬ ‫بسعة‬ ‫محدودة‬ ‫من‬ ‫األدوات‬ . ‫ويمكن‬ ‫حل‬ ‫هذه‬ ‫المسائل‬ ‫بطرق‬ ‫التنقيب‬ , ‫و‬ ‫الطرق‬ ‫التحليلية‬ .
  • 24. 4c- Batching Problem ‫الدفعات‬ ‫مسألة‬ Solving using heuristic solution Example: Set of parts shown in table below are to be processed in FMS consisting of 3 M/cs of type (A), and one M/c of Type (B). Each machine of both type can hold 2 tools and the available daily time is 12 hours. Select the part to be produced today. Part Type Order Size Due Date Unit Process Time, hrs Tools M/C (A) M/C (B) a 5 0 0.1 0.3 A1,B2 b 10 1 1.2 --- A2 c 25 1 0.7 0.4 A3,B4 d 10 1 0.1 0.2 A1,B2 e 4 2 0.3 0.2 A5,B3 a 10 4 0.3 0.2 A1,B2
  • 25. 4d- Batching Problem ‫الدفعات‬ ‫مسألة‬ Part Type Order Size Due Date Unit Process Time, hrs Tools M/C (A) M/C (B) a 5 0 0.1 0.3 A1,B2 b 10 1 1.2 --- A2 c 25 1 0.7 0.4 A3,B4 d 10 1 0.1 0.2 A1,B2 e 4 2 0.3 0.2 A5,B3 a 10 4 0.3 0.2 A1,B2 6 a, b, c, d(2/10) 30.2 11.9 A1,A2,A3 B2,B4 5 a, b, c, d(2/10) 30.2 11.9 A1,A2,A3 B2,B4 4 a, b, c, d(2/10) 30.2 11.9 A1,A2,A3 B2,B4 3 a, b, c 30.0 11.5 A1,A2,A3 B2,B4 2 a, b 12.5 1.5 A1,A2 B2 1 a 0.5 1.5 A1 B2 A B A B Step Assigned Parts Time Assigned Tools Assigned Iterative Selection
  • 26. 4e- Batching Problem ‫الدفعات‬ ‫مسألة‬ Notations used in formulation the problem ‫المصلحات‬ ‫المستخدمة‬ ‫لصياغة‬ ‫المسألة‬ : ‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬ ‫حل‬ Mixed Integer Programming For Batching  it D  j P  ij p  it x  ij y  j K  lj k    i lj  i h  N  T Part orders for part (i) in period (t) Available Time for machine type (j) Process Time for part (i) on machine type (j) Number of part (i) made in period (t) Available tool slots for machine type (j) Number of tool slots required by tool (l) on machine type (j) Set of tools (l) required on machine type (j) to produce part type(i) 1 if tool(l) is assigned to machine type(j) in period(t), Otherwise =0 Total number of part types Total Periods Holding Cost per period (t) for part (i) Problem formulation The Objective Function is minimizing inventory costs while meeting due date during production period, as holding costs accumulate for each period the production larger than demand. Shortage is prevented by constraints. ‫تكون‬ ‫دالة‬ ‫المسألة‬ ‫هي‬ ‫خفض‬ ‫تكلفة‬ ‫التخزين‬ ‫بينما‬ ‫تفي‬ ‫بموعد‬ ‫الطلب‬ ‫حيث‬ ‫تتراكم‬ ‫تكلفة‬ ‫كل‬ ‫فتر‬ ‫ة‬ ‫التي‬ ‫يزيد‬ ‫فيها‬ ‫اإلنتاج‬ ‫عن‬ ‫الطلب‬ , ‫ويتم‬ ‫منع‬ ‫النقص‬ ‫في‬ ‫اإلنتاج‬ ‫بواسطة‬ ‫شروط‬ ‫مقيدة‬
  • 27. 4f- Batching Problem ‫الدفعات‬ ‫مسألة‬ ‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬ ‫حل‬ Mixed Integer Programming For Batching           N i t r ir ir T t i D x h Z Minimize 1 1 1 1 or 0 0 ljt it y x  i,t D x o Subject t t r ir t r ir all for 1 1      1. Production  Demand (prevent shortage) ‫يحدد‬ ‫هذا‬ ‫الشرط‬ ‫بأن‬ ‫تكون‬ ‫كمية‬ ‫اإلنتاج‬ ‫لمشغولة‬ (i) ‫لفترة‬ (t) ‫مساوية‬ ‫للكمية‬ ‫المطلوبة‬ . j,t P x p j N i it ij all for 1    2. Production time  Available time (avoid overloading machines) ‫يعمل‬ ‫على‬ ‫تفادي‬ ‫التحميل‬ ‫الزائد‬ ‫عن‬ ‫سعة‬ ‫أي‬ ‫ماكينة‬ (j) ‫في‬ ‫أي‬ ‫وقت‬ .  ,t i lj y M x ljt it all for   3. parts assigned  tools assigned (ensure that all tools are assigned to machines) ‫يؤكد‬ ‫تعيين‬ ‫جميع‬ ‫األدوات‬ ‫المطلوبة‬ ‫في‬ ‫الماكينات‬ ‫قبل‬ ‫جدولة‬ ‫اإلن‬ ‫تاج‬ , ‫حيث‬ M ‫عدد‬ ‫كبير‬ ‫قيمته‬ ‫أكبر‬ ‫من‬ ‫مجموع‬ ‫تراكم‬ ‫الطلب‬ . j,t K y k j L t ljt lj all for 1    4. Tools assigned  tool slots (restrict assigned tool to the slots available) ‫يعمل‬ ‫هذا‬ ‫الشرط‬ ‫على‬ ‫عدم‬ ‫التعيين‬ ‫الزائد‬ ‫لألدوات‬ ‫عن‬ ‫األماكن‬ ‫المتاح‬ ‫ة‬ ‫لألدوات‬ ‫خالل‬ ‫فترة‬ (t) .
  • 28. 4g- Batching Problem ‫الدفعات‬ ‫مسألة‬ ‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬ ‫حل‬ Mixed Integer Programming For Batching The difficulty with formulation lies in the large number of binary variables required for tooling decisions. ‫صعوبة‬ ‫هذه‬ ‫الصياغة‬ ‫هو‬ ‫كبر‬ ‫حجم‬ ‫المتغيرات‬ ‫المطلوبة‬ ‫لقرارات‬ ‫األدوات‬ However, if the capacity of certain periods is the major concern and sufficient tool space exists on machines for desired part mixes, the tooling variable ylkt and constraints 3, 4 can be dropped. The remaining linear program is easily solved ‫ومع‬ ‫ذلك‬ ‫ففي‬ ‫حالة‬ ‫توفر‬ ‫السعة‬ ‫في‬ ‫فترات‬ ‫معينة‬ ‫واألماكن‬ ‫المتاحة‬ ‫لألدوات‬ ‫في‬ ‫الماكينات‬ ‫ف‬ ‫أنه‬ ‫يمكن‬ ‫االستغناء‬ ‫عن‬ ‫الشرطين‬ ( 3 ‫؛‬ 4 ) ‫ومث‬ ‫حل‬ ‫المعادالت‬ ‫كمعادالت‬ ‫برمجة‬ ‫خطية‬ .
  • 29. 4h- Batching Problem ‫الدفعات‬ ‫مسألة‬ Hwang’s Integer Programming ‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬   N i i z Maximize 1 t y d o Subject t c t c c   1 : i,c z y b i i ic all   N Part Types  C Tool Types  t Tool Magazine Capacity   ic b 1 if Part type (i) require tool (c) 0 Otherwise  c d Number of Tool Slots to hold tool (c) in tool magazine of required machine   i z 1 if Part type (i) is selected in the batch 0 Otherwise   c y 1 if Tool (c) is loaded on a machine 0 Otherwise c or yc all 1 0  c or zi all 1 0  Problem formulation The Objective Function is maximizing the number of parts is a batch (i.e. minimizing number of batches) . Tooling increase more than capacity is prevented by constraints. ‫تكون‬ ‫دالة‬ ‫المسألة‬ ‫هي‬ ‫التوصل‬ ‫إلى‬ ‫أكبر‬ ‫أنواع‬ ‫من‬ ‫المشغوالت‬ ‫في‬ ‫الدفعة‬ ( ‫أي‬ ‫خفض‬ ‫عدد‬ ‫الدفع‬ ‫ات‬ ‫ألنواع‬ ‫المشغوالت‬ ‫المعطاة‬ ) ‫ويتم‬ ‫وضع‬ ‫شروط‬ ‫مقيدة‬ ‫لمنع‬ ‫زيادة‬ ‫األدوات‬ ‫عن‬ ‫السعة‬
  • 30. 4i- Batching Problem ‫الدفعات‬ ‫مسألة‬ ‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬ Hwang’s Integer Programming Example: The table below gives the required tools for 8 parts and magazine capacity in each machine. Find the number of matches and its parts Part types P1 P2 P3 P4 P5 P6 P7 P8 Types of tools required t1(1) t2(1) t3(1) t4(1) t1(1) , t2(1) t3(1) , t5(1) t6(2) t1(1) , t2(1) , t7(2) Problem formulation: 8 2 1 1 ....... z z z z Maximize N i i       5 2 2 , : 7 6 5 4 3 2 1 1           y y y y y y y t y d o Subject t c t c c i,c z y b i i ic all For ,  0 , 0 , 0 , 0 0 , 0 , 0 , 0 0 , 0 , 0 , 0 7 8 2 8 1 8 6 7 5 6 3 6 2 5 1 5 4 4 3 3 2 2 1 1                         y z y z y z y z y z y z y z y z y z y z y z y z Batch 1: P1,P2,P3,P4,P5,P6 Batch 2: P7 Batch 3: P8
  • 31. 4j- Batching Problem ‫الدفعات‬ ‫مسألة‬ ‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬ Modified Hwang’s Integer Programming           N i i C c c ic z d b Maximize 1 1 t y d o Subject t c t c c   1 :  N Part Types  C Tool Types  t Tool Magazine Capacity   ic b 1 if Part type (i) require tool (c) 0 Otherwise  c d Number of Tool Slots to hold tool (c) in tool magazine of required machine   i z 1 if Part type (i) is selected in the batch 0 Otherwise   c y 1 if Tool (c) is loaded on a machine 0 Otherwise Problem formulation The Objective Function is maximizing the number of parts is a batch (i.e. minimizing number of batches) . Tooling increase more than capacity is prevented by constraints. ‫تكون‬ ‫دالة‬ ‫المسألة‬ ‫هي‬ ‫التوصل‬ ‫إلى‬ ‫أكبر‬ ‫أنواع‬ ‫من‬ ‫المشغوالت‬ ‫في‬ ‫الدفعة‬ ( ‫أي‬ ‫خفض‬ ‫عدد‬ ‫الدفع‬ ‫ات‬ ‫ألنواع‬ ‫المشغوالت‬ ‫المعطاة‬ ) ‫ويتم‬ ‫وضع‬ ‫شروط‬ ‫مقيدة‬ ‫لمنع‬ ‫زيادة‬ ‫األدوات‬ ‫عن‬ ‫السعة‬ i,c z y b i i ic all  c or yc all 1 0  c or zi all 1 0 
  • 32. 4k- Batching Problem ‫الدفعات‬ ‫مسألة‬ ‫البرمجة‬ ‫بطريقة‬ ‫الدفعات‬ ‫تعيين‬ ‫مسألة‬ Modified Hwang’s Integer Programming 8 7 6 5 4 3 2 1 1 1 2 2 2 2 z z z z z z z z z d b Maximize N i i C c c ic                   5 2 2 , : 7 6 5 4 3 2 1 1           y y y y y y y t y d o Subject t c t c c i,c z y b i i ic all For ,  0 , 0 , 0 , 0 0 , 0 , 0 , 0 0 , 0 , 0 , 0 7 8 2 8 1 8 6 7 5 6 3 6 2 5 1 5 4 4 3 3 2 2 1 1                         y z y z y z y z y z y z y z y z y z y z y z y z Batch 1: P1,P2,P3,P5,P8 Batch 2: P4,P6,P7 Example: The table below gives the required tools for 8 parts and magazine capacity in each machine. Find the number of matches and its parts Part types P1 P2 P3 P4 P5 P6 P7 P8 Types of tools required t1(1) t2(1) t3(1) t4(1) t1(1) , t2(1) t3(1) , t5(1) t6(2) t1(1) , t2(1) , t7(2) Problem formulation:
  • 33. 5a- Loading Problem ‫التحميل‬ ‫مسألة‬ ‫مقدمة‬ : ‫بمعرفة‬ ‫المشغوالت‬ ‫المطلوب‬ ‫إنتاجها‬ ‫في‬ ‫فت‬ ‫رة‬ ‫زمنية‬ ‫محدودة‬ , ‫يكون‬ ‫الهدف‬ ‫هو‬ ‫كيفية‬ ‫تحمي‬ ‫لها‬ ‫على‬ ‫الماكينات‬ ‫وفقا‬ ‫لعملياتها‬ ‫المختلفة‬ . ‫ويتم‬ ‫التحميل‬ ‫بواسطة‬ ‫صياغة‬ ‫المسألة‬ ‫بأهد‬ ‫اف‬ ‫وشروط‬ ‫معينة‬ ‫للتوصل‬ ‫إلى‬ ‫التحميل‬ ‫األفض‬ ‫ل‬ , ‫وتختلف‬ ‫الصياغة‬ ‫من‬ ‫نظام‬ ‫إلى‬ ‫آخر‬ ‫وفقا‬ ‫لمتطلبات‬ ‫التحميل‬ ‫واإلمكانيات‬ . ‫ويشمل‬ ‫أهداف‬ ‫الحل‬ ‫التالي‬ : • ‫خفض‬ ‫التخزين‬ ‫بين‬ ‫العمليات‬ • ‫خفض‬ ‫تكلفة‬ ‫األدوات‬ ‫خفض‬ ‫تكلفة‬ ‫تشغي‬ ‫ل‬ ‫اإلنتاج‬ • ‫توازن‬ ‫الحمل‬ • ‫خفض‬ ‫الزمن‬ ‫خالل‬ ‫اإلنتاج‬ • ‫خفض‬ ‫امتداد‬ ‫عمل‬ ‫اإلنتاج‬ ‫رفع‬ ‫مرونة‬ ‫المسار‬ • ‫رفع‬ ‫استعمال‬ ‫سعة‬ ‫الماكينات‬ ‫وتصاغ‬ ‫هذه‬ ‫المسألة‬ ‫بطرق‬ ‫البرمجة‬ ‫أو‬ ‫بطرق‬ ‫التنقيب‬ Introduction: By knowing the parts to be processed at certain period, the aim is to load the parts to machines according to its processes The loading problem is formulated with certain goal (s) and some constraints to find the optimal loading policy. The formulation change from system to other depending on loading requirement and existing facility. The goal of formulation includes the following: • Minimizing WIP • Minimizing Tooling Costs • Minimizing Variable Production Costs • Load balancing • Minimizing Through-put Time • Minimizing Make-span • Maximizing Routing Flexibility • Maximizing Utilization of Capacity The problem can be formulated by analytical and/or heuristic methods
  • 34. 5b- Loading Problem ‫التحميل‬ ‫مسألة‬ Introduction: The basic formulation of loading problems are as follow   ij y 1 if tool 1 is assigned to individual machine (j) 0 Otherwise  ij x Proportion of operation (i) assigned to machine (j)  ij c The cost to perform operation (i) (all parts) on machine (j)  l(i) The tool required for operation (i)  l n The number of type (l) tool available             I i J j ij ijx c Maximize 1 1 The objective is minimizing variable production cost The constraints are as follow
  • 35. 5c- Loading Problem ‫التحميل‬ ‫مسألة‬ : o Subject t 1 0 , 1 0 or y x lj ij    i x J j ij all for , 1 1    1- ensure that each operation i is assigned to one or more machine. j P x p j ij I i ij all for , 1    2- restrict the amount of processing time assigned to each machine to be  available time. j K y k j lj L l lj all for , 1    3- ensure sufficient space in tool magazine to hold those tool assigned to machine j.   j i y x j i l ij , all for , 0 ,   4- ensure that tools are actually mounted on the necessary machines. l n y l J j lj all for , 1    5- recognize the limit on the number of tools available for each tool type   l L x p l i l ij ij all for , 1    6- recognize tool replacement on machine j Constraints can be added if required. Example of that if the maximum allowable usage per period Ll for tool l (Tool replacement)
  • 36. 5d- Loading Problem ‫التحميل‬ ‫مسألة‬ Solution is divided to two stages: stage one: assign operation to machine type ( machine selection) 1. Operations are ordered based on the number of different machine types to which they may be assigned. 2. Select operations has lowest chance to be assigned and then assign operation with longest process time (total batch time) at the machine less utilized (balance loading, i.e. provide equal work load) ‫يقسم‬ ‫الحل‬ ‫علي‬ ‫مرحلتين‬ : ‫المرحلة‬ ‫األولى‬ : - ‫مرحلة‬ ‫تعيين‬ ‫العمليات‬ ‫إلي‬ ‫الماكينات‬ .1 ‫ترتيب‬ ‫العمليات‬ ‫بناء‬ ‫على‬ ‫عدد‬ ‫األنو‬ ‫اع‬ ‫المختلفة‬ ‫للماكينات‬ ‫الممكنة‬ ‫لتعيي‬ ‫ن‬ ‫العمليات‬ ‫لها‬ .2 ‫اختيار‬ ‫العمليات‬ ‫التي‬ ‫لها‬ ‫أقل‬ ‫فرص‬ ‫للتعيين‬ ‫على‬ ‫الماكينات‬ ‫المختلفة‬ ، ‫ثم‬ ‫اختيار‬ ‫العملية‬ ‫التي‬ ‫لها‬ ‫أطول‬ ‫زمن‬ ‫انتاج‬ ‫للدفعة‬ ‫لتعيينها‬ ‫على‬ ‫الماكي‬ ‫نة‬ ‫التي‬ ‫يمكن‬ ‫تكون‬ ‫األقل‬ ‫استعماال‬ ‫لكي‬ ‫يتم‬ ‫توازن‬ ‫الحمل‬ ‫التحميل‬ ‫مسألة‬ ‫لحل‬ ‫تنقيبية‬ ‫طريقة‬ Heuristic method to solve the loading problem
  • 37. 5e- Loading Problem ‫التحميل‬ ‫مسألة‬ stage two: assign operation and tools for each machine type (i) 1. Operations are combined as a cluster to reduce handling transfer between machines if sum total batch time of operations does not exceed available time of a machine. A Cluster is treated as single station operation requiring all of the tools needed. i.e. reducing problem size. 2. Form groups by identically tooling the machines of the same types. This provide routing flexibility but increase tooling costs. When flexibility is important, the number of groups is determined by number of tool slots needed for operations assigned to a machine type. 3. Assign operation to machine groups within each machine type to equalize work load. Routing flexibility can be enhanced by some of these operations requiring the same tool. ‫المرحلة‬ ‫الثانية‬ : - ‫مرحلة‬ ‫تحديد‬ ‫مجموعة‬ ‫الماكينات‬ ‫وأدواتها‬ ‫وتشمل‬ ‫ثالث‬ ‫خطوات‬ : .1 ‫تجميع‬ ‫العمليات‬ ‫لتقليل‬ ‫حركة‬ ‫المناولة‬ ‫ب‬ ‫ين‬ ‫الماكينات‬ ‫في‬ ‫مجموعات‬ ‫عنقودية‬ ‫في‬ ‫حالة‬ ‫مجموع‬ ‫زمن‬ ‫الدفعة‬ ‫أقل‬ ‫أو‬ ‫يساوي‬ ‫الزمن‬ ‫المتاح‬ .. ‫وتعامل‬ ‫كل‬ ‫مجموعة‬ ‫كانها‬ ‫محطة‬ ‫عمل‬ ‫واحدة‬ ‫بعدد‬ ‫من‬ ‫األدوات‬ ‫المطلوبة‬ ‫للعملياتز‬ ( ‫تخفض‬ ‫من‬ ‫حجم‬ ‫المسألة‬ ) .2 ‫تكوين‬ ‫مجموعة‬ ‫الماكينات‬ ‫بمطابقة‬ ‫األدوات‬ ‫لنفس‬ ‫النوع‬ ‫للماكينات‬ , ‫مما‬ ‫يعطي‬ ‫مرونة‬ ‫للمسار‬ ‫مع‬ ‫رفع‬ ‫تكلفة‬ ‫األدوات‬ , ‫فإذا‬ ‫كانت‬ ‫المرونة‬ ‫أهم‬ ‫يتم‬ ‫تكوين‬ ‫عدد‬ ‫كبير‬ ‫من‬ ‫المجموعات‬ ‫التي‬ ‫يعتمد‬ ‫تكوينها‬ ‫على‬ ‫عدد‬ ‫اماكن‬ ‫تخزين‬ ‫األدوات‬ ‫المطلوبة‬ ‫للعمليات‬ ‫والمتاحة‬ ‫في‬ ‫كل‬ ‫ماكينة‬ . .3 ‫تعيين‬ ‫العمليات‬ ‫وأدواتها‬ ‫إلى‬ ‫المجموعات‬ ‫مما‬ ‫يحقق‬ ‫توازن‬ ‫الحمل‬ ‫وذلك‬ ‫بخفض‬ ‫الزمن‬ ‫خالل‬ ‫اإلنتاج‬ ‫كما‬ ‫يساعد‬ ‫على‬ ‫تحسين‬ ‫المرونة‬ ‫لتعيين‬ ‫مجموعة‬ ‫العمليات‬ ‫التي‬ ‫تتطلب‬ ‫نفس‬ ‫األدوات‬ .
  • 38. 5f- Loading Problem example ‫التحميل‬ ‫لمسألة‬ ‫مثال‬
  • 39. 5g- Loading Problem example ‫التحميل‬ ‫لمسألة‬ ‫مثال‬ Initialize values Available time of each machine; Ψ ΨA = ΨB = ΨC = 800 min Number of machines; M MA = 2; MB = 2; MC = 1 Number of tools; К КA = 3; КB = 1; КC = 4 The two stage solved by using the following table: Remaining per Mc Selected machine type Selected operation Possible machines by operation Iteration Product 3 Product 2 Product 1 Tools Time 33 32 31 22 21 13 12 11 3.0 400 C 33 C AC A ABC AB AB AB ABC 1 2.5 550 A 32 - A A AB AB AB AB ABC 2 2.0 350 A 31 - - A AB AB AB AB ABC 3 1.0 520 B 13 - - - AB AB AB AB ABC 4 0.0 260 B 12 - - - AB AB - AB ABC 5 1.5 250 A 21 - - - A A - - ABC 6 1.0 150 A 22 - - - A - - - AC 7 2.0 0 C 11 - - - - - - - C 8
  • 40. 6a- Performance Measures by Bottle-neck model ‫الزجاجة‬ ‫عنق‬ ‫بنموذج‬ ‫األداء‬ ‫قياس‬ I- FMS Operational Parameters ‫المرن‬ ‫النظام‬ ‫تشغيل‬ ‫معالم‬ 1- The Average Workload, WLi -- (i) ‫محطة‬ ‫حمل‬ ‫متوسط‬    j k i ijk ijk i p f t WL tijk = Processing time for operation (k) ‫زمن‬ ‫عملية‬ in process plan (j) ‫لمشغولة‬ at station (i) ‫محطة‬ fijk = Operation frequency (Expected number of times a given operation in the process routing is performed for each work unit) for operation (k) ‫زمن‬ ‫عملية‬ in process plan (j) ‫لمشغولة‬ at station (i) ‫محطة‬ pi = Part Mix fraction for part (j) ‫نسبة‬ ‫المشغولة‬ ‫لمجموع‬ ‫المشغوالت‬ 0 . 1  i i p
  • 41. 6b- Performance Measures by Bottle-neck model 2- The Average of Transport required to complete the processing of a work part, nt -- ‫متوسط‬ ‫عدد‬ ‫المناولة‬ ‫المطلوبة‬ ‫إلتمام‬ ‫العمليات‬ ‫على‬ ‫المشغولة‬ 1      i j k i ijk t p f n tn+1 =Mean Transport time per move,min ‫متوسط‬ ‫زمن‬ ‫االنتقال‬ ‫للحركة‬ 3- The Workload of Handling System, WLn+1 -- ‫حمل‬ ‫نظام‬ ‫المناولة‬ ‫باعتبار‬ ‫نظام‬ ‫االنتقال‬ ‫كمحطة‬ ‫للنظام‬ ‫المرن‬ (n+1) ‫وتحتوي‬ ‫على‬ ‫عدد‬ ‫من‬ ‫الحامالت‬ Carriers ‫أو‬ ‫العربات‬ Vehicles (Sn+1) 1 1    n t n t n WL
  • 42. 6c- Performance Measures by Bottle-neck model 4- The FMS Maximum Production Rate of all part, Rp* , Pc/min -- ‫أقصى‬ ‫معدل‬ ‫لإلنتاج‬ ‫في‬ ‫النظام‬ * * * WL S Rp  WL* = Workload, min/Pc & S* = Number of machines at the bottle-neck station. II- Production Rate ‫اإلنتاج‬ ‫معدل‬ ‫يتم‬ ‫تعينها‬ ‫بسعة‬ ‫المحطة‬ ‫الحرجة‬ - ‫عنق‬ ‫الزجاجة‬ Bottle-neck Station Capacity ‫طالما‬ ‫كان‬ ‫خلطة‬ ‫المشغوالت‬ ( ‫قيم‬ pi ) ‫ثابتة‬ . 5- The Part (j) Maximum Production Rate, Rpi* , Pc/min -- ‫أقصى‬ ‫معدل‬ ‫لإلنتاج‬ ‫للمشغولة‬   * * * * WL S p R p R i pi i pi  
  • 43. 6d- Performance Measures by Bottle-neck model 6- Mean Utilization of a station (i) , Ui , -- ‫استخدام‬ ‫محطة‬ ‫عمل‬   * * * WL S S WL R S WL U i i p i i i    WLi= Workload, min/Pc & Si = Number of machines (servers) at station (i). III- Utilization ‫االستخدام‬ ‫يالحظ‬ ‫أن‬ ‫المحطة‬ ‫الحرجة‬ - ‫عنق‬ ‫الزجاجة‬ ‫تستخدم‬ 100% 7- Average Utilization of FMS including Transport system , 1 1 1      n U U n i i 8- Overall FMS Utilization      n i i n i i i s S U S U 1 1
  • 44. 6e- Performance Measures by Bottle-neck model 9- Number of busy machines of a station (i) , BSi , --   * * * WL S WL R WL BS i p i i    IV- Number of Machines (servers) ‫الماكينات‬ ‫عدد‬ ‫يالحظ‬ ‫أن‬ ‫جميع‬ ‫الماكينات‬ ‫مشغولة‬ ‫عند‬ ‫المحطة‬ ‫الحرجة‬ - ‫عنق‬ ‫الزجاجة‬
  • 45. 6f- Performance Measures by Bottle-neck model (example1) FMS consists of loaf/unload station, two Milling stations, a drilling station, and Handling system having 4 carriers the average transfer time = 3.0 min. In the table below two products are to be produced on the FMS and related operation data. Notice the all parts visits the station, i.e. frequency =1.0. It is required to find the following: 1-FMS maximum production rate 2-Production rate of each station 3- Utilization of each station 4- Number of busy machine Part ,j Part mix pj Operation k Description Station (i) Process Time ,min A 0.4 1 2 3 4 Load Mill Drill Unload 1 2 3 1 4 30 10 2 B 0.6 1 2 3 4 Load Mill Drill Unload 1 2 3 1 4 40 15 2
  • 46. 6g- Performance Measures by Bottle-neck model (example1) From data the following can be deduced: • Production ratio is 2:3 • The slowest station is the Milling Process Time of milling = {2/3(30) + 1(40)} = 60min Production Rate of milling = 2{(2/3)+(1)} = 3.333 PC/h Utilization of milling = 100% • Process Time of the other stations Load/unload station: {(4)+(1)} = 20 min 3.333 Drilling station: {4/3(10) + 2(15)} = 43.333 min Handling system: {4/3(9) + 2(9)} = 30 min • Utilization of the other stations Load/unload station: 20/60 = 0.333 Drilling station: 43.333/60 = 0.722 Handling system: (30/60)/4 = 0.5/4 =0.125
  • 47. 6h- Performance Measures by Bottle-neck model (example1) By using the equations 13/1=13 (10)(1.0)(0.4)+(15)(1.0)(0.6)=13 D 3 HS 4 nt = 3 (3)(3)(1.0){0.4+0.6}=9 9/4=2.25 M 2 (30)(1.0)(0.4)+(40)(1.0)(0.6)=36 36/2=18* L/UL 1 (4+2)(1.0){0.4+0.6}=6 6/1=6 Station, i Workload, min, Wli = Sumk,j {tijk * fijk * pj} Bottle-neck Station, Tp = Wli/Si Part B production rate, RpB = pB * Rp* 3.333 * 0.6 = 2.00 Pc/hr Part A production rate, RpA = pA * Rp* 3.333 * 0.4 = 1.333 Pc/hr Maximum production rate, Rp* = S*/WL* 2/36=0.05555 Pc/min = 3.333 Pc/hr
  • 48. 6i- Performance Measures by Bottle-neck model (example1) (13)(0.05555)=0.722 (13/1)(0.05555)=0.722 D 3 HS 4 (9/4)(0.05555)=0.125 (9)(0.05555)=0.5 M 2 (36/2)(0.05555)=1.0 (36)(0.05555)=2.0 L/UL 1 (6/1)(0.05555)=0.33 (6)(0.05555)=0.33 Station, i Utilization, Ui = (Wli /Si)(Rp* ) Number of Busy machines, Bp = (Wli)(Rp* )
  • 49. 6j- Performance Measures by Bottle-neck model (example2) FMS consists of loaf/unload station, three Milling stations, two drilling stations, an inspection station, and Handling system having 2 carriers the average transfer time = 3.5 min. In the table below four products are to be produced on the FMS and related operation data. Notice the all parts visits the station, i.e. frequency =1.0. exept for the inspection station the visits less than 1.0 It is required to find the following: 1-FMS maximum production rate 2-Production rate of each station 3- Utilization of each station 4- Number of busy machine
  • 50. 6k- Performance Measures by Bottle-neck model (example2) 1.0 1.0 0.5 1.0 4 23 8 2 1 3 4 1 Load Drill Inspect Unload 1 2 3 4 0.3 C 1.0 1.0 0.333 1.0 4 30 12 2 1 2 4 1 Load Mill Inspect Unload 1 2 3 4 0.4 D 1.0 1.0 1.0 1.0 0.2 1.0 B 0.2 1 2 3 4 5 6 Load Drill Mill Drill Inspect Unload 1 3 2 3 4 1 4 16 25 14 15 2 1.0 1.0 1.0 0.5 1.0 A 0.1 1 2 3 4 5 Load Mill Drill Inspect Unload 1 2 3 4 1 4 20 15 12 2 Frequency Part ,j Part mix pj Operation k Description Station (i) Process Time ,min
  • 51. 6l- Performance Measures by Bottle-neck model (example2) 14.4/2=7.2* (15)(1)(.1) + (16)(1)(.2) + (14)(1)(.2) + (23)(1)(.3) =14.4 D 3 HS 5 nt = (3.5)(.1) +(4.2)(.2) +(2.5)(.3) + (2.333)(.4) =2.873 (2.873)(3.5)=10.06 10.06/2=5.03 M 2 (20)(1)(.1) + (25)(1)(.2) + (30)(1)(.4) =19 19/3=6.333 L/UL 1 (4+2)(1.0){.1+.4+.3+.6}=6 6/1=6 Station, i A) Workload, min, Wli = Sumk,j {tijk * fijk * pj} Bottle-neck Station, Tp = Wli/Si 4/1=4 (12)(.5)(.1) + (15)(.2)(.2) + (8)(.5)(.3) + (12)(.333)(.4) =4 I 4
  • 52. 6m- Performance Measures by Bottle-neck model (example2) Part B production rate, RpB = pB * Rp* 8.333 * 0.2 = 1.667 Pc/hr Part A production rate, RpA = pA * Rp* 8.333 * 0.1 = 0.8333 Pc/hr Maximum production rate, Rp* = S*/WL* 2/14.4=0.1389 Pc/min = 8.333 Pc/hr Part C production rate, RpC = pC * Rp* 8.333 * 0.3 = 2.500 Pc/hr Part D production rate, RpD = pD * Rp* 8.333 * 0.4 = 3.333 Pc/hr
  • 53. 6n- Performance Measures by Bottle-neck model (example2) (14.4)(0.1389)=2.00 (14.4/1)(0.1389)=1.0 D 3 HS 5 (10.06/2)(0.1389)=0.699 (10.06)(0.1389)=1.397 M 2 (19/3)(0.1389)=0.879 (19)(0.1389)=2.639 L/UL 1 (6/1)(0.1389)=0.833 (6)(0.1389)=0.833 Station, i Utilization, Ui = (Wli /Si)(Rp* ) Number of Busy machines, Bp = (Wli)(Rp* ) I 4 (4/1)(0.1389)=0.555 (4)(0.1389)=0.555 Overall FMS Utilization      n i i n i i i s S U S U 1 1 861 . 0 7 ) 555 . 0 ( 1 ) 0 . 1 ( 2 ) 879 . 0 ( 3 ) 833 . 0 ( 1     
  • 54. 6o- Performance Measures by Bottle-neck model (example3) In the example 2 the utilization of station 2 is U2 = .789 . It is required to make it 100%/% solution    * 2 2 2 p R S WL U     1389 . 0 3 0 . 1 2 WL  problem previous in min. 19.0 min. 6 . 21 2   WL         min. 0 . 7 0 . 1 2 . 0 25 0 . 1 1 . 0 20 2      B A WL   min. 6 . 14 0 . 7 6 . 21 on, Utilizati 100% at Workload For the 2     D WL   min. 0 . 12 0 . 7 0 . 19 on, Utilizati 78.9% at Workload For the 2     D WL    Pc/hr 055 . 4 333 . 3 0 . 12 6 . 14   pD R Pc/hr 055 . 9 055 . 4 500 . 2 667 . 1 833 . *      p R 092 . 0 055 . 9 833 .   A p 182 . 0 055 . 9 667 . 1   B p 276 . 0 055 . 9 500 . 2   C p 448 . 0 055 . 9 055 . 4   D p
  • 55. 6p- Performance Measures by Bottle-neck model Calculation of MLT & WIP 10- Manufacturing Lead Time, MLT ‫زمن‬ ‫التصنيع‬ ‫المقدم‬ w n n i i T WL WL MLT       1 1 WLn+1 =Workload of Handling System, -- ‫حمل‬ ‫نظام‬ ‫المناولة‬ tw =Mean waiting time per move,min ‫متوسط‬ ‫زمن‬ ‫االنتقال‬ ‫للحركة‬   n i i WL 1 =Workload of all stations in System, -- ‫مجموع‬ ‫حمل‬ ‫المحطات‬ 11- Work In Process, N ‫كمية‬ ‫المشغوالت‬ ‫في‬ ‫النظام‬ ‫بين‬ ‫العمليات‬ Remarks: 1- N is constant in the system. This means that no new part enters the system until a part in the system finish is processed either has similar routing or not dependant on product ratio. There is a limited number in the system ‫مالحظات‬ : 1 - N ‫ثابتة‬ ‫في‬ ‫النظام‬ ‫أي‬ ‫أن‬ ‫مشغولة‬ ‫جدي‬ ‫دة‬ ‫تدخل‬ ‫النظام‬ ‫عند‬ ‫االنتهاء‬ ‫من‬ ‫إنتاج‬ ‫مشغولة‬ ‫سواء‬ ‫لها‬ ‫نفس‬ ‫المسار‬ ‫أو‬ ‫ال‬ ‫معتمدا‬ ‫على‬ ‫نسبة‬ ‫المشغولة‬ pi - ‫بمعني‬ ‫أن‬ ‫هناك‬ ‫عدد‬ ‫محدد‬ ‫داخل‬ ‫النظام‬ ‫في‬ ‫التصنيع‬ ‫المرن‬ .
  • 56. 6q- Performance Measures by Bottle-neck model ‫مالحظات‬ : 2 - ‫تلعب‬ N ‫دورا‬ ‫حرجا‬ ‫في‬ ‫النظام‬ ‫كالتالي‬ : • ‫في‬ ‫حالة‬ N ‫صغيرة‬ : ‫يمكن‬ ‫توقف‬ ‫المحطات‬ ‫لتعطشه‬ ‫ا‬ ‫لمشغوالت‬ ‫ومن‬ ‫ضمنها‬ ‫المحطة‬ ‫الحرجة‬ ( ‫عنق‬ ‫الزجاجة‬ ) ‫؛‬ ‫و‬ ‫يصبح‬ ‫معدل‬ ‫اإلنتاج‬ ‫للنظام‬ ‫أقل‬ ‫من‬ ‫معدل‬ ‫اإلنتاج‬ ‫للمحطة‬ ‫الحرجة‬ • ‫وفي‬ ‫حالة‬ N ‫كبيرة‬ ‫جدا‬ : ‫يكون‬ ‫النظام‬ ‫محمال‬ ‫بالكامل‬ ‫ويحتوي‬ ‫على‬ ‫خط‬ ‫انتظار‬ Waiting line ‫؛‬ ‫و‬ ‫يصبح‬ ‫معدل‬ ‫إنتاج‬ ‫النظام‬ ‫متعلقا‬ ‫بمعدل‬ ‫إنتاج‬ ‫المحطة‬ ‫الحر‬ ‫جة‬ ( ‫عنق‬ ‫الزجاجة‬ ) ‫كتقدير‬ ‫مناسب‬ ‫ويكون‬ ‫كمية‬ ‫المشغوالت‬ ‫في‬ ‫النظام‬ WIP ‫كبيرة‬ ‫منتظرة‬ ‫التصنيع‬ ‫عند‬ ‫االنتهاء‬ ‫من‬ ‫إنتاج‬ ‫مشغولة‬ – ‫ويصبح‬ ‫زمن‬ ‫التصنيع‬ ‫المقدم‬ MLT ‫فترة‬ ‫طويلة‬ . 3- N can be expressed by little law w L   In case that system operate with maximum production rate equal to critical station production rate, the MLT equation will be ‫وفي‬ ‫حالة‬ ‫فرض‬ ‫أن‬ ‫النظام‬ ‫يعمل‬ ‫وفقا‬ ‫للمحطة‬ ‫الحرجة‬ ( ‫عنق‬ ‫الزجاجة‬ ‫وبون‬ ‫وجود‬ ‫انتظار‬ ‫للمشغوالت‬ ‫تصبح‬ ‫المعادلة‬ ‫كالتالي‬ :     1 * * *      n i p p WL WL R MLT R N Remarks: 2- N plays critical role as follow: • In case N small: the stations may stops as they are starved for parts including the bottle neck station. The production rat is less than production rate of critical station. • In case N is large: the machines in the system are fully loaded and production rate of the system is equal the production rate of critical station & part waiting to be processed (WIP) are large. MLT is long period.   MLT R N p  
  • 57. 6r- Performance Measures by Bottle-neck model There are two cases: ‫ويكون‬ ‫هناك‬ ‫حالتين‬ ‫للحل‬ ‫هما‬ ‫كالتالي‬ : 0  w T CASE - 1          * N N   1 1     n i WL WL MLT   * 1 p p p R MLT N R R   p j pj R p R  - 1 2 MLT MLT Tw  CASE - 1          * N N   * 2 p R N MLT    * * * WL S Rp  * * p j pj R p R 
  • 58. 6s- Performance Measures by Bottle-neck model (example4) Using the data of example (1), calculate for N =2.3.4 the following: 1- Maximum Production Rate of FMS 2- MLT Pc/min 0555 . 0 * p R   min 64 9 13 36 6 1 1          n i WL WL MLT   555 . 3 64 0555 . 0 * * 1     MLT R N p 4>N* 64 Rp* =S*/ WL* = 3.33 4*60/3.33=72 8 3<N* 64 Rp =N/ MLT1 = 3*60/64 = 2.813 MLT1 0 2<N* 64 Rp =N/ MLT1 = 2*60/64 = 1.875 MLT1 0 N MLT1, min Production Rate,Pc/hr MLT2, min Tw, min
  • 59. 6t- Performance Measures by Bottle-neck model (example) From the example the behaviour of system depend on N as follow: ‫ومن‬ ‫هذا‬ ‫المثال‬ ‫يتبن‬ ‫أن‬ ‫سلوك‬ ‫النظام‬ ‫وفقا‬ ‫لحالة‬ N ‫كالتالي‬ : MLT N Rp N N* MLT1 N* 1- MLT is constant until reaching N* and then increases ‫بقاء‬ ‫الزمن‬ MLT ‫ثابتا‬ ‫حتى‬ N* ‫ثم‬ ‫يتزايد‬ 2- production rate increases until reaching N*, then is constant ‫تزايد‬ ‫معدل‬ ‫اإلنتاج‬ Rp ‫حتى‬ N* ‫ثم‬ ‫يصبح‬ ‫ثابت‬ ‫بمعدل‬ ‫إنتاج‬ ‫المحطة‬ ‫الحرجة‬ Rp*
  • 60. 6u- Performance Measures by Bottle-neck model By comparing the values obtained from bottle neck model and simulation model (Can Q) a adequacy factor is estimated as follow: ‫وبدراسة‬ ‫مقارنة‬ ‫بين‬ ‫القيم‬ ‫المحسوبة‬ ‫من‬ ‫نموذج‬ ‫عنق‬ ‫الزجاجة‬ ‫ونموذج‬ ‫المحاكاة‬ ‫كان‬ - ‫كيو‬ ‫تم‬ ‫تقدي‬ ‫ر‬ ‫معامل‬ ‫الكفاءة‬ ‫كما‬ ‫يلي‬ : - AF = Adequacy factor for the bottle neck model     1 1 n i i S U N AF N = Number of parts in the system = Average overall utilization of the system U By achieving adequacy factor > 1.5, Bottle neck model is used with confidence. It means that the number of parts N  number of machines S in the system. ‫وعليه‬ ‫بتحقيق‬ ‫معامل‬ ‫كفاءة‬ ‫أعلي‬ ‫من‬ 1.5 ‫؛‬ ‫يمكن‬ ‫استخدام‬ ‫نموذج‬ ‫عنق‬ ‫الزجاجة‬ ‫بثقة‬ ‫كبيرة‬ ‫؛‬ ‫ويعني‬ ‫ذلك‬ ‫أن‬ ‫يكون‬ N ‫عدد‬ ‫القطع‬ ‫في‬ ‫النظام‬ ‫أكبر‬ ‫من‬ ‫مجموع‬ ‫الماكينات‬ S ‫في‬ ‫النظام‬ Adequacy Factor value Anticipated discrepancy with CAN-Q AF < 0.9 Discrepancy < 5% are likely 0.9 =< AF => 1.5 Discrepancy => 5% are likely, User should view result carefully AF > 1.5 Discrepancy < 5% are likely Comparison Between Bottle-neck model and CAN-Q Model ‫كان‬ ‫نموذج‬ ‫مع‬ ‫الزجاجة‬ ‫عنق‬ ‫نموذج‬ ‫مقارنة‬ – ‫كيو‬
  • 61. 6x- Performance Measures by Bottle-neck model Example (4) Using product mix, routing and operation time data in example (2), find the number of machines achieving yearly production of 60,000 Parts/yr .The system works 24 hr/day, 5 day/wk, 50 wk/yr 1- compute production rate solution Pc/min 1754 . 0 pc/hr 527 . 10 95 . 0 000 , 6 000 , 60     p R 2- Calculate number of machines M/c 2 053 . 1 0 . 6 1754 . 0 1     S M/c 4 333 . 3 0 . 19 1754 . 0 2     S M/c 3 526 . 2 4 . 14 1754 . 0 3     S M/c 1 702 . 0 0 . 4 1754 . 0 4     S M/c 2 765 . 1 06 . 0 1 1754 . 0 5     S Determination of number of machines (servers) in a station i ‫تقدير‬ ‫عدد‬ ‫الماكينات‬ ‫في‬ ‫محطة‬ i   i p i WL R S   Integer Minimum
  • 62. 6y- Performance Measures by Bottle-neck model Example (5): Using data of example (4), find the following: 1) Utilization of each station 2) Maximum possible production rate at each station, if the utilization of the bottle-neck station increased to 100%. The integer estimation of number of Machines (Servers) in a station resulting that all stations are less than 100% . Hence the largest utilized station can be considered a bottle neck station. The maximum production rate can be computed to become 100% utilization. ‫ونظرا‬ ‫ألن‬ ‫تقدير‬ ‫عدد‬ ‫الماكينات‬ ‫في‬ ‫محطة‬ i ‫بعدد‬ ‫صحيح‬ ، ‫يكون‬ ‫االستخدام‬ ‫للمحطة‬ ‫أقل‬ ‫من‬ 100% ‫وعليه‬ ‫تحدد‬ ‫المحطة‬ ‫الحرجة‬ Bottle-neck station ‫باألكثر‬ ‫استخداما‬ ‫بين‬ ‫جميع‬ ‫المحطات؛‬ ‫وإذا‬ ‫كان‬ ‫استخدامها‬ ‫أقل‬ ‫من‬ 1.0 ‫عليه‬ ‫يمكن‬ ‫زيادة‬ ‫معدل‬ ‫اإلنتاج‬ ‫األقصى‬ ‫حتى‬ ‫يصبح‬ ‫االستخدام‬ = 1.0 ‫كما‬ ‫في‬ ‫المثال‬ ‫التالي‬ : Solution 526 . 0 2 053 . 1 1   U 833 . 0 4 333 . 3 2   U 42 8 . 0 3 526 . 2 3   U 702 . 0 1 702 . 0 4   U 883 . 0 2 765 . 1 5   U 1- Utilization Notice that station(5) is critical [Material handling 2- Maximum production rate for 100% utilization Pc/min 1988 . 0 pc/hr 93 . 11 883 . 0 526 . 10 *    p R
  • 63. 7a- guideline concluded from equation ‫المعادالت‬ ‫من‬ ‫المستنتجة‬ ‫االرشادات‬ • For a given product or part mix, the total production rate of the FMS is limited by the bottle-neck station, which is the station with maximum work load per server. • If product or part mix, It is possible to increase total production rate by increasing the utilization of non-bottle-neck workstation. • The number of parts in FMS at any time should be greater than the number of servers (processing machines) in the system. A ratio of 2 parts/server is probably optimum, assuming equal distribution through the FMA to ensure that part is waiting at every station. This is especially critical at the bottle-neck station • ‫يكون‬ ‫أقصى‬ ‫معدل‬ ‫لإلنتاج‬ ‫بحدود‬ ‫سع‬ ‫ة‬ ‫المحطة‬ ‫الحرجة‬ ( ‫عنق‬ ‫الزجاجة‬ ) ‫وتمثل‬ ‫الحمل‬ ‫األقصى‬ ‫لكل‬ ‫ماكينة‬ ‫خادمة‬ . • ‫إذا‬ ‫تم‬ ‫استرخاء‬ ‫شرط‬ ‫نسبة‬ ‫خلطة‬ ‫المنتجات‬ ‫يمكن‬ ‫زيادة‬ ‫معدل‬ ‫اإلنتاج‬ ‫بزيادة‬ ‫استخدام‬ ‫المحطات‬ ‫الغير‬ ‫حرجة‬ • ‫يجب‬ ‫أن‬ ‫تكون‬ ‫عدد‬ ‫المشغوالت‬ ‫في‬ ‫النظام‬ ‫أكبر‬ ‫من‬ ‫عدد‬ ‫الماكينات‬ ‫الخادمة‬ ‫في‬ ‫جميع‬ ‫المحطات‬ ‫في‬ ‫النظام‬ . ‫يحتمل‬ ‫نسبة‬ ‫المشغولة‬ / ‫الماكينة‬ = 2 ‫قيمة‬ ‫مثلى‬ ‫يفرض‬ ‫توزيع‬ ‫المشغوالت‬ ‫على‬ ‫جميع‬ ‫الماكينات‬ ‫بالتساوي‬ ‫للتأكد‬ ‫من‬ ‫وجود‬ ‫مشغولة‬ ‫عند‬ ‫كل‬ ‫ماكينة‬ .
  • 64. 7b- guideline concluded from equation ‫المعادالت‬ ‫من‬ ‫المستنتجة‬ ‫االرشادات‬ • If WIP (number of part in the system) is kept at too low a value, production rate of the system is impaired • If WIP is allowed to be too high, then manufacturing lead time will be long with no improvement in production rate. • As a first approximation, the bottleneck model can be used to estimate the number of servers at each station (Number of machine of each type) to achieve a specified overall production rate of the system. • ‫الصغر‬ ‫المتناهي‬ ‫لعدد‬ ‫المشغوالت‬ ‫في‬ ‫النظام‬ (WIP) ‫يؤثر‬ ‫على‬ ‫معدالت‬ ‫اإلنتاج‬ ‫وتقليله‬ • ‫كبر‬ ‫عدد‬ ‫المشغوالت‬ ‫في‬ ‫النظام‬ (WIP) ‫يؤدي‬ ‫إلى‬ ‫طول‬ ‫فترة‬ ‫زمن‬ ‫التصنيع‬ ‫المقدم‬ (MLT) ‫بدون‬ ‫تحسن‬ ‫في‬ ‫معدالت‬ ‫اإلنتاج‬ • ‫يمكن‬ ‫استخدام‬ ‫المعادالت‬ ‫لحساب‬ ‫عدد‬ ‫الماكينات‬ ‫الخادمة‬ ‫في‬ ‫كل‬ ‫محطة‬ ‫المحقق‬ ‫ة‬ ‫لمعدل‬ ‫إنتاج‬ ‫محدد‬

Editor's Notes

  1. 7 October 2021