SlideShare a Scribd company logo
1 of 7
ASEN 3113 Thermodynamics and Heat Transfer
Homework #4
Assigned: September 28, 2006
Due: October 10, 2006 (class time)
(Total points noted in each section; must clearly show equations with values and units,
drawings, assumptions, etc.)
1. (20 points) A cold air standard Otto cycle has a compression ratio of 8. The cylinder state at
the end of the expansion process is T = 500 K and P = 620 kPa. The heat rejection per unit mass
kgkJ
m
Q
/16341
= Determine the following:
a) (10 points) Net work per unit mass of air.
b) (5 points) Thermal efficiency.
c) (5 points) Mean effective pressure.
Solution:
Using the given heat rejection, 14
41
uu
m
Q
−= . Thus, with Tcu v ∆=∆ and cv = 0.721 kJ/kg K:
K
kgKkJ
kgkJ
K
cm
Q
TT
v
93.273
/721.0
/163
50041
41 =−=
⋅
−=
For the isentropic compression .)/(/ 1
2112
−
= k
VVTT Therefore
KKT 35.629)93.273()8( 14.1
2 == −
Also for the isentropic expansion
KKTVVTVVT kk
7.1148)500()8()/()/( 14.1
4
1
214
1
343 ==⋅=⋅= −−−
a) The net work per unit mass of air is
kgkJkgkJKKkgKkJ
m
Q
TTc
m
Q
m
Q
m
W
v
cycle
/45.211/163)35.6297.1148(/721.0)( 41
23
4123
=−−=−−=−=
b) The thermal efficiency is
565.0
/45.374
/45.211
/
/
23
===
kgkJ
kgkJ
mQ
mWcycle
η
c) The mean effective pressure is given by
)/11(121 rV
W
VV
W
mep
cyclecycle
−
=
−
=
Evaluating the specific volume V1=V4
Where kgm
kPa
KkgKkJ
P
RT
V /2315.0
620
)500)(/2870.0( 3
4
4
4 ===
Thus kPa
kgm
kgkJ
mep 86.1043
)8/11)(/2315.0(
/45.211
3
=
−
=
2. (20 points) An air standard gas turbine engine has a compressor pressure ratio of 12. It
operates between 290 K and 1400 K. The turbine and compressor each have isentropic
efficiencies of 90%.Determine the following:
a) (10 points) Net work per unit mass of air flow.
b) (5 points) Heat rejected per unit mass flow of air.
c) (5 points) Thermal efficiency.
Solution:
Determine the unknown temperatures:
( ) KK
P
P
TT
kk
84.58912290
4.1/)14.1(
/)1(
1
2
12 ==





=
−
−
( ) KK
P
P
TT
kk
32.68812/11400
4.1/)14.1(
/)1(
3
4
34 ==





=
−
−
Determine the work input to the compressor and the work output of the turbine:
kgkJKKkgKkJTTcW pin /34.301)29084.589)(/005.1()( 12 =−=−=
kgkJKKkgKkJTTcW pout /24.715)32.6881400)(/005.1()( 43 =−=−=
a) Net work:
kgkJkgkJkgkJWWW inoutnet /9.413/34.301/24.715 =−=−=
b) Heat rejected:
kgkJKKkgkJTTcq pout /31.400)29032.688(/005.1)( 14 =−=−=
c) Thermal efficiency:
kgkJKKkgkJTTcq pin /21.814)84.5891400(/005.1)( 23 =−=−=
508.0
/21.814
/9.413
===
kgkJ
kgkJ
q
W
in
net
thη
3. (30 points) A four-cylinder, four-stroke internal combustion engine has a bore of 95.25 mm.
and a stroke of 87.63 mm. The clearance volume is 17% of the cylinder volume at bottom dead
center and the crankshaft rotates at 2600 RPM. The total volume of the cylinder is the volume of
bore and stroke volume plus the clearance volume. The processes within each cylinder are
modeled as an Otto cycle with a pressure of 1 atm and a temperature of 288 K at the beginning of
compression. The maximum temperature in the cycle is 2888 K. Use the following constants in
your analysis:
k = 1.4 for air/fuel mixture (compression) and k = 1.285 for combustion products (expansion)
Cv = 0.926 kJ/kg*K between steps 2 and 3, Cv = 0.825 kJ/kg*K between steps 4 and 1
(a) (4 points) Draw the P-v diagram; label Pressures, Temperatures, Qin, and Qout
(b) (2 points) Calculate the mass of air at the beginning of the cycle
(c) (12 points) Calculate the Pressure in kPa and Temperature in K at each step in the cycle
(d) (6 points) Calculate the net Work per cycle in Joules
(e) (3 points) Calculate the power developed by the engine in kW
(f) (3 points) Calculate the thermal efficiency of this engine
Solution
(a) See diagrams in Cengal pg 292-293.
( ) ( ) ( )
33
22
&
000752.017.0000624.0
17.008763.0
4
09525.0
17.0
4
mVVmV
Vm
m
Vh
d
VVV
TotalTotalTotal
totaltotalclearancestrokeboreTotal
=→+=
+







=+





=+=
ππ
( )( )
( )
g
K
Kg
J
m
m
N
RT
VP
m 92.0
288
*
2870.0
000752.0000,101 3
2
1
11
=





== (b solution)
1-2 Isentropic compression:
( ) ( )
KT
kPa
kPa
K
P
P
TT
kPaP
m
m
kPa
v
v
PP
k
k
k
585
101
1205
288
1205
000128.0
000752.0
101
2
4.1
14.11
1
2
12
2
4.1
3
3
2
1
12
=→





→





=
=→





→





=
−−
2-3 Heat addition:
( ) ( ) ( )
( )( ) kPaP
K
K
kPa
T
T
V
V
PP
RT
VP
RT
VP
kJQ
KK
Kkg
kJkgTTmCvQKT
in
in
5950
585
2888
11205
96.1
5852888
*
926.000092.02888
3
2
3
3
2
23
3
33
2
22
233
=→





=











=→=
=
−



→−=→=
3-4 Isentropic Expansion:
( ) ( )
KT
kPa
kPa
K
P
P
TT
kPaP
m
m
kPa
v
v
PP
k
k
k
1743
5950
611
2888
611
000752.0
000128.0
5950
4
285.1
1285.11
3
4
34
4
285.1
3
3
4
3
34
=→





→





=
=→





→





=
−−
4-1 Heat rejection
( ) ( ) ( )
kJQ
KK
Kkg
kJkgTTmCvQ
out
out
10.1
1743288
*
825.000092.041
−=→
−



→−=
Net work per cycle:
JWkJkJQQW netoutinnet 85610.196.1 =→−=−=
Power developed by the engine:
( ) ( ) ( ) ( ) kWPowerJ
rev
cylindersW
RPM
cylindersPower net 2.74
sec60
min1
856
2
min
2600
4
sec60
min1
2
# =→













=











=
Thermal efficiency:
%6.43
1960
856
=→== th
in
net
th
J
J
Q
W
ηη
4. (30 points) The conditions at the beginning of compression in an air-standard Diesel cycle are
fixed by p1= 200 kPa, T1 = 380 K. The compression ratio is 20 and the heat addition per unit
mass is 900 kJ/kg. Use k = 1.4 for air/fuel mixture (compression) and k = 1.34 for combustion
products (expansion).
Hint: To determine T3, use the averaged temperature value between T3 and T2 to determine the
temperature corresponding to a value for average Cp and iterate until you calculate values for
average Cp and T3 that work in the equations. A first guess for the value of T3 will be between
1600 and 2000 K. Use three decimal places only for average Cp in kJ/kg*K and also round
temperature values to the nearest value in four significant digits for this problem (i.e. No decimal
places for temperatures). Table A-19 has values for air and the units for Cp should be J/kg *K.
(Total points noted in each section; must clearly show equations with values and units,
drawings, assumptions, etc.)
(a) (4 points) Draw the P-v diagram and label Pressures, Temperatures, Qin, and Qout
(b) (14 points) Calculate the Pressure in kPa and Temperature in K at each step in the cycle
(c) (4 points) Calculate the net Work per cycle in kJ/kg.
(d) (4 points) Calculate the cutoff ratio
(e) (4 points) Calculate the thermal efficiency of the cycle
Solution:
(a) See pg 298 in Cengal for diagrams.
1-2 Isentropic compression
( )
( ) kPaPkPa
v
v
PP
KT
v
v
TT
k
k
1330020200
125920380
2
4.1
1
2
12
2
4.0
2
1
12
=→→





=
=→→





=
2-3 Heat addition
( ) ( )KTC
kg
kJTTCq ppin 1259900 323 −=→−=
Choose T3 = 1983K, Calculate a Cp
( ) ( ) 243.11259198390023 =→−=→−= pppin CKC
kg
kJTTCq
Check average temperature of T3 and T2 in Cengal Table A-19
( )
( ) OKGuessTempCAirATableK
TT
p __243.1,191621
2
23
→≅→−→=
+
Calculate cutoff ratio
575.1
1259
1983
_
2
3
2
3
3
33
2
22
==→





=





→→=
K
K
r
T
T
V
V
PConst
RT
VP
RT
VP
c
3-4 Isentropic expansion
kPaPkPar
v
v
PP
KTKr
v
v
TT
k
c
k
c
442575.1
20
1
13300
836575.1
20
1
1983
4
34.1
4
3
34
4
34.01
4
3
34
=→











→













=
=→











→













=
−
( ) ( )
kg
kJq
KK
Kkg
kJTTCvq
out
out
348
836380
*
764.041
−=→
−



→−=
Net work per cycle:
kJwkJkJqqw netoutinnet 552348900 =→−=−=
Thermal efficiency:
%3.61
900
552
=→== th
in
net
th
kJ
kJ
q
w
ηη
575.1
1259
1983
_
2
3
2
3
3
33
2
22
==→





=





→→=
K
K
r
T
T
V
V
PConst
RT
VP
RT
VP
c
3-4 Isentropic expansion
kPaPkPar
v
v
PP
KTKr
v
v
TT
k
c
k
c
442575.1
20
1
13300
836575.1
20
1
1983
4
34.1
4
3
34
4
34.01
4
3
34
=→











→













=
=→











→













=
−
( ) ( )
kg
kJq
KK
Kkg
kJTTCvq
out
out
348
836380
*
764.041
−=→
−



→−=
Net work per cycle:
kJwkJkJqqw netoutinnet 552348900 =→−=−=
Thermal efficiency:
%3.61
900
552
=→== th
in
net
th
kJ
kJ
q
w
ηη

More Related Content

What's hot

Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionAzeem Waqar
 
Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)anasimdad007
 
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Catherine Maria Centanaro Chavez
 
EES for Thermodynamics
EES for ThermodynamicsEES for Thermodynamics
EES for ThermodynamicsNaveed Rehman
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbM SAQIB
 
Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production functionSuniya Sheikh
 
Summer 2015 Intern Report
Summer 2015 Intern ReportSummer 2015 Intern Report
Summer 2015 Intern ReportVivek Srivatsa
 
M E C H A N I C A L E N G I N E E R I N G J N T U M O D E L P A P E R{Www
M E C H A N I C A L  E N G I N E E R I N G  J N T U  M O D E L  P A P E R{WwwM E C H A N I C A L  E N G I N E E R I N G  J N T U  M O D E L  P A P E R{Www
M E C H A N I C A L E N G I N E E R I N G J N T U M O D E L P A P E R{Wwwguest3f9c6b
 
Se prod thermo_examples_compressor
Se prod thermo_examples_compressorSe prod thermo_examples_compressor
Se prod thermo_examples_compressorVJTI Production
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLEYuri Melliza
 
Supercritical Thermal Power plant
Supercritical Thermal Power plantSupercritical Thermal Power plant
Supercritical Thermal Power plantOjes Sai Pogiri
 
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson:  Analysis Of An Open Feedwater Heater SystemJean-Paul Gibson:  Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater SystemJean-Paul Gibson
 
13085560 ice-lecture-2
13085560 ice-lecture-213085560 ice-lecture-2
13085560 ice-lecture-2ljill16
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)Yuri Melliza
 
Group 5 4ChE-A
Group 5 4ChE-AGroup 5 4ChE-A
Group 5 4ChE-A4ChEAB08
 

What's hot (20)

Maquinas y equipos termicos
Maquinas y equipos termicos Maquinas y equipos termicos
Maquinas y equipos termicos
 
Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solution
 
Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)
 
Ch18 ssm
Ch18 ssmCh18 ssm
Ch18 ssm
 
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
Solucionario Introducción a la Termodinamica en Ingeniería Química: Smith, Va...
 
Engine Cycles Analysis
Engine Cycles AnalysisEngine Cycles Analysis
Engine Cycles Analysis
 
EES for Thermodynamics
EES for ThermodynamicsEES for Thermodynamics
EES for Thermodynamics
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pb
 
Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production function
 
Summer 2015 Intern Report
Summer 2015 Intern ReportSummer 2015 Intern Report
Summer 2015 Intern Report
 
M E C H A N I C A L E N G I N E E R I N G J N T U M O D E L P A P E R{Www
M E C H A N I C A L  E N G I N E E R I N G  J N T U  M O D E L  P A P E R{WwwM E C H A N I C A L  E N G I N E E R I N G  J N T U  M O D E L  P A P E R{Www
M E C H A N I C A L E N G I N E E R I N G J N T U M O D E L P A P E R{Www
 
Se prod thermo_examples_compressor
Se prod thermo_examples_compressorSe prod thermo_examples_compressor
Se prod thermo_examples_compressor
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
Shi20396 ch18
Shi20396 ch18Shi20396 ch18
Shi20396 ch18
 
Supercritical Thermal Power plant
Supercritical Thermal Power plantSupercritical Thermal Power plant
Supercritical Thermal Power plant
 
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson:  Analysis Of An Open Feedwater Heater SystemJean-Paul Gibson:  Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater System
 
13085560 ice-lecture-2
13085560 ice-lecture-213085560 ice-lecture-2
13085560 ice-lecture-2
 
Lecture27
Lecture27Lecture27
Lecture27
 
Module 10 (air standard cycle)
Module 10 (air standard cycle)Module 10 (air standard cycle)
Module 10 (air standard cycle)
 
Group 5 4ChE-A
Group 5 4ChE-AGroup 5 4ChE-A
Group 5 4ChE-A
 

Similar to thermodynamic and heat transfer examples

Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleMuhammad Surahman
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf21M220KARTHIKEYANC
 
Diethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalanceDiethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalancePratik Patel
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysisAnurak Atthasit
 
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptGas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptHafizMudaserAhmad
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.pptWasifRazzaq2
 
integrated brayton and rankine cycle
integrated brayton and rankine cycle integrated brayton and rankine cycle
integrated brayton and rankine cycle UPENDRA YADAV
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysisAnurak Atthasit
 
2 gas turbinepp
2 gas turbinepp2 gas turbinepp
2 gas turbineppskdass23
 
gas reheat and intercooling
gas reheat and intercoolinggas reheat and intercooling
gas reheat and intercoolingCik Minn
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...dineshprabhu41
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYssuser5a6db81
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachineryWalid Mohammed
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 

Similar to thermodynamic and heat transfer examples (20)

Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
 
DJA3032 CHAPTER 2
DJA3032   CHAPTER 2DJA3032   CHAPTER 2
DJA3032 CHAPTER 2
 
Diethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalanceDiethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy Balance
 
Decline curve
Decline curveDecline curve
Decline curve
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysis
 
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptGas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.ppt
 
integrated brayton and rankine cycle
integrated brayton and rankine cycle integrated brayton and rankine cycle
integrated brayton and rankine cycle
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
 
Solucion problema 3
Solucion problema 3Solucion problema 3
Solucion problema 3
 
Gas power-09
Gas power-09Gas power-09
Gas power-09
 
2 gas turbinepp
2 gas turbinepp2 gas turbinepp
2 gas turbinepp
 
project ppt
project pptproject ppt
project ppt
 
gas reheat and intercooling
gas reheat and intercoolinggas reheat and intercooling
gas reheat and intercooling
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
 
3.6.doc
3.6.doc3.6.doc
3.6.doc
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachinery
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 

More from fahrenheit

KPSS MATEMATİK PROBLEMLER KARIŞIK TESTLER
KPSS MATEMATİK PROBLEMLER KARIŞIK TESTLERKPSS MATEMATİK PROBLEMLER KARIŞIK TESTLER
KPSS MATEMATİK PROBLEMLER KARIŞIK TESTLERfahrenheit
 
Waste heat recovery system on board ships
Waste heat recovery system on board shipsWaste heat recovery system on board ships
Waste heat recovery system on board shipsfahrenheit
 
Refrigeration and Air Conditioning
Refrigeration and Air ConditioningRefrigeration and Air Conditioning
Refrigeration and Air Conditioningfahrenheit
 
Internal combustion engines applied thermosciences (ferguson, kirkpatrick, ...
Internal combustion engines   applied thermosciences (ferguson, kirkpatrick, ...Internal combustion engines   applied thermosciences (ferguson, kirkpatrick, ...
Internal combustion engines applied thermosciences (ferguson, kirkpatrick, ...fahrenheit
 
propulsion engineering-02-resistance of ships
propulsion engineering-02-resistance of shipspropulsion engineering-02-resistance of ships
propulsion engineering-02-resistance of shipsfahrenheit
 
propulsion engineering-01-introduction 003 sm415-propulsion engineering-01-in...
propulsion engineering-01-introduction 003 sm415-propulsion engineering-01-in...propulsion engineering-01-introduction 003 sm415-propulsion engineering-01-in...
propulsion engineering-01-introduction 003 sm415-propulsion engineering-01-in...fahrenheit
 
00 statics review
00 statics review00 statics review
00 statics reviewfahrenheit
 
quality management AND SAFETY
quality management AND SAFETYquality management AND SAFETY
quality management AND SAFETYfahrenheit
 

More from fahrenheit (8)

KPSS MATEMATİK PROBLEMLER KARIŞIK TESTLER
KPSS MATEMATİK PROBLEMLER KARIŞIK TESTLERKPSS MATEMATİK PROBLEMLER KARIŞIK TESTLER
KPSS MATEMATİK PROBLEMLER KARIŞIK TESTLER
 
Waste heat recovery system on board ships
Waste heat recovery system on board shipsWaste heat recovery system on board ships
Waste heat recovery system on board ships
 
Refrigeration and Air Conditioning
Refrigeration and Air ConditioningRefrigeration and Air Conditioning
Refrigeration and Air Conditioning
 
Internal combustion engines applied thermosciences (ferguson, kirkpatrick, ...
Internal combustion engines   applied thermosciences (ferguson, kirkpatrick, ...Internal combustion engines   applied thermosciences (ferguson, kirkpatrick, ...
Internal combustion engines applied thermosciences (ferguson, kirkpatrick, ...
 
propulsion engineering-02-resistance of ships
propulsion engineering-02-resistance of shipspropulsion engineering-02-resistance of ships
propulsion engineering-02-resistance of ships
 
propulsion engineering-01-introduction 003 sm415-propulsion engineering-01-in...
propulsion engineering-01-introduction 003 sm415-propulsion engineering-01-in...propulsion engineering-01-introduction 003 sm415-propulsion engineering-01-in...
propulsion engineering-01-introduction 003 sm415-propulsion engineering-01-in...
 
00 statics review
00 statics review00 statics review
00 statics review
 
quality management AND SAFETY
quality management AND SAFETYquality management AND SAFETY
quality management AND SAFETY
 

Recently uploaded

18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 

Recently uploaded (20)

9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 

thermodynamic and heat transfer examples

  • 1. ASEN 3113 Thermodynamics and Heat Transfer Homework #4 Assigned: September 28, 2006 Due: October 10, 2006 (class time) (Total points noted in each section; must clearly show equations with values and units, drawings, assumptions, etc.) 1. (20 points) A cold air standard Otto cycle has a compression ratio of 8. The cylinder state at the end of the expansion process is T = 500 K and P = 620 kPa. The heat rejection per unit mass kgkJ m Q /16341 = Determine the following: a) (10 points) Net work per unit mass of air. b) (5 points) Thermal efficiency. c) (5 points) Mean effective pressure. Solution: Using the given heat rejection, 14 41 uu m Q −= . Thus, with Tcu v ∆=∆ and cv = 0.721 kJ/kg K: K kgKkJ kgkJ K cm Q TT v 93.273 /721.0 /163 50041 41 =−= ⋅ −= For the isentropic compression .)/(/ 1 2112 − = k VVTT Therefore KKT 35.629)93.273()8( 14.1 2 == − Also for the isentropic expansion KKTVVTVVT kk 7.1148)500()8()/()/( 14.1 4 1 214 1 343 ==⋅=⋅= −−− a) The net work per unit mass of air is kgkJkgkJKKkgKkJ m Q TTc m Q m Q m W v cycle /45.211/163)35.6297.1148(/721.0)( 41 23 4123 =−−=−−=−= b) The thermal efficiency is 565.0 /45.374 /45.211 / / 23 === kgkJ kgkJ mQ mWcycle η c) The mean effective pressure is given by
  • 2. )/11(121 rV W VV W mep cyclecycle − = − = Evaluating the specific volume V1=V4 Where kgm kPa KkgKkJ P RT V /2315.0 620 )500)(/2870.0( 3 4 4 4 === Thus kPa kgm kgkJ mep 86.1043 )8/11)(/2315.0( /45.211 3 = − = 2. (20 points) An air standard gas turbine engine has a compressor pressure ratio of 12. It operates between 290 K and 1400 K. The turbine and compressor each have isentropic efficiencies of 90%.Determine the following: a) (10 points) Net work per unit mass of air flow. b) (5 points) Heat rejected per unit mass flow of air. c) (5 points) Thermal efficiency. Solution: Determine the unknown temperatures: ( ) KK P P TT kk 84.58912290 4.1/)14.1( /)1( 1 2 12 ==      = − − ( ) KK P P TT kk 32.68812/11400 4.1/)14.1( /)1( 3 4 34 ==      = − − Determine the work input to the compressor and the work output of the turbine: kgkJKKkgKkJTTcW pin /34.301)29084.589)(/005.1()( 12 =−=−= kgkJKKkgKkJTTcW pout /24.715)32.6881400)(/005.1()( 43 =−=−= a) Net work: kgkJkgkJkgkJWWW inoutnet /9.413/34.301/24.715 =−=−= b) Heat rejected: kgkJKKkgkJTTcq pout /31.400)29032.688(/005.1)( 14 =−=−= c) Thermal efficiency:
  • 3. kgkJKKkgkJTTcq pin /21.814)84.5891400(/005.1)( 23 =−=−= 508.0 /21.814 /9.413 === kgkJ kgkJ q W in net thη 3. (30 points) A four-cylinder, four-stroke internal combustion engine has a bore of 95.25 mm. and a stroke of 87.63 mm. The clearance volume is 17% of the cylinder volume at bottom dead center and the crankshaft rotates at 2600 RPM. The total volume of the cylinder is the volume of bore and stroke volume plus the clearance volume. The processes within each cylinder are modeled as an Otto cycle with a pressure of 1 atm and a temperature of 288 K at the beginning of compression. The maximum temperature in the cycle is 2888 K. Use the following constants in your analysis: k = 1.4 for air/fuel mixture (compression) and k = 1.285 for combustion products (expansion) Cv = 0.926 kJ/kg*K between steps 2 and 3, Cv = 0.825 kJ/kg*K between steps 4 and 1 (a) (4 points) Draw the P-v diagram; label Pressures, Temperatures, Qin, and Qout (b) (2 points) Calculate the mass of air at the beginning of the cycle (c) (12 points) Calculate the Pressure in kPa and Temperature in K at each step in the cycle (d) (6 points) Calculate the net Work per cycle in Joules (e) (3 points) Calculate the power developed by the engine in kW (f) (3 points) Calculate the thermal efficiency of this engine Solution (a) See diagrams in Cengal pg 292-293. ( ) ( ) ( ) 33 22 & 000752.017.0000624.0 17.008763.0 4 09525.0 17.0 4 mVVmV Vm m Vh d VVV TotalTotalTotal totaltotalclearancestrokeboreTotal =→+= +        =+      =+= ππ ( )( ) ( ) g K Kg J m m N RT VP m 92.0 288 * 2870.0 000752.0000,101 3 2 1 11 =      == (b solution) 1-2 Isentropic compression:
  • 4. ( ) ( ) KT kPa kPa K P P TT kPaP m m kPa v v PP k k k 585 101 1205 288 1205 000128.0 000752.0 101 2 4.1 14.11 1 2 12 2 4.1 3 3 2 1 12 =→      →      = =→      →      = −− 2-3 Heat addition: ( ) ( ) ( ) ( )( ) kPaP K K kPa T T V V PP RT VP RT VP kJQ KK Kkg kJkgTTmCvQKT in in 5950 585 2888 11205 96.1 5852888 * 926.000092.02888 3 2 3 3 2 23 3 33 2 22 233 =→      =            =→= = −    →−=→= 3-4 Isentropic Expansion: ( ) ( ) KT kPa kPa K P P TT kPaP m m kPa v v PP k k k 1743 5950 611 2888 611 000752.0 000128.0 5950 4 285.1 1285.11 3 4 34 4 285.1 3 3 4 3 34 =→      →      = =→      →      = −− 4-1 Heat rejection ( ) ( ) ( ) kJQ KK Kkg kJkgTTmCvQ out out 10.1 1743288 * 825.000092.041 −=→ −    →−= Net work per cycle: JWkJkJQQW netoutinnet 85610.196.1 =→−=−= Power developed by the engine: ( ) ( ) ( ) ( ) kWPowerJ rev cylindersW RPM cylindersPower net 2.74 sec60 min1 856 2 min 2600 4 sec60 min1 2 # =→              =            = Thermal efficiency: %6.43 1960 856 =→== th in net th J J Q W ηη 4. (30 points) The conditions at the beginning of compression in an air-standard Diesel cycle are fixed by p1= 200 kPa, T1 = 380 K. The compression ratio is 20 and the heat addition per unit
  • 5. mass is 900 kJ/kg. Use k = 1.4 for air/fuel mixture (compression) and k = 1.34 for combustion products (expansion). Hint: To determine T3, use the averaged temperature value between T3 and T2 to determine the temperature corresponding to a value for average Cp and iterate until you calculate values for average Cp and T3 that work in the equations. A first guess for the value of T3 will be between 1600 and 2000 K. Use three decimal places only for average Cp in kJ/kg*K and also round temperature values to the nearest value in four significant digits for this problem (i.e. No decimal places for temperatures). Table A-19 has values for air and the units for Cp should be J/kg *K. (Total points noted in each section; must clearly show equations with values and units, drawings, assumptions, etc.) (a) (4 points) Draw the P-v diagram and label Pressures, Temperatures, Qin, and Qout (b) (14 points) Calculate the Pressure in kPa and Temperature in K at each step in the cycle (c) (4 points) Calculate the net Work per cycle in kJ/kg. (d) (4 points) Calculate the cutoff ratio (e) (4 points) Calculate the thermal efficiency of the cycle Solution: (a) See pg 298 in Cengal for diagrams. 1-2 Isentropic compression ( ) ( ) kPaPkPa v v PP KT v v TT k k 1330020200 125920380 2 4.1 1 2 12 2 4.0 2 1 12 =→→      = =→→      = 2-3 Heat addition ( ) ( )KTC kg kJTTCq ppin 1259900 323 −=→−= Choose T3 = 1983K, Calculate a Cp ( ) ( ) 243.11259198390023 =→−=→−= pppin CKC kg kJTTCq Check average temperature of T3 and T2 in Cengal Table A-19 ( ) ( ) OKGuessTempCAirATableK TT p __243.1,191621 2 23 →≅→−→= + Calculate cutoff ratio