SlideShare a Scribd company logo
1 of 22
THERMAL
POWER
STATIONS
Supercritical Plant Flows
and Parameters
SUBMITTD BY
OJES SAI POGIRI
INDEX NO: K-5870
Calculate mass and energy flows as well as basic energy and ecological indicators of the system for
a given structure of the thermal system and given parameters and characteristic quantities of
individual devices.
Assumptions:
1. Strukture shown on fig. 1,
2. Boiler efficiency - 90 %, fresh steam parameters: 255.5 bar, 550 °C,
3. Gross power – 900 MW,
4. Parameters of reheated steam – 52.9 bar, 580 °C,
5. Degasser pressure – 11.2 bar,
6. Pressure on boiler water input – 294 bar,
7. Pressure drop on high pressure heaters WP – 3 bar,
8. Main pump efficiency – 85%,
9. Characteristic regenerative heat exchangers temperatures and pressure drops Table and Fig.1
10. Efficiencies of turbina stages – Table 1,
11. Steam pressure drop over interstage superheater – 4.5 bar,
12. Feed water heating on the WP regenerative heater after the feed pump – 38.5°C,
13. Condenser inlet temperature – 17.5°C (17.5°C)1, cooling water temperature increase 10.4°C
(11.1°C)1,
14. Minimal temperaturę difference – 2.6°C,
15. Head of cooling water pump – 2.5 bar,
16. Condenser pressure drop – 0.5 bar,
17. Pressure on the cooling pump inlet – 1 bar,
18. Cooling pump efficiency – 80%,
19. Main condensate pump efficiency – 22 bar,
20. Medium-pressure and low-pressure regeneravive heaters pressure drops:in the active part –
po 2 bar,in the passive part (vapor cooler) – po 0.5 bar,
21. Pressure between medium-pressure and low-pressure turbine stages – 4.8 bar,
22. Pressure in the extractions of the low-pressure turbine – 1.84 bar, 0.416 bar, 0.21bar,
23. Condensate pump efficiency – 75%,
24. Own consumption coefficienct – 5%,
25. Fuel – hard coal calorific value 23 GJ/t, ash 17%, moisture 10%, sulphur 1%,
26. Ambient temperature - 15°C, relative ambient humidity – 70%.
Table 1. Parametrs of heaters
Heater
(nr węzła)
∆tg
[°C
]
∆tz
[°C
]
∆tp
[°C
]
∆t
w
[°C
]
tn
[°C]
∆p
[bar]
Notes
WP 1
(node 22)
3.2 8.4 48.2 38.5 232.0 3
WP 2
(node 23)
2.1 8.6 48.5 41.7 272.6 3
WP 3
(node 24)
- 9.7 - - - 1 Condensate cooler
NP 1
(node 10)
3.1 tn-tz - - 61.1 2
NP 2
(node 11)
3.1 tn-tz - 15.7 76.8 2
NP 3
(node 13)
3.1 tn-tz - 40.7 117.6 2
NP 4
(node 14)
3.3 tn-tz - 32.5 150.3 2 First after degasser
B1
(node 9)
- - - - - 0.5 Passive regeneration
∆tg – temperature difference on hot end
∆tz – temperature difference on cold end
∆tp – temperature difference between feeding flow temperature and saturation
temperature
∆tw – temperature change of water flowing through
exchange tn – condensate temperature (saturation
temperature)
∆p – heated flow pressure drops on exchanger
Table 1.1 Turbine efficiencies
Stage
(flow number)
Parametrs after turbine stage
η[%]
Temperature
(saturation)
[°C]
Pressure
[bar]
Enthalpy
[kJ/kg]
Entropy
[kJ/kg/K]
Dryness
I
([5])
320.9
(272.6) 57.374 2966.7 6.226 - 90.7
II
([8])
493,6
(233.9) 30.079 3443.19 7.216 - 85.2
III
([9])
351,9
(184.8) 11.2 3162.70 7.258 - 91.9
IV
([10])
245,7
(150.6) 4.839 2952.,54 7.272 - 96.1
V
([12])
150,7
(117.6) 1.84 2770.40 7.323 - 89.4
VI
([13])
76,8
(76.8) 0.416 2545.3 7.391 0.96 90.7
VII
([14])
57.9
(57.9) 0.210 2460.7 7.441 0.935 83.9
VIII
([15])
30,5
(30.5) 0.044 2290.5 7.563 0.89 80.6
Main pump turbine
I
(p. [24])
31.41
(31.41) 0.046 2362.8 7.708 0.91 85.6
System structure is shown on fig. 2. Flows are numbered and balance nodes are added for each
device and point. Number of the last flow and last balance node is noted inside node numer 25
Fig. 2. Heat scheme with numbered flows and balance node
System is divided into 64 flows and 27 balance nodes. They are marked in this graph, where
inlfowing flows has „+” signs, and outflowing – „-” signs.
3. Thermodynamic parameters calculation
Based on the data set presented in point 1, you can build many equivalent and true sequences of
calculations for thermodynamic parameters in the system - enthalpy, entropy, or degrees of dryness
of steam.
Table 4 contains the algorithm of the order of calculations of thermodynamic parameters of flows in
the thermal system.
Based on the data set presented in point 1, you can build many equivalent and true sequences
of calculations for thermodynamic parameters in the system - enthalpy, entropy, or degrees of
dryness of steam.
Table 4 contains the algorithm of the order of calculations of thermodynamic parameters of
flows in the thermal system.
Table 2. Parameters calculation algorithm
Step
Flow number
(Nodes numbers) Assumptions Notes
1
4
(1→2) p[4] =255.5bar, t[4] =550°C Number as in fig. 4
2 7
(1→3)
p[7] =52.9bar,
t[7] =580°C
3 49
(17→21)
p[49] = 11.2bar Saturation parameters
for water
4
53
(21→ 22)
ηp21 = 85%, p[1] = 294bar,
param. [49]/42)
∆p23 = ∆p22 = 3bar, ∆p24=1bar
p[53] = p[1] +
2∆p23+∆p24
5
52
(22→1) ηp21 = 85%, p[52] = p[7] = 52.9bar
6
6
(2→1) ηi[4,6] = 90.7%, ∆pp=4.5bar p[6] = p[7] + ∆pp
7
5
(2→23) param. [5] = param. [6]
8
56
(23→24)
param. [5]/7,
∆tg23=2.1°C,
∆p24=1bar
t[56] = tn(p[5])-
∆tg23 p[56] = p[1] +
∆p24
9
54
(22→23)
∆p23 = 3bar, ∆p24 = 1bar,
∆t22= 38,5°C.
t[54] = t[53] + ∆t22
p[54] = p[1] + ∆p23 +∆p24
10 48
(24→22)
param. [56]/8,
∆tz24=9.7°C, ∆tg22=3.2°C
t[48] = t[56] + ∆tz24
p[48] = pn(t[54+∆tg22])
11
8
(3→24) p[8]=p[48], hi[7,8] = 85.2%
12
57
(23→22)
∆tz23=8.6°C
param. [54]/9, param. [5]/7
p[57] = p[5]
t[57] = t[54] + ∆tz23
13
55
(22→17)
∆tz22=8.4°C
Param. [53]/4, param [48]/10
p[55] = p[48]
t[55] = t[53] + ∆tz22
14
9
(3→16)
ηi[8,9] = 91.9%, param. [8]/11
param[49]/3
p[9] = p[49]
15
47
(16→17) param[47] = param[9]
16
23
(16→20)
param. [23] = param. [9]
17
11
(3→4)
ηi[9,11] = 96.1%, param. [9]/14
p[11] = 4.8bar
18
10
(3→14)
param[10] = param[11]
19
19
(25→7)
tp[19] = 17.5°C, p[19] = 1bar
20 21
(7→6)
∆p = 2.5bar, hp7 = 80%
param. [19]/19
p[21] = p[19] + ∆p
21
22
(6→25)
∆ps6=0.5bar, ∆tw6=10.4°C
p[22] = p[21] -
∆ps6 t[22] = t[21] +
∆tw6
22
16
(6→8)
param. [22]/21, ∆tg6=2.6°C
t[16] = t[22] + ∆tg6
p[16] = pn(t[16])
23 18
(8→26)
param. [16]/22, hp8= 75%,
∆p = 22bar
p[18] = p[16] + ∆p
24
63
(26→9)
param[63] = param[18]
25
46
(26→4) param[46] = param[18]
26
40
(14→17)
Param. [10]/18, ∆tg14=3.3°C
∆p9 = 0.5bar
∆p10=∆p11=∆p13 =∆p14=2bar
p[40]=p[18]-∆p19 -
∆p10-
∆p11-∆p13-∆p14
t[40]=tn(p[10])-∆tg14
27
41
(11→15) param. [10]/18
p[41] = p[10]
t[41] = tn[10]
28 43
(15→17)
ηp15=75%, param
[41]/27, param. [40]/26
p[43] = p[40]
29
12
(4→13)
ηi[11,12] = 89.4%,
param. [11]/17, p[12] = 1.84bar
30
39
(13→14)
∆tg13=3.1°C, ∆p14=2bar,
param. [40]/26, param. [12]/29
p[39] = p[40] + ∆p14
t[39] = tn[p(12)] - ∆tg13
31
38
(13→11) param. [12]/29
p[38] = p[12]
t[38] = tn[12]
32
13
(4→11)
ηi[12,13] = 90,7%,
param. [12]/29, p[13] = 0,416bar.
33
34
(11→13)
∆tg11=3.1°C, ∆p13=2bar,
param. [40]/26, param. [13]/32
p[34] = p[40]+2∆p13
t[34] = tn[p(13)] -+∆tg11
34
35
(11→12) param. [13]/32
t[35] = tn[13]
p[35] = p[13]
35
37
(12→ 13)
ηp12=75%, param.
[35]/34, param. [34]/34
p[37]=p[34]
36
14
(4→ 10)
ηi[13,14] = 86.2%,
param. [13]/32, p[14] = 0.21bar.
37
32
(10→ 22)
∆tg10=3.1°C, ∆p11=2bar,
param. [34]/33, param. [14]/36
p[32] = p[34] + ∆p11
t[32] = tn[14] - ∆tg10
38
33
(10→6) param. [14]/36
p[33] = p[14]
t[33]= tn[14]
39 15
(4→6)
ηi[14,15] = 80.6%,
param. [14]/36
param. [16]/22
p[15] = p[16]
40
26
(25→19) p[26] = 1bar, tp=17.5°C
41
28
(19→18)
∆p = 2.5bar, hp19 = 80%
param. [26]/40
p[28] = p[26] + ∆p
42
29
(18→35)
∆ps18=0.5bar, ∆tw18=11.1°C
p[29] = p[28] -
∆ps18 t[29] = t[28]
+ ∆tw18
43
25
(28→6) param. [29]/42, ∆tg18=2.7°C
t[25]= t[29] + ∆tg18
p[25] = pn(t[25])
44
24
(20→18)
ηi[23,24] = 85.6%,
param. [23]/16, param. [25]/43 p[24]=p[25]
45
44
(2→9)
p[44] = 0.2bar
t[44] = 458°C
46 45
(3→13)
p[45] = 52bar
t[45] = 574.50°C
47
31
(9→6)
p[31] = 0.2bar
t[31] = 60.087°C
Table 3. Water parameters after WP1 and WP2 exhangers
Flow
Parameters
p [bar] T [ °C] h [kJ/kg] s
[kJ/kgK]
∆bt
[kJ/kg]
b0 [kJ/kg] bt [kJ/kg]
54
(after WP1)
298 228.80 988.66 2.5 257.9
47.43
305.3
56
(after WP2)
295 270.57 1184.46 2.9 345.4 392.8
Heat exchangers 9 and 24 are passive regeneration heat exchangers, unregulated, so
parameters cannot be assumed in advance because they depend on the flow rate. Therefore, flows
1 and 30 should be treated as unknown, and they can be determined only after solving the system
of equations - calculating mass and energy fluxes. In table 6 they were written back - after
calculations.
Table 6 shows the results of calculations created according to the algorithm created early. The
table consists of an array of parameters and an assumption table.
3. Determining Thermodynamic parameters
Based given assumptions by using Xsteam tables thermodynamic parameters are determined
below.
1. Flow at 4 (1→2):-
At given Pressure is p [4]= 255.5 bar and Temperature T[4]= 550ºC. From X-Steam tables
properties.
Enthalpy h [4] =3332.9 KJ/Kg Entropy s [4] = 6.17 KJ/Kg k.
2. Flow at 7 (1→3):-
At given Pressure is p [4]= 52.9 bar and Temperature T[4]= 580ºC. From X-Steam tables
properties.
Enthalpy h [7] =3617.9 KJ/Kg Entropy s [7] = 7.18 KJ/Kg k.
3. Flow at 49 (17→21):-
At given Pressure is p [49]= 11.2 bar and From X-Steam tables saturation properties
Temperature T[49]= 184.8ºC. Enthalpy h [49] =784.7 KJ/Kg
Entropy s [49] = 2.19 KJ/Kg k.
4. Flow at 53 (21→22): -
At the pump efficiency is ηp [21] =85%, and pressure p [53] =P[1]+2∆p23+∆p24
= 294+2*3+1= 301 bar, s [53] = s [49] =2.19 KJ/Kg k
From X-Steam tables functions enthalpy ℎ 𝑠 [53] =818.92 KJ/Kg
As we Know pump efficiency ηp = =
ℎ 𝑠[53]−ℎ[49]
ℎ[53]−ℎ[49]
0.85=
818.92−784.7
ℎ[53]−784.7
; h [53] = 824.19 KJ/Kg
By Steam table properties
At p[53]= 301 bar , h [53]= 823.19 KJ/Kg the T[53] = 190.3 ºC
5. Flow at 52 (21→1): -
At the pump efficiency is ηp [21] =85%, and pressure p [52] =P[7]= 52.9 bar, s [52] = s [49]
=2.19 KJ/Kg k
From X-Steam tables functions enthalpy ℎ 𝑠 [52] =791.03 KJ/Kg
As we Know pump efficiency ηp = =
ℎ 𝑠[52]−ℎ[49]
ℎ[52]−ℎ[49]
0.85=
791.03−784.7
ℎ[52]−784.7
; h [52] = 792.14KJ/Kg
By Steam table properties
At p[52]= 52.9 bar , h [52]= 792.14 KJ/Kg the T[52] = 186.1ºC
6. Flow at 6 (2→1)
Give data ηi[4,6]=90.7%; Δp = 4.5 bar ; p[6]= p [7] + Δp = 52.9 +4.5= 57.4 bar
s [6]= s[5]= 6.22 KJ/Kg , ℎ 𝑠[6]= 2962.78 KJ/Kg
ηt = =
ℎ[5]−ℎ[6]
ℎ[5]−ℎ_𝑠 [6]
0.907=
29626−ℎ [6]
2966−2962.7
h [6] =2963.79 KJ/Kg T [6]= = 320.2ºC
7. Flow at 5 (2→23)
Parameter [5] = parameters [6]
P[5] =P[6]=57.4 bar; T [5]=T[6]=321.3 ºC h[5]=h[6]=2966.3 KJ/Kg s[5]=s[6]=6.22 KJ/Kg
8. Flow at 56 (23→24)
From assumpitions, Parameters of system T [56] = tn(p[5])-∆tg23= 272.6-2.1=270.5ºC
p[56] = p[1] + ∆p24 = 294.5+1=295 bar
From the tables, h[56]= 1184.0 KJ/Kg s[56] = 2.92 KJ/Kg k.
9. Flow at 54 (22→23)
From assumpitions, Parameters of system T [54] = T[53]+∆t22= 190.3+38.5=228.8ºC
p[54] = p[1] + ∆p24++ ∆p24 = 294.5+3+1=298.5 bar
From the tables, h[54]= 992.1 KJ/Kg S[54] = 2.55 KJ/Kg k.
10. Flow at 48 (24→22)
From assumpitions, Parameters of system T [48] = T[56]+∆t24= 270.5+9.7=280.2ºC
p[48] = p[t(54+∆t24]= P[t(232)]= 29.008 bar
From the tables, h[48]= 2946.3 KJ/Kg s[48] = 6.47 KJ/Kg k.
11. Flow at 8 (3→24)
Give data ηi[7,8]=85.2%; p [8]=p[48]=29.008 s [8]= 7.2 KJ/Kg ,
ℎ 𝑠[8]= 3418.26 KJ/Kg
ηt = =
ℎ[7]−ℎ[8]
ℎ[7]−ℎ 𝑠[8]
0.852=
3617.9 −ℎ [6]
3617.9 −3418.26
h [8] = 3441.38 KJ/kg
12. Flow at 57 (23→22)
From given assumption p [57] = p[5]=57.4 bar, T [57] =T[54] + ∆tz23=228.8+8.6=237.4 ºC
From tables h [57] = 1025.5 KJ/Kg, s [57] = 2.67 KJ/Kg k.
13. Flow at 55 (22→17)
From given assumption p [55] = p[48]=29.008 bar, T [55] =T[53] + ∆tz22=190.3+8.6=198.9 ºC
From tables h [55] = 848 KJ/Kg, s [55] = 2.32 KJ/Kg k.
14. Flow at 9 (3→16)
Give data ηi[7,8]=91.2 %; p [9]=p[49]=11.2 bar s [9]= 7.25 KJ/Kg , hs [9]= 3157.23 KJ/Kg
ηt = =
ℎ[8]−ℎ[9]
ℎ[8]−ℎ 𝑠[9]
0.852=
3441.38 −ℎ [9]
3441.38 −3157.23
h [9] = 3175.077 KJ/Kg
By X- steam Properties T [9] = 359.1 ºC
15. Flow at 47 (16→17)
Parameter [47] = parameter [9]
16. Flow at 23 (16→20)
Parameter [23] = parameter [9]
17. Flow at 11 (3→4)
Parameter [11] = 4.8 bar s[11]=7.27 KJ/kgK hs[11]=2950.17 KJ/Kg
ηt = =
ℎ[9]−ℎ[11]
ℎ[9]−ℎ 𝑠[11]
0.961=
3175.07 −ℎ [11]
3175.077−2950.17
h [11] = 2958.03 KJ/Kg T[11]=248.2 ºC
18. Flow at 10 (3→14)
Parameter [10] = parameter [11]
19. Flow at 19 (25→7)
Give data T [19] = 17.5ºC p[19]= 1 bar
From X-Steam tables h [19] =73.5 KJ/Kg s[19]=0.265 KJ/kgK
20. Flow at 21 (7→6)
Give data p[21] = p[19] + ∆p= 1+2.5=3.5 bar ηp7=80%, s[21]=0.26 KJ/kgK
hs[21]=73.625 KJ/kgK ηp = =
ℎ 𝑠[21]−ℎ[49]
ℎ[21]−ℎ[49]
0.80=
73.625−73.5
ℎ[52]−73.5
h [21] = 73.64 KJ/Kg T [21] = 17.5 ºC
21. Flow at 22 (6→25)
p[22] = p[21] - ∆ps6 = 3.5- 0.5 =3 bar T[22] = T[21] + ∆tw6= 17.5+ 10.4=27.9 ºC
From X-Steam tables h [21] =117.2 KJ/Kg s[19]=0.41 KJ/kgK
22. Flow at 16 (6→8)
T[16] = T[22] + ∆tg6= 27.9+ 2.6= 30.5 ºC p[16] = pn(t[16])=0.0437 bar functions
h [16] = 127.8 KJ/Kg s[16]=0.44 KJ/kgK by saturation tables
23. Flow at 18 (8→26): -
At the pump efficiency is ηp [8] =75%, and pressure p [18] =P[16]+∆p=0.043-22=22.04 bar,
s [18] = =0.44 KJ/Kg k
From X-Steam tables functions enthalpy ℎ 𝑠 [18] =128.91 KJ/Kg
As we Know pump efficiency ηp = =
ℎ 𝑠[18]−ℎ[16]
ℎ[18]−ℎ[16]
0.75=
128.91−127.8
ℎ[53]−127.8
; h [18] = 129.28 KJ/Kg T [18] = 30.3 ºC
24. Flow at 63 (26→9)
Parameter [63] = parameter [18]
25. Flow at 46 (26→4)
Parameter [46] = parameter [18]
26. Flow at 40 (14→17)
p [40] =p [18]-∆p19-∆p10-∆p11-∆p13-∆p14= 22.04 -0.5-4*2=13.54 bar
T [40] =tn (p [10])-∆tg14 = 150.305-3.3 =147 ºC h [40] = 619.9 KJ/Kg s[40]=1.81 KJ/kgK
27. Flow at 41 (11→15)
P [41] =p [10] =4.8 bar; T [41] =T [10] = 150.3 ºC h [41] =633.5 KJ/kg s[41]=1.85 KJ/kgK
28. Flow at 43 (15→17)
At the pump efficiency is ηp [15] =75%, and pressure p [43] =P [40] =13.54 bar,
s [43] =s [41] = 1.85 KJ/Kg k from X-Steam tables functions enthalpy ℎ 𝑠 [43] = 636.63 KJ/Kg
As we Know pump efficiency ηp = =
ℎ 𝑠[43]−ℎ[41]
ℎ[43]−ℎ[41]
0.75=
636.63−633.5
ℎ[43]−633.5
; h [43] = 637.67 KJ/Kg T [43] = 151.2 ºC
29. Flow at 12 (4→13)
Give data ηi [11,12] =89.4%; p [12] =1.84 bar s [12] = 7.32 KJ/Kg
from X-Steam tables functions enthalpy hs [12] = 2769.5 KJ/Kg
ηt = =
ℎ[10]−ℎ[12]
ℎ[10]−ℎ 𝑠[12]
0.894=
2958.03 −ℎ [12]
2958.03−2769.5
h [12] = 2769.59 KJ/Kg T[12]=149.64 ºC
30. Flow at 39 (13→11)
p [39] = p[40] + ∆p14 =13.54+2=15.54 bar
T [39] = tn[p(12)] - ∆tg13= 117.59 -3.1= 114.49 ºC h [40] = 481.4 KJ/Kg s[40]=1.47 KJ/kgK
31. Flow at 38 (13→11)
P [38] =p [12] =1.84 bar T[38] =Tn[12]=117.59 ºC
h [40] = 493.5 KJ/Kg s [40] =1.5 KJ/kgK
32. Flow at 13 (4→11)
Give data ηi [12,13] =90.7%; p [13] =0.41 bar s [13] = 7.39 KJ/Kg
from X-Steam tables functions enthalpy hs [13] = 2542.47 KJ/Kg
ηt = =
ℎ[12]−ℎ[13]
ℎ[12]−ℎ 𝑠[13]
0.907=
2769.59 −ℎ [12]
2769.59−2542.47
h [13] = 2563.59 KJ/Kg T[13]=79.78 ºC
33. Flow at 34 (11→13)
p [34] = p[40] +2 ∆p13 =13.54+2*2=17.54 bar
T [39] = tn[p(12)] - ∆tg13= 117.59 -3.1= 114.49 ºC h [34] = 481.4 KJ/Kg s[34]=1.47 KJ/kgK
34. Flow at 35 (11→12)
P[35] =p[13]=0.41 bar T[35]=Tn[13]=79.78 ºC
h [35] = 334.025 KJ/Kg s[35]=1.07 KJ/kgK
35. Flow at 37 (12→13)
At the pump efficiency is ηp [12] =75%, and pressure p [37] =P [34] =17.54 bar,
s [37] =s [35] = 1.07 KJ/Kg k from X-Steam tables functions enthalpy ℎ 𝑠 [37] = 334.8 KJ/Kg
As we Know pump efficiency ηp = =
ℎ 𝑠[37]−ℎ[34]
ℎ[37]−ℎ[34]
0.75=
334.8−334.025
ℎ[37]−334.025
; h [37] = 335.05 KJ/Kg T [37] = 79.7 ºC
36. Flow at 14 (4→10)
Give data ηi [13,14] =86.2%; p [14] =0.21 bar s [14] = 7.45 KJ/Kg
from X-Steam tables functions enthalpy hs [14] = 2463.59 KJ/Kg
ηt =
ℎ[13]−ℎ[14]
ℎ[13]−ℎ 𝑠[14]
0.894=
2563.59 −ℎ [14]
2563.59−2463.59
h [14] = 2474.19 KJ/Kg T[14]=62.72 ºC
37. Flow at 32 (10→22)
p [32] = p[34] + ∆p11=17.54+2=19.54 bar T[32] = Tn[14] - ∆tg10 = 62.72-3.1=59.62 ºC
h [32] = 251.2 KJ/Kg s [32] =0.83 KJ/kgK
38. Flow at 33 (10→6)
P [33] =p [14]=0.21bar T[33]=Tn[14]= 62.72 ºC s[33]=0.84 KJ/kgK h[33]= 255.828 KJ/kg
39. Flow at 15 (4→6)
Give data ηi [14,15] =80.6%; p [15] =p [16] =0.043 bar s [15] = 7.6 KJ/Kg
from X-Steam tables functions enthalpy hs [15] = 2298.82 KJ/Kg
ηt =
ℎ[14]−ℎ[15]
ℎ[14]−ℎ 𝑠[15]
0.806=
2474.19 −ℎ [15]
2474.19−2298.82
h [15] = 2332.84 KJ/Kg T[15]=34.99 ºC
40. Flow at 26 (25→19)
P [26] =1 bar T[26]=17.5 ºC h [26] = 73.5 KJ/Kg s [26] = 0.26 KJ/Kg
41. Flow at 28 (19→18)
p[28] = p[26] + ∆p =1+ 2.5=3.5 bar
s [28] =s [26] = 0.26 KJ/Kg k from X-Steam tables functions enthalpy ℎ 𝑠 [28] = 73.62 KJ/Kg
As we Know pump efficiency ηp = =
ℎ 𝑠[28]−ℎ[26]
ℎ[28]−ℎ[26]
0.8=
73.62−73.5
ℎ[28]−73.5
; h [28] = 73.64 KJ/Kg T [43] = 17.48 ºC
42. Flow at 29 (18→35)
p[29] = p[28] - ∆ps18 = 3.5 -0.5 = 3 bar T[29] = T[28] + ∆tw18= 17.48+11.1 = 28.58 ºC
h [28] = 120.1 KJ/Kg s [26] = 0.42 KJ/Kg
43. Flow at 25 (28→6)
T[25]= t[29] + ∆tg18= 28.58+ 2.7 =31.28 ºC p[25] = pn(t[25]) =0.46 bar
h [25] = 131.1 KJ/Kg s [26] = 0.45 KJ/Kg
44. Flow at 24 (20→18)
Give data ηi [23,24] =85.6%; p [24] =p [25] =0.046 bar s [24] = 7.7 KJ/Kg
from X-Steam tables functions enthalpy hs [25] = 2337.73 KJ/Kg
ηt =
ℎ[23]−ℎ[24]
ℎ[23]−ℎ 𝑠[24]
0.806=
3157.63 −ℎ [24]
3157.63−2337.73
h [15] = 2496.79 KJ/Kg T[24]=31.39 ºC
45. Flow at 44 (2→9)
T[44]= 458 ºC p[44] = 0.2 bar
h [44] = 3400.6 KJ/Kg s [44] = 9.46 KJ/Kg
46. Flow at 45 (3→13)
T[45]= 574.50 ºC p[45] = 52 bar
h [45] = 3608.2 KJ/Kg s [45] = 7.17 KJ/Kg
47. Flow at 31 (9→6)
T[31]= 60.08 ºC p[31] = 0.2 bar
h [31] = 251.48 KJ/Kg s [31] = 0.83 KJ/Kg
Tab. 4. Thermodynamic parameters of mass flows
THERMODYNAMIC PARAMETERS - results
Nr p[bar] T[°C] H[kJ/kg] S[kJ/kgK]
1* 294.000 277.670 1218.600 2.9810
2 - - - -
3 - - - -
4 255.5 550 3332.9 6.17
5 57.4 321.3 2966.3 6.22
6 57.4 320.2 2963.7 6.22
7 52.9 580. 3617.9 7.18
8 29.008 492.8 3441.38 7.2
9 11.2 359.1 3175.07 7.25
10 4.8 248.2 2958.03 7.27
11 4.8 248.2 2958.03 7.27
12 1.84 149.64 2769.59 7.32
13 0.41 79.78 2563.59 7.39
14 0.210 62.72 2474.19 7.45
15 0.043 34.99 2332.84 7.6
16 0.043 30.5 127.8 0.44
17 - - - -
18 22.04 30.3 128.91 0.44
19 1 17.5 73.5 0.265
20 - - - -
21 3.5 17.5 73.64 0.26
22 3 27.9 117.2 0.41
23 11.2 359.1 3175.07 7.25
24 0.046 31.39 2496.79 7.7
25 0.046 31.28 131.1 0.45
26 1. 17.5 73.5 0.26
27 - - - -
28 3.5 17.48 73.62 0.26
29 3 28.58 120.1 0.42
30* 21.544 32.880 139.620 .4700
31 0.20 60.08 251.48 0.83
32 19.54 59.62 251.2 0.83
33 0.21 62.72 255.82 0.84
34 17.54 114.59 481.4 1.47
35 0.41 79.78 334.025 1.07
36 - - - -
37 17.54 79.7 335.05 1.07
38 1.84 117.59 493.5 1.5
39 15.54 114.49 481.4 1.47
40 13.54 147 619.9 1.81
41 4.8 150.3 633.5 1.85
42 - - - -
43 13.54 151.2 637.67 1.85
44 0.2 458.000 3400.6 9.46
45 52 574.5 3608.2 7.17
46 22.04 30.3 128.91 0.44
47 11.2 359.1 3175.07 7.25
48 29.008 280.2 2946.3 6.47
49 11.2 184.8 784.7 2.19
50 - - - -
51 - - - -
52 52.9 186.1 792.14 2.19
53 301 190.3 823.19 2.19
54 298.5 228.8 992.1 2.55
55 29.008 198.9 848 2.32
56 295 270.5 1184. 2.92
57 57.4 237.4 1025.5 2.67
58 - - - -
59 - - - -
60 - - - -
61 - - - -
62 - - - -
63 22.04 30.3 128.91 0.44
64 - - - -
a.Mass and energy flow
In the mathematical model for calculating mass flows and energy flows in the thermal
system, three groups can be distinguished. The first is the equation of balances resulting from
the law of conservation of mass, the second - arising from the principle of conservation of energy,
and the third so-called different equations. The third group includes equations resulting from the
way the balance shields are routed. An example would be an additional equation for the mass
balance of steam flowing through an interstage
The set electrical power or flow of technological steam can be saved in modeling in two
ways: as a value on the right side of the balance equation or assign to these flows the appropriate
unknowns and in the third part of the model put as additional equations, giving the unknown
values. In the first case, the mathematical model consists of a system with fewer equations than
in the second case. However, the second method is much more convenient to use when
calculating with the help of a computer.
The construction of a mathematical model in a detailed form enabling the determination
of mass and energy streams should be preceded by quantitative analysis using the algebraic
properties of the structure of the system. As a result, the value of the difference between the
maximum number of linearly independent equations in the model and the number of unknowns
occurring in them is determined. For a well-worded task, the difference should be zero. When it
is less than zero, it means that if you want to specify a solution unambiguously, you should make
additional assumptions. However, if it is greater than zero, then the system of equations is
contradictory and some assumptions should be abandoned.
i. Mathematical model
Based on flows analysis following equatin set was built.
Equation
number
Group
number
Node
number
Equations Notes
1 1 1 x[1] – x[4] = 0
2 2 2 x[4] – x[5] –x[6] – x[44] = 0
3 3 3 x[7] – x[8] – x[9] – x[10] - x[11] – x[45] = 0
4 4 6 x[15] – x[16] + x[25] + x[31] + x[33] = 0
5 5 6 x[21] – x[22] = 0
6 6 7 x[19] – x[21] = 0
7 7 8 x[16] – x[18] = 0
8 8 9 - x[30] + x[63] = 0
9 9 9 - x[31] + x[44] = 0
10 10 10 x[30] – x[32] = 0
11 11 10 x[14] – x[33] = 0
12 12 11 x[32] – x[34] = 0
13 13 11 x[13] –x[35] + x[38] = 0
14 14 12 x[35] – x[37] = 0
15 15 13 x[34] + x[37] – x[39] = 0
16 16 13 x[12] - x[38] + x[45] = 0
17 17 14 x[39] – x[40] = 0
18 18 14 x[10] – x[41] = 0
19 19 15 x[41] – x[43] = 0
20 20 16 x[9] – x[23] – x[47] = 0
21 21 17 x[40] + x[43] + x[47] – x[49] + x[55] = 0
22 22 18 x[24] – x[25] = 0
23 23 18 x[28] - x[29] = 0
24 24 19 x[26] – x[28] = 0
25 25 20 x[23] – x[24] = 0
26 26 21 x[49] – x[52] – x[53] = 0
27 27 22 x[53] – x[54] = 0
28 28 22 x[48] – x[55] +x[57] = 0
29 29 23 x[54] – x[56] = 0
30 30 23 x[5] – x[57] = 0
31 31 24 x[56] – x[1] = 0
32 32 24 x[8] – x[48] = 0
33 33 26 x[18] – x[46] – x[63] = 0
Table 2 Energy balance equations
Equation
nubmer
Group
number
Node
number
Equation Notes
34 1 1
x[1]h[1] – x[2] + x[3] –x[4]h[4] + x[6]h[6]+ -
x[7]h[7] + x[52]h[52] = 0
35 2 2
x[4]h[4] – x[5]h[5] – x[6]h[6] +
- x[44]h[44] - x[58] = 0
36 3 3
x[7]h[7] – x[8]h[8] – x[9]h[9] +
- x[10]h[10] - x[11]h[11] – x[45]h[45] +
-x[58] – x[59] = 0
37 4 4
x[11]h[11] – x[12]h[12] – x[13]h[13] +
– x[14]h[14] – x[15]h[15] – x[46]h[46] +
+ x[59] – x[60] = 0
38 5 5 x[60] – x[61] – x[62] = 0
39 6 6
x[15]h[15] – x[16]h[16] + x[21]h[21]+
- x[22]h[22] + x[25]h[25] + x[31]h[31] +
+ x[33]h[33] = 0
40 7 7 x[19]h[19] + x[20] – x[21]h[21] = 0
41 8 8 x[16]h[16] + x[17] – x[18]h[18] = 0
42 9 9
– x[30]h[30] – x[31]h[31] + x[44]h[44]+
+ x[63]h[63] = 0
43 10 10
x[14]h[14] + x[30]h[30] – x[32]h[32] +
– x[33]h[33] = 0
44 11 11
x[13]h[13] + x[32]h[32] –x[34]h[34] +
– x[35]h[35] + x[38]h[38] = 0
45 12 12 x[35]h[35] + x[36] – x[37]h[37] = 0
x[12]h[12] + x[34]h[34] + x[37]h[37] +
46 13 13 - x[38]h[38] - x[39]h[39] + x[45]h[45] +
+ x[50] = 0
47 14 14
x[10]h[10] + x[39]h[39] – x[40]h[40] +
- x[41]h[41] = 0
48 15 15 x[41]h[41] + x[42] – x[43]h[43] = 0
49 16 17
x[40]h[40] + x[43]h[43] + x[47]h[47] +
- x[49]h[49] + x[55]h[55] = 0
50 17 18
x[24]h[24] – x[25]h[25] + x[28]h[28] +
– x[29]h[29] = 0
51 18 19 x[26]h[26] + x[27] – x[28]h[28] = 0
52 19 20 x[23]h[23] – x[24]h[24] – x[51] = 0
53 20 21
x[49]h[49] + x[51] – x[52]h[52] +
– x[53]h[53] = 0
54 21 22
x[48]h[48] + x[53]h[53] – x[54]h[54] +
- x[55]h[55] + x[57]h[57] = 0
55 22 23
x[5]h[5] + x[54]h[54] +
- x[56]h[56] –x[57]h[57] = 0
56 23 24
-x[1]h[1] + x[8]h[8] – x[48]h[48] +
+ x[56]h[56] = 0
57 24 27 x[2] – x[50] – x[64] = 0
60 3 1 x[6] β1 - x[52] = 0
61 4 2 x[4] γ1 – x[44] = 0
62 5 3 x[7] γ2 – x[45] = 0
63 6 4 x[18] γ3 – x[46] = 0
64 7 5 x[60] ε5 – x[61] = 0
65 8 6 x[60] = N
66 9 13 x[3]k13 - x[50] = 0
m[1]h[1] = m[1]h [1]+ Q[66]
m[30]h[30] = m[30]ℎ̅[30] + Q[65] =
thus finally h[1]= Q[66]/x[1]=1219.71 ; h[30]= Q[65]/x[30]=138.17
2 – Quantitative analysis
mass fold km 2
energy fold kq 1
number of nodes w 27
number and list od energy nodes wq 2
number of mass nodes wm 25
number and list of surface energy nodes wp 10
number and list of manifold nodes wr 2
number and list of unknown enthalpies flows wn 2
total number of flows p 64
number and list of energy flows pq 15
Results
m[1] 681.7531377
Q[2] 208480.7394
Q[3] 2084807.394
m[4] 681.7531377
m[5] 67.40953583
m[6] 612.9800956
m[7] 625.2396975
m[8] 49.17777719
m[9] 72.96287841
m[10] 30.54970885
m[11] 467.5474155
m[12] -3.688433544
m[13] 47.77677035
m[14] 23.62329006
m[15] 399.928536
m[16] 463.7368953
Q[17] 514.7479538
m[18] 463.7368953
m[19] 20320.92338
Q[20] 2844.929273
m[21] 20320.92338
m[22] 20320.92338
m[23] 38.82156294
m[24] 38.82156294
m[25] 38.82156294
m[26] 1975.898951
Q[27] 237.1078741
m[28] 1975.898951
m[29] 1975.898951
m[30] 463.6441479
m[31] 1.363506275
m[32] 463.6441479
m[33] 23.62329006
m[34] 463.6441479
m[35] 49.09025438
Q[36] 50.31751074
m[37] 49.09025438
m[38] 1.313484036
m[39] 512.7344023
m[40] 512.7344023
m[41] 30.54970885
Q[42] 127.3922859
m[43] 30.54970885
m[44] 1.363506275
m[45] 5.00191758
m[46] 0.092747379
m[47] 34.14131548
m[48] 49.17777719
m[49] 694.0127396
Q[50] 56289.79965
Q[51] 26331.88971
m[52] 12.25960191
m[53] 681.7531377
m[54] 681.7531377
m[55] 116.587313
m[56] 681.7531377
m[57] 67.40953583
Q[58] 250932.2778
Q[59] 620651.1585
Q[60] 900000
Q[61] 45000
Q[62] 855000
m[63] 463.6441479
Q[64] 152190.9398
Q[65] 64062.21199
Q[66] 831542.649

More Related Content

What's hot

Impact of Fouling on VCR System
Impact of Fouling on VCR SystemImpact of Fouling on VCR System
Impact of Fouling on VCR SystemShashank Pandey
 
Aircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAnurak Atthasit
 
Java gas turbine simulator engine component mathematica models by john a. reed
Java gas turbine simulator   engine component mathematica models by john a. reedJava gas turbine simulator   engine component mathematica models by john a. reed
Java gas turbine simulator engine component mathematica models by john a. reedJulio Banks
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performanceAshish Kumar Jain
 
Cooling Tower Makeup Water Estimation
Cooling Tower Makeup Water EstimationCooling Tower Makeup Water Estimation
Cooling Tower Makeup Water EstimationVijay Sarathy
 
Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionAzeem Waqar
 
Key Thermo-Physical Properties of Light Crude Oils
Key Thermo-Physical Properties of Light Crude OilsKey Thermo-Physical Properties of Light Crude Oils
Key Thermo-Physical Properties of Light Crude OilsVijay Sarathy
 
Thermodynamics lab manual
Thermodynamics lab manualThermodynamics lab manual
Thermodynamics lab manualDr. Ramesh B
 
Energy Efficiency of Industrial Utilities
Energy Efficiency of Industrial UtilitiesEnergy Efficiency of Industrial Utilities
Energy Efficiency of Industrial UtilitiesPratap Jung Rai
 
Final lab report for thermos 2(mech)
Final lab report for thermos 2(mech)Final lab report for thermos 2(mech)
Final lab report for thermos 2(mech)lizwi nyandu
 
Dynamic otto-cycle-analysis
Dynamic otto-cycle-analysisDynamic otto-cycle-analysis
Dynamic otto-cycle-analysisEbra21
 
Energy performance assessment of boilers
Energy performance assessment of boilersEnergy performance assessment of boilers
Energy performance assessment of boilersUtsav Jain
 
Heat recovery design for starbucks store retrofit_BS
Heat recovery design for starbucks store retrofit_BSHeat recovery design for starbucks store retrofit_BS
Heat recovery design for starbucks store retrofit_BSChris Anderson
 
Thermodynamic Design of a Fire-Tube Steam Boiler
Thermodynamic Design of a Fire-Tube Steam BoilerThermodynamic Design of a Fire-Tube Steam Boiler
Thermodynamic Design of a Fire-Tube Steam BoilerJohn Walter
 
Boiler efficiency by loss Method
Boiler efficiency by loss MethodBoiler efficiency by loss Method
Boiler efficiency by loss MethodRajeev Saini
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysisAnurak Atthasit
 

What's hot (20)

Impact of Fouling on VCR System
Impact of Fouling on VCR SystemImpact of Fouling on VCR System
Impact of Fouling on VCR System
 
Aircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet PerformanceAircraft Propulsion - Ideal Turbojet Performance
Aircraft Propulsion - Ideal Turbojet Performance
 
Java gas turbine simulator engine component mathematica models by john a. reed
Java gas turbine simulator   engine component mathematica models by john a. reedJava gas turbine simulator   engine component mathematica models by john a. reed
Java gas turbine simulator engine component mathematica models by john a. reed
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performance
 
Heat balance diagram
Heat balance diagramHeat balance diagram
Heat balance diagram
 
Cooling Tower Makeup Water Estimation
Cooling Tower Makeup Water EstimationCooling Tower Makeup Water Estimation
Cooling Tower Makeup Water Estimation
 
Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solution
 
Key Thermo-Physical Properties of Light Crude Oils
Key Thermo-Physical Properties of Light Crude OilsKey Thermo-Physical Properties of Light Crude Oils
Key Thermo-Physical Properties of Light Crude Oils
 
Thermodynamics lab manual
Thermodynamics lab manualThermodynamics lab manual
Thermodynamics lab manual
 
Energy Efficiency of Industrial Utilities
Energy Efficiency of Industrial UtilitiesEnergy Efficiency of Industrial Utilities
Energy Efficiency of Industrial Utilities
 
4 ch1
4 ch14 ch1
4 ch1
 
R134
R134R134
R134
 
Mc conkey 13-pb
Mc conkey 13-pbMc conkey 13-pb
Mc conkey 13-pb
 
Final lab report for thermos 2(mech)
Final lab report for thermos 2(mech)Final lab report for thermos 2(mech)
Final lab report for thermos 2(mech)
 
Dynamic otto-cycle-analysis
Dynamic otto-cycle-analysisDynamic otto-cycle-analysis
Dynamic otto-cycle-analysis
 
Energy performance assessment of boilers
Energy performance assessment of boilersEnergy performance assessment of boilers
Energy performance assessment of boilers
 
Heat recovery design for starbucks store retrofit_BS
Heat recovery design for starbucks store retrofit_BSHeat recovery design for starbucks store retrofit_BS
Heat recovery design for starbucks store retrofit_BS
 
Thermodynamic Design of a Fire-Tube Steam Boiler
Thermodynamic Design of a Fire-Tube Steam BoilerThermodynamic Design of a Fire-Tube Steam Boiler
Thermodynamic Design of a Fire-Tube Steam Boiler
 
Boiler efficiency by loss Method
Boiler efficiency by loss MethodBoiler efficiency by loss Method
Boiler efficiency by loss Method
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysis
 

Similar to Supercritical Thermal Power plant

Pad semesteraufgabe finalreport
Pad semesteraufgabe finalreportPad semesteraufgabe finalreport
Pad semesteraufgabe finalreportHaris Ahmed
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleMuhammad Surahman
 
chiller system by Mr.Seng Sunhor
chiller system by Mr.Seng Sunhorchiller system by Mr.Seng Sunhor
chiller system by Mr.Seng SunhorStudent at ITC
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Centro Studi Galileo
 
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson:  Analysis Of An Open Feedwater Heater SystemJean-Paul Gibson:  Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater SystemJean-Paul Gibson
 
4.4.heat exchanger
4.4.heat exchanger4.4.heat exchanger
4.4.heat exchangercmyan
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf21M220KARTHIKEYANC
 
Isentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientIsentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientSteven Cooke
 
integrated brayton and rankine cycle
integrated brayton and rankine cycle integrated brayton and rankine cycle
integrated brayton and rankine cycle UPENDRA YADAV
 
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFDIRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFDIRJET Journal
 
Artículo evaluation of air heater performance and acurracy of the results
Artículo   evaluation of air heater performance and acurracy of the resultsArtículo   evaluation of air heater performance and acurracy of the results
Artículo evaluation of air heater performance and acurracy of the resultsCaro Cuadras
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquidNoaman Ahmed
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...dineshprabhu41
 
REFRIGERATION PROBLEMS Anu.pptx .
REFRIGERATION PROBLEMS Anu.pptx         .REFRIGERATION PROBLEMS Anu.pptx         .
REFRIGERATION PROBLEMS Anu.pptx .Athar739197
 
Unit 6-refrigeration-part-1
Unit 6-refrigeration-part-1Unit 6-refrigeration-part-1
Unit 6-refrigeration-part-1Tariq Syed
 
Diethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalanceDiethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalancePratik Patel
 

Similar to Supercritical Thermal Power plant (20)

Pad semesteraufgabe finalreport
Pad semesteraufgabe finalreportPad semesteraufgabe finalreport
Pad semesteraufgabe finalreport
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
chiller system by Mr.Seng Sunhor
chiller system by Mr.Seng Sunhorchiller system by Mr.Seng Sunhor
chiller system by Mr.Seng Sunhor
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
 
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson:  Analysis Of An Open Feedwater Heater SystemJean-Paul Gibson:  Analysis Of An Open Feedwater Heater System
Jean-Paul Gibson: Analysis Of An Open Feedwater Heater System
 
Ch19 ssm
Ch19 ssmCh19 ssm
Ch19 ssm
 
Gas power-09
Gas power-09Gas power-09
Gas power-09
 
4.4.heat exchanger
4.4.heat exchanger4.4.heat exchanger
4.4.heat exchanger
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
 
Isentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge CoefficientIsentropic Blow-Down Process and Discharge Coefficient
Isentropic Blow-Down Process and Discharge Coefficient
 
integrated brayton and rankine cycle
integrated brayton and rankine cycle integrated brayton and rankine cycle
integrated brayton and rankine cycle
 
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFDIRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
IRJET- Enhancement of COP of Vapor Compression Refrigeration Cycle using CFD
 
Artículo evaluation of air heater performance and acurracy of the results
Artículo   evaluation of air heater performance and acurracy of the resultsArtículo   evaluation of air heater performance and acurracy of the results
Artículo evaluation of air heater performance and acurracy of the results
 
Enthalpy of vaporization of liquid
Enthalpy of vaporization of liquidEnthalpy of vaporization of liquid
Enthalpy of vaporization of liquid
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
 
REFRIGERATION PROBLEMS Anu.pptx .
REFRIGERATION PROBLEMS Anu.pptx         .REFRIGERATION PROBLEMS Anu.pptx         .
REFRIGERATION PROBLEMS Anu.pptx .
 
Unit 6-refrigeration-part-1
Unit 6-refrigeration-part-1Unit 6-refrigeration-part-1
Unit 6-refrigeration-part-1
 
3.6.doc
3.6.doc3.6.doc
3.6.doc
 
Diethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalanceDiethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy Balance
 
Control system-lab
Control system-labControl system-lab
Control system-lab
 

More from Ojes Sai Pogiri

Design and fabrication of pneumatic loaded simply supported beam apparatus
Design and fabrication of pneumatic loaded simply supported beam apparatusDesign and fabrication of pneumatic loaded simply supported beam apparatus
Design and fabrication of pneumatic loaded simply supported beam apparatusOjes Sai Pogiri
 
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFERFINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFEROjes Sai Pogiri
 
NPP Operation & Maintenance
NPP Operation & Maintenance NPP Operation & Maintenance
NPP Operation & Maintenance Ojes Sai Pogiri
 
Nuclear Infrastructure India
Nuclear Infrastructure IndiaNuclear Infrastructure India
Nuclear Infrastructure IndiaOjes Sai Pogiri
 
Airports Authority of Indai
Airports Authority of IndaiAirports Authority of Indai
Airports Authority of IndaiOjes Sai Pogiri
 

More from Ojes Sai Pogiri (10)

Design and fabrication of pneumatic loaded simply supported beam apparatus
Design and fabrication of pneumatic loaded simply supported beam apparatusDesign and fabrication of pneumatic loaded simply supported beam apparatus
Design and fabrication of pneumatic loaded simply supported beam apparatus
 
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFERFINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
 
NPP Operation & Maintenance
NPP Operation & Maintenance NPP Operation & Maintenance
NPP Operation & Maintenance
 
Nuclear Infrastructure India
Nuclear Infrastructure IndiaNuclear Infrastructure India
Nuclear Infrastructure India
 
Radioprotection
RadioprotectionRadioprotection
Radioprotection
 
Application Of FMECA
Application Of FMECA Application Of FMECA
Application Of FMECA
 
FTA
FTAFTA
FTA
 
FMEA
FMEAFMEA
FMEA
 
NDT UT in Air crafts
NDT UT in Air craftsNDT UT in Air crafts
NDT UT in Air crafts
 
Airports Authority of Indai
Airports Authority of IndaiAirports Authority of Indai
Airports Authority of Indai
 

Recently uploaded

OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 

Recently uploaded (20)

OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 

Supercritical Thermal Power plant

  • 1. THERMAL POWER STATIONS Supercritical Plant Flows and Parameters SUBMITTD BY OJES SAI POGIRI INDEX NO: K-5870
  • 2. Calculate mass and energy flows as well as basic energy and ecological indicators of the system for a given structure of the thermal system and given parameters and characteristic quantities of individual devices. Assumptions: 1. Strukture shown on fig. 1, 2. Boiler efficiency - 90 %, fresh steam parameters: 255.5 bar, 550 °C, 3. Gross power – 900 MW, 4. Parameters of reheated steam – 52.9 bar, 580 °C, 5. Degasser pressure – 11.2 bar, 6. Pressure on boiler water input – 294 bar, 7. Pressure drop on high pressure heaters WP – 3 bar, 8. Main pump efficiency – 85%, 9. Characteristic regenerative heat exchangers temperatures and pressure drops Table and Fig.1 10. Efficiencies of turbina stages – Table 1, 11. Steam pressure drop over interstage superheater – 4.5 bar, 12. Feed water heating on the WP regenerative heater after the feed pump – 38.5°C, 13. Condenser inlet temperature – 17.5°C (17.5°C)1, cooling water temperature increase 10.4°C (11.1°C)1, 14. Minimal temperaturę difference – 2.6°C, 15. Head of cooling water pump – 2.5 bar, 16. Condenser pressure drop – 0.5 bar, 17. Pressure on the cooling pump inlet – 1 bar, 18. Cooling pump efficiency – 80%, 19. Main condensate pump efficiency – 22 bar, 20. Medium-pressure and low-pressure regeneravive heaters pressure drops:in the active part – po 2 bar,in the passive part (vapor cooler) – po 0.5 bar, 21. Pressure between medium-pressure and low-pressure turbine stages – 4.8 bar, 22. Pressure in the extractions of the low-pressure turbine – 1.84 bar, 0.416 bar, 0.21bar, 23. Condensate pump efficiency – 75%, 24. Own consumption coefficienct – 5%, 25. Fuel – hard coal calorific value 23 GJ/t, ash 17%, moisture 10%, sulphur 1%, 26. Ambient temperature - 15°C, relative ambient humidity – 70%. Table 1. Parametrs of heaters Heater (nr węzła) ∆tg [°C ] ∆tz [°C ] ∆tp [°C ] ∆t w [°C ] tn [°C] ∆p [bar] Notes WP 1 (node 22) 3.2 8.4 48.2 38.5 232.0 3 WP 2 (node 23) 2.1 8.6 48.5 41.7 272.6 3 WP 3 (node 24) - 9.7 - - - 1 Condensate cooler NP 1 (node 10) 3.1 tn-tz - - 61.1 2 NP 2 (node 11) 3.1 tn-tz - 15.7 76.8 2
  • 3. NP 3 (node 13) 3.1 tn-tz - 40.7 117.6 2 NP 4 (node 14) 3.3 tn-tz - 32.5 150.3 2 First after degasser B1 (node 9) - - - - - 0.5 Passive regeneration ∆tg – temperature difference on hot end ∆tz – temperature difference on cold end ∆tp – temperature difference between feeding flow temperature and saturation temperature ∆tw – temperature change of water flowing through exchange tn – condensate temperature (saturation temperature) ∆p – heated flow pressure drops on exchanger Table 1.1 Turbine efficiencies Stage (flow number) Parametrs after turbine stage η[%] Temperature (saturation) [°C] Pressure [bar] Enthalpy [kJ/kg] Entropy [kJ/kg/K] Dryness I ([5]) 320.9 (272.6) 57.374 2966.7 6.226 - 90.7 II ([8]) 493,6 (233.9) 30.079 3443.19 7.216 - 85.2 III ([9]) 351,9 (184.8) 11.2 3162.70 7.258 - 91.9 IV ([10]) 245,7 (150.6) 4.839 2952.,54 7.272 - 96.1 V ([12]) 150,7 (117.6) 1.84 2770.40 7.323 - 89.4 VI ([13]) 76,8 (76.8) 0.416 2545.3 7.391 0.96 90.7 VII ([14]) 57.9 (57.9) 0.210 2460.7 7.441 0.935 83.9 VIII ([15]) 30,5 (30.5) 0.044 2290.5 7.563 0.89 80.6 Main pump turbine I (p. [24]) 31.41 (31.41) 0.046 2362.8 7.708 0.91 85.6
  • 4. System structure is shown on fig. 2. Flows are numbered and balance nodes are added for each device and point. Number of the last flow and last balance node is noted inside node numer 25 Fig. 2. Heat scheme with numbered flows and balance node System is divided into 64 flows and 27 balance nodes. They are marked in this graph, where inlfowing flows has „+” signs, and outflowing – „-” signs. 3. Thermodynamic parameters calculation Based on the data set presented in point 1, you can build many equivalent and true sequences of calculations for thermodynamic parameters in the system - enthalpy, entropy, or degrees of dryness of steam. Table 4 contains the algorithm of the order of calculations of thermodynamic parameters of flows in the thermal system.
  • 5. Based on the data set presented in point 1, you can build many equivalent and true sequences of calculations for thermodynamic parameters in the system - enthalpy, entropy, or degrees of dryness of steam. Table 4 contains the algorithm of the order of calculations of thermodynamic parameters of flows in the thermal system. Table 2. Parameters calculation algorithm Step Flow number (Nodes numbers) Assumptions Notes 1 4 (1→2) p[4] =255.5bar, t[4] =550°C Number as in fig. 4 2 7 (1→3) p[7] =52.9bar, t[7] =580°C 3 49 (17→21) p[49] = 11.2bar Saturation parameters for water 4 53 (21→ 22) ηp21 = 85%, p[1] = 294bar, param. [49]/42) ∆p23 = ∆p22 = 3bar, ∆p24=1bar p[53] = p[1] + 2∆p23+∆p24 5 52 (22→1) ηp21 = 85%, p[52] = p[7] = 52.9bar 6 6 (2→1) ηi[4,6] = 90.7%, ∆pp=4.5bar p[6] = p[7] + ∆pp 7 5 (2→23) param. [5] = param. [6] 8 56 (23→24) param. [5]/7, ∆tg23=2.1°C, ∆p24=1bar t[56] = tn(p[5])- ∆tg23 p[56] = p[1] + ∆p24 9 54 (22→23) ∆p23 = 3bar, ∆p24 = 1bar, ∆t22= 38,5°C. t[54] = t[53] + ∆t22 p[54] = p[1] + ∆p23 +∆p24 10 48 (24→22) param. [56]/8, ∆tz24=9.7°C, ∆tg22=3.2°C t[48] = t[56] + ∆tz24 p[48] = pn(t[54+∆tg22]) 11 8 (3→24) p[8]=p[48], hi[7,8] = 85.2% 12 57 (23→22) ∆tz23=8.6°C param. [54]/9, param. [5]/7 p[57] = p[5] t[57] = t[54] + ∆tz23
  • 6. 13 55 (22→17) ∆tz22=8.4°C Param. [53]/4, param [48]/10 p[55] = p[48] t[55] = t[53] + ∆tz22 14 9 (3→16) ηi[8,9] = 91.9%, param. [8]/11 param[49]/3 p[9] = p[49] 15 47 (16→17) param[47] = param[9] 16 23 (16→20) param. [23] = param. [9] 17 11 (3→4) ηi[9,11] = 96.1%, param. [9]/14 p[11] = 4.8bar 18 10 (3→14) param[10] = param[11] 19 19 (25→7) tp[19] = 17.5°C, p[19] = 1bar 20 21 (7→6) ∆p = 2.5bar, hp7 = 80% param. [19]/19 p[21] = p[19] + ∆p 21 22 (6→25) ∆ps6=0.5bar, ∆tw6=10.4°C p[22] = p[21] - ∆ps6 t[22] = t[21] + ∆tw6 22 16 (6→8) param. [22]/21, ∆tg6=2.6°C t[16] = t[22] + ∆tg6 p[16] = pn(t[16]) 23 18 (8→26) param. [16]/22, hp8= 75%, ∆p = 22bar p[18] = p[16] + ∆p 24 63 (26→9) param[63] = param[18] 25 46 (26→4) param[46] = param[18] 26 40 (14→17) Param. [10]/18, ∆tg14=3.3°C ∆p9 = 0.5bar ∆p10=∆p11=∆p13 =∆p14=2bar p[40]=p[18]-∆p19 - ∆p10- ∆p11-∆p13-∆p14 t[40]=tn(p[10])-∆tg14 27 41 (11→15) param. [10]/18 p[41] = p[10] t[41] = tn[10]
  • 7. 28 43 (15→17) ηp15=75%, param [41]/27, param. [40]/26 p[43] = p[40] 29 12 (4→13) ηi[11,12] = 89.4%, param. [11]/17, p[12] = 1.84bar 30 39 (13→14) ∆tg13=3.1°C, ∆p14=2bar, param. [40]/26, param. [12]/29 p[39] = p[40] + ∆p14 t[39] = tn[p(12)] - ∆tg13 31 38 (13→11) param. [12]/29 p[38] = p[12] t[38] = tn[12] 32 13 (4→11) ηi[12,13] = 90,7%, param. [12]/29, p[13] = 0,416bar. 33 34 (11→13) ∆tg11=3.1°C, ∆p13=2bar, param. [40]/26, param. [13]/32 p[34] = p[40]+2∆p13 t[34] = tn[p(13)] -+∆tg11 34 35 (11→12) param. [13]/32 t[35] = tn[13] p[35] = p[13] 35 37 (12→ 13) ηp12=75%, param. [35]/34, param. [34]/34 p[37]=p[34] 36 14 (4→ 10) ηi[13,14] = 86.2%, param. [13]/32, p[14] = 0.21bar. 37 32 (10→ 22) ∆tg10=3.1°C, ∆p11=2bar, param. [34]/33, param. [14]/36 p[32] = p[34] + ∆p11 t[32] = tn[14] - ∆tg10 38 33 (10→6) param. [14]/36 p[33] = p[14] t[33]= tn[14] 39 15 (4→6) ηi[14,15] = 80.6%, param. [14]/36 param. [16]/22 p[15] = p[16] 40 26 (25→19) p[26] = 1bar, tp=17.5°C 41 28 (19→18) ∆p = 2.5bar, hp19 = 80% param. [26]/40 p[28] = p[26] + ∆p 42 29 (18→35) ∆ps18=0.5bar, ∆tw18=11.1°C p[29] = p[28] - ∆ps18 t[29] = t[28] + ∆tw18 43 25 (28→6) param. [29]/42, ∆tg18=2.7°C t[25]= t[29] + ∆tg18 p[25] = pn(t[25]) 44 24 (20→18) ηi[23,24] = 85.6%, param. [23]/16, param. [25]/43 p[24]=p[25]
  • 8. 45 44 (2→9) p[44] = 0.2bar t[44] = 458°C 46 45 (3→13) p[45] = 52bar t[45] = 574.50°C 47 31 (9→6) p[31] = 0.2bar t[31] = 60.087°C Table 3. Water parameters after WP1 and WP2 exhangers Flow Parameters p [bar] T [ °C] h [kJ/kg] s [kJ/kgK] ∆bt [kJ/kg] b0 [kJ/kg] bt [kJ/kg] 54 (after WP1) 298 228.80 988.66 2.5 257.9 47.43 305.3 56 (after WP2) 295 270.57 1184.46 2.9 345.4 392.8 Heat exchangers 9 and 24 are passive regeneration heat exchangers, unregulated, so parameters cannot be assumed in advance because they depend on the flow rate. Therefore, flows 1 and 30 should be treated as unknown, and they can be determined only after solving the system of equations - calculating mass and energy fluxes. In table 6 they were written back - after calculations. Table 6 shows the results of calculations created according to the algorithm created early. The table consists of an array of parameters and an assumption table. 3. Determining Thermodynamic parameters Based given assumptions by using Xsteam tables thermodynamic parameters are determined below. 1. Flow at 4 (1→2):- At given Pressure is p [4]= 255.5 bar and Temperature T[4]= 550ºC. From X-Steam tables properties. Enthalpy h [4] =3332.9 KJ/Kg Entropy s [4] = 6.17 KJ/Kg k. 2. Flow at 7 (1→3):- At given Pressure is p [4]= 52.9 bar and Temperature T[4]= 580ºC. From X-Steam tables properties. Enthalpy h [7] =3617.9 KJ/Kg Entropy s [7] = 7.18 KJ/Kg k. 3. Flow at 49 (17→21):- At given Pressure is p [49]= 11.2 bar and From X-Steam tables saturation properties
  • 9. Temperature T[49]= 184.8ºC. Enthalpy h [49] =784.7 KJ/Kg Entropy s [49] = 2.19 KJ/Kg k. 4. Flow at 53 (21→22): - At the pump efficiency is ηp [21] =85%, and pressure p [53] =P[1]+2∆p23+∆p24 = 294+2*3+1= 301 bar, s [53] = s [49] =2.19 KJ/Kg k From X-Steam tables functions enthalpy ℎ 𝑠 [53] =818.92 KJ/Kg As we Know pump efficiency ηp = = ℎ 𝑠[53]−ℎ[49] ℎ[53]−ℎ[49] 0.85= 818.92−784.7 ℎ[53]−784.7 ; h [53] = 824.19 KJ/Kg By Steam table properties At p[53]= 301 bar , h [53]= 823.19 KJ/Kg the T[53] = 190.3 ºC 5. Flow at 52 (21→1): - At the pump efficiency is ηp [21] =85%, and pressure p [52] =P[7]= 52.9 bar, s [52] = s [49] =2.19 KJ/Kg k From X-Steam tables functions enthalpy ℎ 𝑠 [52] =791.03 KJ/Kg As we Know pump efficiency ηp = = ℎ 𝑠[52]−ℎ[49] ℎ[52]−ℎ[49] 0.85= 791.03−784.7 ℎ[52]−784.7 ; h [52] = 792.14KJ/Kg By Steam table properties At p[52]= 52.9 bar , h [52]= 792.14 KJ/Kg the T[52] = 186.1ºC 6. Flow at 6 (2→1) Give data ηi[4,6]=90.7%; Δp = 4.5 bar ; p[6]= p [7] + Δp = 52.9 +4.5= 57.4 bar s [6]= s[5]= 6.22 KJ/Kg , ℎ 𝑠[6]= 2962.78 KJ/Kg ηt = = ℎ[5]−ℎ[6] ℎ[5]−ℎ_𝑠 [6] 0.907= 29626−ℎ [6] 2966−2962.7 h [6] =2963.79 KJ/Kg T [6]= = 320.2ºC 7. Flow at 5 (2→23) Parameter [5] = parameters [6] P[5] =P[6]=57.4 bar; T [5]=T[6]=321.3 ºC h[5]=h[6]=2966.3 KJ/Kg s[5]=s[6]=6.22 KJ/Kg
  • 10. 8. Flow at 56 (23→24) From assumpitions, Parameters of system T [56] = tn(p[5])-∆tg23= 272.6-2.1=270.5ºC p[56] = p[1] + ∆p24 = 294.5+1=295 bar From the tables, h[56]= 1184.0 KJ/Kg s[56] = 2.92 KJ/Kg k. 9. Flow at 54 (22→23) From assumpitions, Parameters of system T [54] = T[53]+∆t22= 190.3+38.5=228.8ºC p[54] = p[1] + ∆p24++ ∆p24 = 294.5+3+1=298.5 bar From the tables, h[54]= 992.1 KJ/Kg S[54] = 2.55 KJ/Kg k. 10. Flow at 48 (24→22) From assumpitions, Parameters of system T [48] = T[56]+∆t24= 270.5+9.7=280.2ºC p[48] = p[t(54+∆t24]= P[t(232)]= 29.008 bar From the tables, h[48]= 2946.3 KJ/Kg s[48] = 6.47 KJ/Kg k. 11. Flow at 8 (3→24) Give data ηi[7,8]=85.2%; p [8]=p[48]=29.008 s [8]= 7.2 KJ/Kg , ℎ 𝑠[8]= 3418.26 KJ/Kg ηt = = ℎ[7]−ℎ[8] ℎ[7]−ℎ 𝑠[8] 0.852= 3617.9 −ℎ [6] 3617.9 −3418.26 h [8] = 3441.38 KJ/kg 12. Flow at 57 (23→22) From given assumption p [57] = p[5]=57.4 bar, T [57] =T[54] + ∆tz23=228.8+8.6=237.4 ºC From tables h [57] = 1025.5 KJ/Kg, s [57] = 2.67 KJ/Kg k. 13. Flow at 55 (22→17) From given assumption p [55] = p[48]=29.008 bar, T [55] =T[53] + ∆tz22=190.3+8.6=198.9 ºC From tables h [55] = 848 KJ/Kg, s [55] = 2.32 KJ/Kg k. 14. Flow at 9 (3→16) Give data ηi[7,8]=91.2 %; p [9]=p[49]=11.2 bar s [9]= 7.25 KJ/Kg , hs [9]= 3157.23 KJ/Kg ηt = = ℎ[8]−ℎ[9] ℎ[8]−ℎ 𝑠[9] 0.852= 3441.38 −ℎ [9] 3441.38 −3157.23 h [9] = 3175.077 KJ/Kg By X- steam Properties T [9] = 359.1 ºC
  • 11. 15. Flow at 47 (16→17) Parameter [47] = parameter [9] 16. Flow at 23 (16→20) Parameter [23] = parameter [9] 17. Flow at 11 (3→4) Parameter [11] = 4.8 bar s[11]=7.27 KJ/kgK hs[11]=2950.17 KJ/Kg ηt = = ℎ[9]−ℎ[11] ℎ[9]−ℎ 𝑠[11] 0.961= 3175.07 −ℎ [11] 3175.077−2950.17 h [11] = 2958.03 KJ/Kg T[11]=248.2 ºC 18. Flow at 10 (3→14) Parameter [10] = parameter [11] 19. Flow at 19 (25→7) Give data T [19] = 17.5ºC p[19]= 1 bar From X-Steam tables h [19] =73.5 KJ/Kg s[19]=0.265 KJ/kgK 20. Flow at 21 (7→6) Give data p[21] = p[19] + ∆p= 1+2.5=3.5 bar ηp7=80%, s[21]=0.26 KJ/kgK hs[21]=73.625 KJ/kgK ηp = = ℎ 𝑠[21]−ℎ[49] ℎ[21]−ℎ[49] 0.80= 73.625−73.5 ℎ[52]−73.5 h [21] = 73.64 KJ/Kg T [21] = 17.5 ºC 21. Flow at 22 (6→25) p[22] = p[21] - ∆ps6 = 3.5- 0.5 =3 bar T[22] = T[21] + ∆tw6= 17.5+ 10.4=27.9 ºC From X-Steam tables h [21] =117.2 KJ/Kg s[19]=0.41 KJ/kgK 22. Flow at 16 (6→8) T[16] = T[22] + ∆tg6= 27.9+ 2.6= 30.5 ºC p[16] = pn(t[16])=0.0437 bar functions h [16] = 127.8 KJ/Kg s[16]=0.44 KJ/kgK by saturation tables 23. Flow at 18 (8→26): - At the pump efficiency is ηp [8] =75%, and pressure p [18] =P[16]+∆p=0.043-22=22.04 bar, s [18] = =0.44 KJ/Kg k From X-Steam tables functions enthalpy ℎ 𝑠 [18] =128.91 KJ/Kg As we Know pump efficiency ηp = = ℎ 𝑠[18]−ℎ[16] ℎ[18]−ℎ[16] 0.75= 128.91−127.8 ℎ[53]−127.8 ; h [18] = 129.28 KJ/Kg T [18] = 30.3 ºC
  • 12. 24. Flow at 63 (26→9) Parameter [63] = parameter [18] 25. Flow at 46 (26→4) Parameter [46] = parameter [18] 26. Flow at 40 (14→17) p [40] =p [18]-∆p19-∆p10-∆p11-∆p13-∆p14= 22.04 -0.5-4*2=13.54 bar T [40] =tn (p [10])-∆tg14 = 150.305-3.3 =147 ºC h [40] = 619.9 KJ/Kg s[40]=1.81 KJ/kgK 27. Flow at 41 (11→15) P [41] =p [10] =4.8 bar; T [41] =T [10] = 150.3 ºC h [41] =633.5 KJ/kg s[41]=1.85 KJ/kgK 28. Flow at 43 (15→17) At the pump efficiency is ηp [15] =75%, and pressure p [43] =P [40] =13.54 bar, s [43] =s [41] = 1.85 KJ/Kg k from X-Steam tables functions enthalpy ℎ 𝑠 [43] = 636.63 KJ/Kg As we Know pump efficiency ηp = = ℎ 𝑠[43]−ℎ[41] ℎ[43]−ℎ[41] 0.75= 636.63−633.5 ℎ[43]−633.5 ; h [43] = 637.67 KJ/Kg T [43] = 151.2 ºC 29. Flow at 12 (4→13) Give data ηi [11,12] =89.4%; p [12] =1.84 bar s [12] = 7.32 KJ/Kg from X-Steam tables functions enthalpy hs [12] = 2769.5 KJ/Kg ηt = = ℎ[10]−ℎ[12] ℎ[10]−ℎ 𝑠[12] 0.894= 2958.03 −ℎ [12] 2958.03−2769.5 h [12] = 2769.59 KJ/Kg T[12]=149.64 ºC 30. Flow at 39 (13→11) p [39] = p[40] + ∆p14 =13.54+2=15.54 bar T [39] = tn[p(12)] - ∆tg13= 117.59 -3.1= 114.49 ºC h [40] = 481.4 KJ/Kg s[40]=1.47 KJ/kgK 31. Flow at 38 (13→11) P [38] =p [12] =1.84 bar T[38] =Tn[12]=117.59 ºC h [40] = 493.5 KJ/Kg s [40] =1.5 KJ/kgK 32. Flow at 13 (4→11) Give data ηi [12,13] =90.7%; p [13] =0.41 bar s [13] = 7.39 KJ/Kg from X-Steam tables functions enthalpy hs [13] = 2542.47 KJ/Kg ηt = = ℎ[12]−ℎ[13] ℎ[12]−ℎ 𝑠[13] 0.907= 2769.59 −ℎ [12] 2769.59−2542.47 h [13] = 2563.59 KJ/Kg T[13]=79.78 ºC 33. Flow at 34 (11→13) p [34] = p[40] +2 ∆p13 =13.54+2*2=17.54 bar T [39] = tn[p(12)] - ∆tg13= 117.59 -3.1= 114.49 ºC h [34] = 481.4 KJ/Kg s[34]=1.47 KJ/kgK
  • 13. 34. Flow at 35 (11→12) P[35] =p[13]=0.41 bar T[35]=Tn[13]=79.78 ºC h [35] = 334.025 KJ/Kg s[35]=1.07 KJ/kgK 35. Flow at 37 (12→13) At the pump efficiency is ηp [12] =75%, and pressure p [37] =P [34] =17.54 bar, s [37] =s [35] = 1.07 KJ/Kg k from X-Steam tables functions enthalpy ℎ 𝑠 [37] = 334.8 KJ/Kg As we Know pump efficiency ηp = = ℎ 𝑠[37]−ℎ[34] ℎ[37]−ℎ[34] 0.75= 334.8−334.025 ℎ[37]−334.025 ; h [37] = 335.05 KJ/Kg T [37] = 79.7 ºC 36. Flow at 14 (4→10) Give data ηi [13,14] =86.2%; p [14] =0.21 bar s [14] = 7.45 KJ/Kg from X-Steam tables functions enthalpy hs [14] = 2463.59 KJ/Kg ηt = ℎ[13]−ℎ[14] ℎ[13]−ℎ 𝑠[14] 0.894= 2563.59 −ℎ [14] 2563.59−2463.59 h [14] = 2474.19 KJ/Kg T[14]=62.72 ºC 37. Flow at 32 (10→22) p [32] = p[34] + ∆p11=17.54+2=19.54 bar T[32] = Tn[14] - ∆tg10 = 62.72-3.1=59.62 ºC h [32] = 251.2 KJ/Kg s [32] =0.83 KJ/kgK 38. Flow at 33 (10→6) P [33] =p [14]=0.21bar T[33]=Tn[14]= 62.72 ºC s[33]=0.84 KJ/kgK h[33]= 255.828 KJ/kg 39. Flow at 15 (4→6) Give data ηi [14,15] =80.6%; p [15] =p [16] =0.043 bar s [15] = 7.6 KJ/Kg from X-Steam tables functions enthalpy hs [15] = 2298.82 KJ/Kg ηt = ℎ[14]−ℎ[15] ℎ[14]−ℎ 𝑠[15] 0.806= 2474.19 −ℎ [15] 2474.19−2298.82 h [15] = 2332.84 KJ/Kg T[15]=34.99 ºC 40. Flow at 26 (25→19) P [26] =1 bar T[26]=17.5 ºC h [26] = 73.5 KJ/Kg s [26] = 0.26 KJ/Kg 41. Flow at 28 (19→18) p[28] = p[26] + ∆p =1+ 2.5=3.5 bar s [28] =s [26] = 0.26 KJ/Kg k from X-Steam tables functions enthalpy ℎ 𝑠 [28] = 73.62 KJ/Kg As we Know pump efficiency ηp = = ℎ 𝑠[28]−ℎ[26] ℎ[28]−ℎ[26]
  • 14. 0.8= 73.62−73.5 ℎ[28]−73.5 ; h [28] = 73.64 KJ/Kg T [43] = 17.48 ºC 42. Flow at 29 (18→35) p[29] = p[28] - ∆ps18 = 3.5 -0.5 = 3 bar T[29] = T[28] + ∆tw18= 17.48+11.1 = 28.58 ºC h [28] = 120.1 KJ/Kg s [26] = 0.42 KJ/Kg 43. Flow at 25 (28→6) T[25]= t[29] + ∆tg18= 28.58+ 2.7 =31.28 ºC p[25] = pn(t[25]) =0.46 bar h [25] = 131.1 KJ/Kg s [26] = 0.45 KJ/Kg 44. Flow at 24 (20→18) Give data ηi [23,24] =85.6%; p [24] =p [25] =0.046 bar s [24] = 7.7 KJ/Kg from X-Steam tables functions enthalpy hs [25] = 2337.73 KJ/Kg ηt = ℎ[23]−ℎ[24] ℎ[23]−ℎ 𝑠[24] 0.806= 3157.63 −ℎ [24] 3157.63−2337.73 h [15] = 2496.79 KJ/Kg T[24]=31.39 ºC 45. Flow at 44 (2→9) T[44]= 458 ºC p[44] = 0.2 bar h [44] = 3400.6 KJ/Kg s [44] = 9.46 KJ/Kg 46. Flow at 45 (3→13) T[45]= 574.50 ºC p[45] = 52 bar h [45] = 3608.2 KJ/Kg s [45] = 7.17 KJ/Kg 47. Flow at 31 (9→6) T[31]= 60.08 ºC p[31] = 0.2 bar h [31] = 251.48 KJ/Kg s [31] = 0.83 KJ/Kg Tab. 4. Thermodynamic parameters of mass flows THERMODYNAMIC PARAMETERS - results Nr p[bar] T[°C] H[kJ/kg] S[kJ/kgK] 1* 294.000 277.670 1218.600 2.9810 2 - - - - 3 - - - - 4 255.5 550 3332.9 6.17 5 57.4 321.3 2966.3 6.22 6 57.4 320.2 2963.7 6.22 7 52.9 580. 3617.9 7.18 8 29.008 492.8 3441.38 7.2 9 11.2 359.1 3175.07 7.25 10 4.8 248.2 2958.03 7.27 11 4.8 248.2 2958.03 7.27
  • 15. 12 1.84 149.64 2769.59 7.32 13 0.41 79.78 2563.59 7.39 14 0.210 62.72 2474.19 7.45 15 0.043 34.99 2332.84 7.6 16 0.043 30.5 127.8 0.44 17 - - - - 18 22.04 30.3 128.91 0.44 19 1 17.5 73.5 0.265 20 - - - - 21 3.5 17.5 73.64 0.26 22 3 27.9 117.2 0.41 23 11.2 359.1 3175.07 7.25 24 0.046 31.39 2496.79 7.7 25 0.046 31.28 131.1 0.45 26 1. 17.5 73.5 0.26 27 - - - - 28 3.5 17.48 73.62 0.26 29 3 28.58 120.1 0.42 30* 21.544 32.880 139.620 .4700 31 0.20 60.08 251.48 0.83 32 19.54 59.62 251.2 0.83 33 0.21 62.72 255.82 0.84 34 17.54 114.59 481.4 1.47 35 0.41 79.78 334.025 1.07 36 - - - - 37 17.54 79.7 335.05 1.07 38 1.84 117.59 493.5 1.5 39 15.54 114.49 481.4 1.47 40 13.54 147 619.9 1.81 41 4.8 150.3 633.5 1.85 42 - - - - 43 13.54 151.2 637.67 1.85 44 0.2 458.000 3400.6 9.46 45 52 574.5 3608.2 7.17 46 22.04 30.3 128.91 0.44 47 11.2 359.1 3175.07 7.25 48 29.008 280.2 2946.3 6.47 49 11.2 184.8 784.7 2.19 50 - - - - 51 - - - - 52 52.9 186.1 792.14 2.19 53 301 190.3 823.19 2.19 54 298.5 228.8 992.1 2.55 55 29.008 198.9 848 2.32 56 295 270.5 1184. 2.92 57 57.4 237.4 1025.5 2.67 58 - - - - 59 - - - - 60 - - - - 61 - - - - 62 - - - - 63 22.04 30.3 128.91 0.44 64 - - - -
  • 16. a.Mass and energy flow In the mathematical model for calculating mass flows and energy flows in the thermal system, three groups can be distinguished. The first is the equation of balances resulting from the law of conservation of mass, the second - arising from the principle of conservation of energy, and the third so-called different equations. The third group includes equations resulting from the way the balance shields are routed. An example would be an additional equation for the mass balance of steam flowing through an interstage The set electrical power or flow of technological steam can be saved in modeling in two ways: as a value on the right side of the balance equation or assign to these flows the appropriate unknowns and in the third part of the model put as additional equations, giving the unknown values. In the first case, the mathematical model consists of a system with fewer equations than in the second case. However, the second method is much more convenient to use when calculating with the help of a computer. The construction of a mathematical model in a detailed form enabling the determination of mass and energy streams should be preceded by quantitative analysis using the algebraic properties of the structure of the system. As a result, the value of the difference between the maximum number of linearly independent equations in the model and the number of unknowns occurring in them is determined. For a well-worded task, the difference should be zero. When it is less than zero, it means that if you want to specify a solution unambiguously, you should make additional assumptions. However, if it is greater than zero, then the system of equations is contradictory and some assumptions should be abandoned. i. Mathematical model Based on flows analysis following equatin set was built. Equation number Group number Node number Equations Notes 1 1 1 x[1] – x[4] = 0 2 2 2 x[4] – x[5] –x[6] – x[44] = 0 3 3 3 x[7] – x[8] – x[9] – x[10] - x[11] – x[45] = 0 4 4 6 x[15] – x[16] + x[25] + x[31] + x[33] = 0 5 5 6 x[21] – x[22] = 0 6 6 7 x[19] – x[21] = 0 7 7 8 x[16] – x[18] = 0 8 8 9 - x[30] + x[63] = 0 9 9 9 - x[31] + x[44] = 0
  • 17. 10 10 10 x[30] – x[32] = 0 11 11 10 x[14] – x[33] = 0 12 12 11 x[32] – x[34] = 0 13 13 11 x[13] –x[35] + x[38] = 0 14 14 12 x[35] – x[37] = 0 15 15 13 x[34] + x[37] – x[39] = 0 16 16 13 x[12] - x[38] + x[45] = 0 17 17 14 x[39] – x[40] = 0 18 18 14 x[10] – x[41] = 0 19 19 15 x[41] – x[43] = 0 20 20 16 x[9] – x[23] – x[47] = 0 21 21 17 x[40] + x[43] + x[47] – x[49] + x[55] = 0 22 22 18 x[24] – x[25] = 0 23 23 18 x[28] - x[29] = 0 24 24 19 x[26] – x[28] = 0 25 25 20 x[23] – x[24] = 0 26 26 21 x[49] – x[52] – x[53] = 0 27 27 22 x[53] – x[54] = 0 28 28 22 x[48] – x[55] +x[57] = 0 29 29 23 x[54] – x[56] = 0 30 30 23 x[5] – x[57] = 0 31 31 24 x[56] – x[1] = 0 32 32 24 x[8] – x[48] = 0 33 33 26 x[18] – x[46] – x[63] = 0 Table 2 Energy balance equations Equation nubmer Group number Node number Equation Notes 34 1 1 x[1]h[1] – x[2] + x[3] –x[4]h[4] + x[6]h[6]+ - x[7]h[7] + x[52]h[52] = 0 35 2 2 x[4]h[4] – x[5]h[5] – x[6]h[6] + - x[44]h[44] - x[58] = 0
  • 18. 36 3 3 x[7]h[7] – x[8]h[8] – x[9]h[9] + - x[10]h[10] - x[11]h[11] – x[45]h[45] + -x[58] – x[59] = 0 37 4 4 x[11]h[11] – x[12]h[12] – x[13]h[13] + – x[14]h[14] – x[15]h[15] – x[46]h[46] + + x[59] – x[60] = 0 38 5 5 x[60] – x[61] – x[62] = 0 39 6 6 x[15]h[15] – x[16]h[16] + x[21]h[21]+ - x[22]h[22] + x[25]h[25] + x[31]h[31] + + x[33]h[33] = 0 40 7 7 x[19]h[19] + x[20] – x[21]h[21] = 0 41 8 8 x[16]h[16] + x[17] – x[18]h[18] = 0 42 9 9 – x[30]h[30] – x[31]h[31] + x[44]h[44]+ + x[63]h[63] = 0 43 10 10 x[14]h[14] + x[30]h[30] – x[32]h[32] + – x[33]h[33] = 0 44 11 11 x[13]h[13] + x[32]h[32] –x[34]h[34] + – x[35]h[35] + x[38]h[38] = 0 45 12 12 x[35]h[35] + x[36] – x[37]h[37] = 0 x[12]h[12] + x[34]h[34] + x[37]h[37] + 46 13 13 - x[38]h[38] - x[39]h[39] + x[45]h[45] + + x[50] = 0 47 14 14 x[10]h[10] + x[39]h[39] – x[40]h[40] + - x[41]h[41] = 0
  • 19. 48 15 15 x[41]h[41] + x[42] – x[43]h[43] = 0 49 16 17 x[40]h[40] + x[43]h[43] + x[47]h[47] + - x[49]h[49] + x[55]h[55] = 0 50 17 18 x[24]h[24] – x[25]h[25] + x[28]h[28] + – x[29]h[29] = 0 51 18 19 x[26]h[26] + x[27] – x[28]h[28] = 0 52 19 20 x[23]h[23] – x[24]h[24] – x[51] = 0 53 20 21 x[49]h[49] + x[51] – x[52]h[52] + – x[53]h[53] = 0 54 21 22 x[48]h[48] + x[53]h[53] – x[54]h[54] + - x[55]h[55] + x[57]h[57] = 0 55 22 23 x[5]h[5] + x[54]h[54] + - x[56]h[56] –x[57]h[57] = 0 56 23 24 -x[1]h[1] + x[8]h[8] – x[48]h[48] + + x[56]h[56] = 0 57 24 27 x[2] – x[50] – x[64] = 0 60 3 1 x[6] β1 - x[52] = 0 61 4 2 x[4] γ1 – x[44] = 0 62 5 3 x[7] γ2 – x[45] = 0 63 6 4 x[18] γ3 – x[46] = 0 64 7 5 x[60] ε5 – x[61] = 0
  • 20. 65 8 6 x[60] = N 66 9 13 x[3]k13 - x[50] = 0 m[1]h[1] = m[1]h [1]+ Q[66] m[30]h[30] = m[30]ℎ̅[30] + Q[65] = thus finally h[1]= Q[66]/x[1]=1219.71 ; h[30]= Q[65]/x[30]=138.17 2 – Quantitative analysis mass fold km 2 energy fold kq 1 number of nodes w 27 number and list od energy nodes wq 2 number of mass nodes wm 25 number and list of surface energy nodes wp 10 number and list of manifold nodes wr 2 number and list of unknown enthalpies flows wn 2 total number of flows p 64 number and list of energy flows pq 15 Results m[1] 681.7531377 Q[2] 208480.7394 Q[3] 2084807.394 m[4] 681.7531377 m[5] 67.40953583 m[6] 612.9800956 m[7] 625.2396975 m[8] 49.17777719 m[9] 72.96287841 m[10] 30.54970885 m[11] 467.5474155
  • 21. m[12] -3.688433544 m[13] 47.77677035 m[14] 23.62329006 m[15] 399.928536 m[16] 463.7368953 Q[17] 514.7479538 m[18] 463.7368953 m[19] 20320.92338 Q[20] 2844.929273 m[21] 20320.92338 m[22] 20320.92338 m[23] 38.82156294 m[24] 38.82156294 m[25] 38.82156294 m[26] 1975.898951 Q[27] 237.1078741 m[28] 1975.898951 m[29] 1975.898951 m[30] 463.6441479 m[31] 1.363506275 m[32] 463.6441479 m[33] 23.62329006 m[34] 463.6441479 m[35] 49.09025438 Q[36] 50.31751074 m[37] 49.09025438 m[38] 1.313484036 m[39] 512.7344023 m[40] 512.7344023 m[41] 30.54970885 Q[42] 127.3922859 m[43] 30.54970885 m[44] 1.363506275 m[45] 5.00191758 m[46] 0.092747379 m[47] 34.14131548 m[48] 49.17777719 m[49] 694.0127396 Q[50] 56289.79965 Q[51] 26331.88971 m[52] 12.25960191 m[53] 681.7531377 m[54] 681.7531377 m[55] 116.587313 m[56] 681.7531377 m[57] 67.40953583 Q[58] 250932.2778 Q[59] 620651.1585
  • 22. Q[60] 900000 Q[61] 45000 Q[62] 855000 m[63] 463.6441479 Q[64] 152190.9398 Q[65] 64062.21199 Q[66] 831542.649