SlideShare a Scribd company logo
1 of 30
J. Tejada, A. Hernández-Mínguez, F. Macià, S. Vélez and
                    J.M. Hernández
   Grup de Magnetisme, Dept. de Física Fonamental, Universitat de Barcelona



        V. Moschalkov, J. Vanacken, Wim Decelle
                    INPAC, Katholieke Universiteit Leuven



                               P. V. Santos
               Paul-Drude-Institut für Festkörperelektronik, Berlin
   Introduction

       What is a deflagration?

       From Magnetisation jumps to magnetic deflagration.

   Molecule Magnets

   Manganese Oxides

   Intermetallic Compounds
Deflagration is a technical term describing subsonic combustion that usually propagates
   through thermal conductivity

                                              Energy released  E
                                        Ignition (barrier overcoming)  U
                                               Thermal diffusion 
Metastable         U
                                      Characteristic length of propagation 
  State
                                        There are two characteristic timescales which are
                                         important here. The first is the thermal diffusion
             E                           timescale is approximately equal to
                        Estable
                         State
                                        The second is the burning timescale that strongly
                                         decreases with temperature, typically as



        When the burning timescale greater exceed the difussion timescale, the huge
         amount of energy realized by the metastable spins could lead to the ocurrence of
         a Magnetic Deflagration.
Manganites
                                                                  Field jumps 1999
                                                                  Deflagration-like description 2007
                                                                                               T = 3 K
                                                                                     1.0

Molecule magnets
Field jumps 1999




                                                                             M/M S
                                                                                     0.5

Deflagration-like description
    2005
                                                                                     0.0
                                                                                           0                  10              20        30
                                                                                                                        H (kOe)
               T = 1.8 K
      1.0
                                                          Intermetallic compounds
      0.5
                                                          Field jumps 2002
  s




                                                          Deflagration-like description 2010
M/M




      0.0


      -0.5

                                                                              1.0
      -1.0
                                                                              0.8
         -30     -20       -10      0      10   20   30
                                                                              0.6
                                 H (kOe)
                                                                     M/M S


                                                                              0.4


                                                                              0.2


                                                                              0.0

                                                                                       0        5        10        15    20   25   30   35   40   45   50
H

                                                                           ΔE

                                                        Magnetic deflagration:
                                                   Propagation of a front of reversing
                                                   spins at constant velocity along the
                                                                 crystal
A. Hernández-Mínguez et. al. PRL 95 17205 (2005)




                                                     Problem: Sweeping H we
                                                     cannot control the magnetic
  Y. Suzuki et. al. PRL 95, 147201 (2005)
                                                     field at which it occurs.
Surface acoustic waves (SAWs) are low frequency acoustic phonons (below 1 GHz)


The coaxial cable is connected to an Agilent microwave signal generator.

The change of the magnetic moment is registered by a rf-SQUID magnetometer.


                                            Hz
     coaxial cable
                                 IDT    Mn12 crystal
                                               c-axis




                   conducting                      LiNbO3
                   stripes                         substrate
• The speed of the avalanche
increases with the applied
magnetic field.

• At resonant fields the       •   The ignition time shows peaks at
velocity of the flame front        the magnetic fields at which spin
presents peaks.                    levels become resonant.
• Space is needed to place piezoelectric
devices and ignite avalanches
•NO cavities can be used
                                                                        Optical detection
                                Frequency                                            150-350 GHz
 f 9,8= 269 GHz
 H=12 kOe

                                               9.1
                                                                                                                   0.0
                                               9.0
                                                                                                                   -0.1
                                               8.9
                                                                                                                   -0.2
                                 (arb.u.)




                                                                                                                          (arb.u.)
                                               8.8
                                                                                                                   -0.3
                                               8.7
                                                                                                          E6,5     -0.4
                                 Sign. Ampl.




                                                                                                                          Sign. Ampl.
                                               8.6       E-10,-9
                                                                                              E7,6                 -0.5
                                               8.5
                                                                                      E8,7                         -0.6
                                               8.4
                                                                        E9,8                                       -0.7
                                               8.3
                                                                                                                   -0.8
                                                     0             10          20      30     40     50          60

                                                                                    H (kOe)

                                     F. Macià et. al. PRB 77 020403R (2008)
• Surface Acoustic Waves allow us                                    t (ms)                              t (ms)

to control magnetic avalanches                             0    50            100          150 0           25                 50




                                    (arb. units)




                                                                                                                                        (arb. units)
                                                                                                                                0.00
                                                    0.0




                                    Sign. Ampl.
                                                                                                                                -0.05




                                                                                                                                        Sign. Ampl.
                                                    -0.1
                                                               (a)                                 (b)

                                                                                                                                -0.10

                                                    0.0                                                                         0.0




                                     (arb. units)
                                                               (c)                                 (d)




                                                                                                                                         (arb. u.)
                                                                                                                                -0.2




                                                                                                                                         Sign. Ampl.
                                                                               Avalanche




                                     Sign. Ampl.
                                                    -0.4
                                                                               SAW pulse
                                                                                                                  Avalanche
                                                                                                                  SAW pulse
                                                                                                                                -0.4

                                                           0    50            100          150 0           50                 100
                                                                     t (ms)                              t (ms)
Very fast sweeping magnetic fields




       Decelle et al. Phys. Rev. Lett. 102, 027203 (2009)
Superradiance

                                                                   During the second of two field pulses with the same polarity.
                                                                   During the second of two field pulses with opposite polarity.
                                                        0



                                                        -1




                                             V ( mV )
                                                        -2



                                                        -3



                                                        -4


                                                             100   200    300      400     500      600     700     800

                                                                                time ( s )


H-M. et al. Europhys. Lett. 69, 270 (2005)
• Is the described deflagration-like process in molecular clusters unique?
• Among the variety of compounds presenting steps in the magnetisation
curves… are there also spatial propagation involved?

                                                              PS Manganites

The fragility of the state shown here implies that
several perturbations besides magnetic fields should
induce dramatic changes, including pressure, strain,          (La,Pr,Ca)-MnO3
and electric fields.



    Antiferromagnetic and Isolating




    Ferromagnetic and Conductor
T=3K

 x = M / Mferro                                                                1.0



 x, fraction of the ferromagnetic phase




                                                                           S
                                                                         M/M
                                                                               0.5




      1.00                                                                     0.0
                                                                                     0              10             20                    30
                     FM-CD final state                                                                        H (kOe)

      0.75
  s




                                                                   2.0
M/M




      0.50                                                                                 12
                                               3.0   K
                                               3.5   K             1.5
      0.25                                     4.0   K
                 AF-CO initial state           4.5   K
                                                         M (emu)
                                                                   1.0
                                               5.0   K                                                                        36

      0.00




                                                                                                                        H a (kOe)
                                                                                                                              32
             0                20          40                       0.5

                                H (kOe)                                                                                       28


                                                                   0.0                                                              0         50        100
                                                                                                1                                             xa (%)


                                                                               0          10             20        30                   40             50

                                                                                                          H (kOe)
 Commercial    MPMS SQUID
                                                                            magnetometer
                                                                           Three pick-up coils detect the magnetic
                                                                            flux variation.

                                                                           Recorded        by an oscilloscope
                                                                          1.0

                                 1.2
                                       z = 4.0 cm                    z 0.8 cm
                                                                       = 5.5                          z = 6.5 cm

                                 1.0
                                                                                                                                 coil A



                                                    V coil / V coil,max
                                                                          0.6
                                                                                                                                 coil B
           V coil / V coil,max




                                 0.8
                                                                                                                                 coil C
              Sample                                                      0.4
                                 0.6
                                                                                                                           T = 3.5 K
                                 0.4
                                                                          0.2


                                 0.2                                      0.0

                                 0.0                                            0.0   0.2   0.4    0.6       0.8         1.0      1.2     1.4

                                                                                                   0.2 t   (ms)
   Evidence of propagation0.6 0.8 0.0 0.2 0.4 0.6 0.8
                  0.0 0.2  0.4                                                               0.0            0.4    0.6     0.8

                        t (ms)           t (ms)                                                      t (ms)
   Avalanche begins at the centre of the sample
T=3K

            Energy Barrier                          1.0




AF




                                                S
                                              M/M
                                                    0.5
                                                                                                    ?

             Energy released
                                                    0.0

                       FM                                 0                  10
                                                                                            H (kOe)
                                                                                                    20                 30




      Energy released                        1.00
                                                                                                                                12



                                                                                                                                10
                                             0.75

      Thermal diffusion                                                                                                         8
                               M (arb. u.)




                                                                                                                                     T (K)
                                                                                   1.00
                                             0.50
                                                                                   0.95                                         6



                                                                     M (arb. u.)
                                             0.25
            Ignition                                                               0.01

                                                                                   0.00
                                                                                                                                4

                                             0.00
     (barrier overcoming)                                                             80      90         100
                                                                                                        t (ms)
                                                                                                                 110    120

                                                                                                                                2
                                                              0                       200                 400                 600
                                                                                           t (ms)
Initial FM fraction dependence                                                                                H=28 kOe


            2.0
                       12
                                                                                            600

                                                                                                   (a)
            1.5

                                                                                            400
  M (emu)




                                                                                t ig (ms)
            1.0
                                                 36


                                                                                            200
                                           H a (kOe)




                                                 32
            0.5

                                                 28


            0.0                                        0        50        100                0
                           1                                    xa (%)


                  0   10       20     30                   40            50

                                H (kOe)                                                     12     (b)



                                                                                            10




                                                                                 t d (ms)
The larger the initial FM phase
                                                                                             8
concentration, the slower the
deflagration velocity                                                                        6
                                                                                              20         25   30   35   40   45   50   55

                                                                                                                    x (%)
 Macià et al. Phys. Rev. B 76, 174424 (2007)
T=2K            T=3K T=4K




As the field increases the energy                                           600   (a)

barriers decrease and                                                       500




                                                                t ig (ms)
deflagration becomes faster.                                                200


                                                                            100


                                                                             0


               1.00

                                               27.0 kOe                      20                        60
                                                                                  (b)
               0.98                            27.5 kOe




                                                                                               x (%)
                                                                                                       40

                                               28.0 kOe                                                20
  M (arb.u.)




                                               28.5 kOe                      15
                                                                                                                 28       30    32
               0.96                            29.0 kOe




                                                                  t d (ms)
                                                                                                                      H (kOe)
                                               29.5 kOe
                                               30.0 kOe
                                                                             10
               0.01                            30.5 kOe
                                               31.0 kOe

               0.00                                                          5

                                                                                        28                  30                  32
                      0   100    200     300              400
                                t (ms)                                                        H (kOe)
• Initially sample is in the AF-CO phase.

• As field increases FM-CD phase begins
  to grow.

• At some time a conducting path
  appears.

• It is not necessarily associated with the
  magnetic avalanche

       O.C.                                   1.0


                                              0.8

       100                  T=3 K
                                              0.6




                                                    M/M
                  resistance
(k )
        10        magnetisation




                                                    s
                                              0.4


         1                                    0.2


        0.1                                   0.0

              0   10        20       30
                       H (kOe)
Initial FM-CD phase concentration smaller than 10%


  AF-CO                                                                                                      8
(insulator)                      OC


                                 750                 O.C.
                                                                                             T = 2.5 K       6




                                            R (k )
                                                     800


                                 500                 400
                        R (k )




                                                                                                                 T (K)
                                                       0
 FM-CD                                                      -200        0        200   400                   4
                                 250                                    t ( s)
(metallic)

                                   0
                                                                                                             2
                                       -2                          -1                        0           1
                                                                             t (s)



  Macià et al. Phys. Rev. B 77, 012403 (2008)
Initial FM-CD phase concentration larger than 10%



                Zero field cooled                                            Field cooled H = 15 kOe
                                                                       140                                      6
                        T=3K                                           120
                                                                                          T=3K
                                                                       100                                      5

                                                                        80




                                                              R (k )
                                                                                                                4
         O.C.                                                           60
                                                  6
         1000                                                           40
                                                                                                                3
                                                                        20
R (k )




                                                      T (K)


          100
                                                  4                      0
                                                                                                                 2
           10                                                                0    10    20           30   40   50

                                                                                             t (s)
            1
                                                  2
                -6       -4       -2   0      2
                              t (s)
Coax. Resonator f 3 GHz, Q 100




                                                                                                                                      3.92
                                                                                         0.30
                                                                    0.4




                                                                          S 11 (a. u.)
                                                                                         0.25
                                                                                                                                      3.88




                                                S 11 (arb. units)




                                                                                                                                             f (GHz)
                                                                                         0.20

                                                                                                0             1           2
                                                                    0.2                             t (ms)


                                                                                                             f=3.88 GHz
                                                                                                                                      3.84


                                                                                                                              T=3 K

                                                                    0.0                                                               3.80
                                                                                           10                       20        30
                                                                                                                  H (kOe)




Macià et al. Europhys. Lett. 82, 37005 (2008)
Outline: Magnetic and crystallographic Properties




                                                      • At low temperatures, the field driven AFM FM
                                                        transition undergoes via an avalanche due to the arrest
• In the ac plane the spins are aligned                 of kinetics of the crystal structure.
  ferromagnetically
• Two different crystal structures: AFM or FM
  coupling between the spin layers along the b axis        Dynamical study  It is a magnetic deflagration?
• Hability to control the initial FM phase (x) cooling the sample at different HFC
• Avalanches appear at HFC smaller than HFC ~11.0 kOe (x~0.5)
                                     T=2K




                  Velez et al. Phys. Rev. B 81, 064437 (2010)
•Set-up                           •Ignited avalanche by sending a heat pulse:




•For spontaneous avalanches: The signals detected with the two coils are almost simultaneous:
                 The Nucleation should take place at the middle of the sample
•For ignited avalanches, a time diference is observed between the coils:
A phase deflagration front is generated an it propagates through the sample changing the magneto-
crystallographic structure of the system: Magnetostructural Deflagration.
Magnetic time-evolution of the sample for different ignition fields (Hign) at T=2 K
The quasi-linear time evolution of M(t) indicates that the phase-front traverses
the sample at a constant speed.
T = 2K                          Hign = 22 KOe            T = 2K




Speed of the flame vs Hign at two dif. HFC     Speed of the flame vs HFC  different xini



• The velocity increases with the Hign
• The velocity decreases with the initial FM phase x: losses of the flammability of the
  system
U                 E       U     200 K                                                   1
                                                                                                                 4
                                                                                    D
                                                                                        5 (1     x) E
                                                                          Tf                                         30 K
AFM                                                                                       3k B         D



                                           D
                                                   120 K

                     ΔE
                            FM



                              4    1
Tf    exp   U / k BT f      10 s
                                                                                               1
                                                             v   k BT f / U    Tf       Tf         2       0 . 1m / s
                 5    2
      Tf    10       m /s
b
                                    Hz                            c
    coaxial                                                                             2.45 mm
    cable                        Gd5Ge4 SC                    1.04 mm
                         IDT
                                                                       a 1.17 mm




           Conducting               LiNbO3
           stripes                  substrate                 c                            a

                                                          1.07 mm                       2.40 mm


                                                                      b 1.29 mm
Magnetic deflagrations have been induced by means of controlled SAW pulses.
They were induced on Gd5Ge4 Single Crystals with diferent geometries and under different sample
configurations.
The magnetic time evolution of the sample was taken directly from the SQUID-voltmeter
Same direction of applied magnetic field + different sample configuration:
Anisotropic Magnetic Deflagration attributed to the Anisotropy of the Thermal Difussivity

                                     30
                                                                           S1 H   b, SAW   a
                                                                           S1 H   b, SAW   c
                                                                           S2 H   a, SAW   c
                                                                           S2 H   a, SAW   b
                                     20
                                                                        Due to the sample’s
                      td~L/ vp(ms)


                                                                        geometry, L is approx the
                                                                        same for all cases


                                     10




                                      0
                                          16    18    20     22    24      26        28        30

                                                           Hig (kOe)

   Clear different speed for different crystallographic direction of the applied magnetic field +
   Correlation with the magnetic anisotropy of the sample:
   Anisotropic Magnetic Deflagration attributed to the Magnetic Anisotropy

                                               Velez et al. Submitted
   Magnetic deflagration is observed in several magnetic
    materials.

   Molecular magnets:
       New methods to study spin dynamics (SAW+HFEPR) and to
        correlate experiments with theory.
       Radiation emission associated to deflagration and detonation
        (SUPERRADIANCE  TASER)

   Manganites:
       Colossal MagnetoResistance associated to the phase deflagration

   Intermetallic compounds
       Fast Magnetostructural transitions
       Anisotropic Magnetic Deflagration: Magnetic and Thermal diffusivity

More Related Content

Viewers also liked

Powerpointforedrag elektrisitet og magnetisme
Powerpointforedrag elektrisitet og magnetismePowerpointforedrag elektrisitet og magnetisme
Powerpointforedrag elektrisitet og magnetismeElise Olsen
 
L'electricitat principis físics
L'electricitat principis físics L'electricitat principis físics
L'electricitat principis físics Enric Abadal
 
Presentación. javi y jaime
Presentación. javi y jaimePresentación. javi y jaime
Presentación. javi y jaimejlealleon
 
L'electricitat i el magnetisme
L'electricitat i el magnetismeL'electricitat i el magnetisme
L'electricitat i el magnetismeJoan Camps Pons
 
L'electricitat i el magnetisme
L'electricitat i el magnetismeL'electricitat i el magnetisme
L'electricitat i el magnetismerogembak
 
2016.11.13 magnetisme v07 Elektromagnetisme magnetisme elektro electro magn...
2016.11.13   magnetisme v07 Elektromagnetisme magnetisme elektro electro magn...2016.11.13   magnetisme v07 Elektromagnetisme magnetisme elektro electro magn...
2016.11.13 magnetisme v07 Elektromagnetisme magnetisme elektro electro magn...Sven Åge Eriksen
 
Advantages and Disadvatages of AC/DC Motor
Advantages and Disadvatages of AC/DC MotorAdvantages and Disadvatages of AC/DC Motor
Advantages and Disadvatages of AC/DC MotorFika Khamis
 

Viewers also liked (11)

F2 u4camp
F2 u4campF2 u4camp
F2 u4camp
 
Powerpointforedrag elektrisitet og magnetisme
Powerpointforedrag elektrisitet og magnetismePowerpointforedrag elektrisitet og magnetisme
Powerpointforedrag elektrisitet og magnetisme
 
Quantum Magnetism
Quantum MagnetismQuantum Magnetism
Quantum Magnetism
 
L'electricitat principis físics
L'electricitat principis físics L'electricitat principis físics
L'electricitat principis físics
 
Les aportacions de Einstein
Les aportacions de EinsteinLes aportacions de Einstein
Les aportacions de Einstein
 
James Clerk Maxwell
James Clerk MaxwellJames Clerk Maxwell
James Clerk Maxwell
 
Presentación. javi y jaime
Presentación. javi y jaimePresentación. javi y jaime
Presentación. javi y jaime
 
L'electricitat i el magnetisme
L'electricitat i el magnetismeL'electricitat i el magnetisme
L'electricitat i el magnetisme
 
L'electricitat i el magnetisme
L'electricitat i el magnetismeL'electricitat i el magnetisme
L'electricitat i el magnetisme
 
2016.11.13 magnetisme v07 Elektromagnetisme magnetisme elektro electro magn...
2016.11.13   magnetisme v07 Elektromagnetisme magnetisme elektro electro magn...2016.11.13   magnetisme v07 Elektromagnetisme magnetisme elektro electro magn...
2016.11.13 magnetisme v07 Elektromagnetisme magnetisme elektro electro magn...
 
Advantages and Disadvatages of AC/DC Motor
Advantages and Disadvatages of AC/DC MotorAdvantages and Disadvatages of AC/DC Motor
Advantages and Disadvatages of AC/DC Motor
 

Similar to Magnetic Deflagration Controlled by Surface Acoustic Waves

Cuny conference in_honour_of_myriam
Cuny conference in_honour_of_myriamCuny conference in_honour_of_myriam
Cuny conference in_honour_of_myriamoriolespinal
 
Public Doctoral Defense in Nuclear Physics
Public Doctoral Defense in Nuclear PhysicsPublic Doctoral Defense in Nuclear Physics
Public Doctoral Defense in Nuclear PhysicsFrancisco Almeida
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013oriolespinal
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMagNanoFrontMag-cm
 
Physics equation tables_2008_09
Physics equation tables_2008_09Physics equation tables_2008_09
Physics equation tables_2008_09Agyapal Bajwa
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopynirupam12
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
Gravitational Collider Physics
Gravitational Collider PhysicsGravitational Collider Physics
Gravitational Collider PhysicsDanielBaumann11
 
Preliminary Doctoral Defense of Francisco Almeida
Preliminary Doctoral Defense of Francisco AlmeidaPreliminary Doctoral Defense of Francisco Almeida
Preliminary Doctoral Defense of Francisco AlmeidaFrancisco Almeida
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleFundación Ramón Areces
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.ABDERRAHMANE REGGAD
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...ABDERRAHMANE REGGAD
 
1988 a study of the thermal switching behavior in gd tbfe magneto‐optic films...
1988 a study of the thermal switching behavior in gd tbfe magneto‐optic films...1988 a study of the thermal switching behavior in gd tbfe magneto‐optic films...
1988 a study of the thermal switching behavior in gd tbfe magneto‐optic films...pmloscholte
 

Similar to Magnetic Deflagration Controlled by Surface Acoustic Waves (20)

Sebastian
SebastianSebastian
Sebastian
 
Cuny conference in_honour_of_myriam
Cuny conference in_honour_of_myriamCuny conference in_honour_of_myriam
Cuny conference in_honour_of_myriam
 
Public Doctoral Defense in Nuclear Physics
Public Doctoral Defense in Nuclear PhysicsPublic Doctoral Defense in Nuclear Physics
Public Doctoral Defense in Nuclear Physics
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
ETABS Modelling
ETABS ModellingETABS Modelling
ETABS Modelling
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
 
Microstrip antennas
Microstrip antennasMicrostrip antennas
Microstrip antennas
 
CUPC Oct 14, 2015
CUPC Oct 14, 2015CUPC Oct 14, 2015
CUPC Oct 14, 2015
 
Physics equation tables_2008_09
Physics equation tables_2008_09Physics equation tables_2008_09
Physics equation tables_2008_09
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Lecture 20
Lecture 20Lecture 20
Lecture 20
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
Gravitational Collider Physics
Gravitational Collider PhysicsGravitational Collider Physics
Gravitational Collider Physics
 
Esd
EsdEsd
Esd
 
Preliminary Doctoral Defense of Francisco Almeida
Preliminary Doctoral Defense of Francisco AlmeidaPreliminary Doctoral Defense of Francisco Almeida
Preliminary Doctoral Defense of Francisco Almeida
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...
 
1988 a study of the thermal switching behavior in gd tbfe magneto‐optic films...
1988 a study of the thermal switching behavior in gd tbfe magneto‐optic films...1988 a study of the thermal switching behavior in gd tbfe magneto‐optic films...
1988 a study of the thermal switching behavior in gd tbfe magneto‐optic films...
 

More from oriolespinal

V1 cuerpo humano y mecanica cuantica-1
V1 cuerpo humano y mecanica cuantica-1V1 cuerpo humano y mecanica cuantica-1
V1 cuerpo humano y mecanica cuantica-1oriolespinal
 
Art and medicine_columbia_2013
Art and medicine_columbia_2013Art and medicine_columbia_2013
Art and medicine_columbia_2013oriolespinal
 
Invited talksjanuary2013
Invited talksjanuary2013Invited talksjanuary2013
Invited talksjanuary2013oriolespinal
 
Cuerpo humano y mecanica cuantica
Cuerpo humano y mecanica cuanticaCuerpo humano y mecanica cuantica
Cuerpo humano y mecanica cuanticaoriolespinal
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 
Quantum Nanomagetism
Quantum NanomagetismQuantum Nanomagetism
Quantum Nanomagetismoriolespinal
 
Magnetisme a petita escala
Magnetisme a petita escalaMagnetisme a petita escala
Magnetisme a petita escalaoriolespinal
 
Quantum Nanomagnetism
Quantum  NanomagnetismQuantum  Nanomagnetism
Quantum Nanomagnetismoriolespinal
 
Experimentos a bajas temperaturas...
Experimentos a bajas temperaturas...Experimentos a bajas temperaturas...
Experimentos a bajas temperaturas...oriolespinal
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejadaoriolespinal
 
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I SuperconductorQuantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductororiolespinal
 

More from oriolespinal (13)

V1 cuerpo humano y mecanica cuantica-1
V1 cuerpo humano y mecanica cuantica-1V1 cuerpo humano y mecanica cuantica-1
V1 cuerpo humano y mecanica cuantica-1
 
Art and medicine_columbia_2013
Art and medicine_columbia_2013Art and medicine_columbia_2013
Art and medicine_columbia_2013
 
Zi22 zilk0022
Zi22 zilk0022Zi22 zilk0022
Zi22 zilk0022
 
Zi22 zilk0022
Zi22 zilk0022Zi22 zilk0022
Zi22 zilk0022
 
Invited talksjanuary2013
Invited talksjanuary2013Invited talksjanuary2013
Invited talksjanuary2013
 
Cuerpo humano y mecanica cuantica
Cuerpo humano y mecanica cuanticaCuerpo humano y mecanica cuantica
Cuerpo humano y mecanica cuantica
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Quantum Nanomagetism
Quantum NanomagetismQuantum Nanomagetism
Quantum Nanomagetism
 
Magnetisme a petita escala
Magnetisme a petita escalaMagnetisme a petita escala
Magnetisme a petita escala
 
Quantum Nanomagnetism
Quantum  NanomagnetismQuantum  Nanomagnetism
Quantum Nanomagnetism
 
Experimentos a bajas temperaturas...
Experimentos a bajas temperaturas...Experimentos a bajas temperaturas...
Experimentos a bajas temperaturas...
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
 
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I SuperconductorQuantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
Quantum Tunneling of Normal-Superconductor Interfaces in a Type-I Superconductor
 

Recently uploaded

Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 

Recently uploaded (20)

Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 

Magnetic Deflagration Controlled by Surface Acoustic Waves

  • 1. J. Tejada, A. Hernández-Mínguez, F. Macià, S. Vélez and J.M. Hernández Grup de Magnetisme, Dept. de Física Fonamental, Universitat de Barcelona V. Moschalkov, J. Vanacken, Wim Decelle INPAC, Katholieke Universiteit Leuven P. V. Santos Paul-Drude-Institut für Festkörperelektronik, Berlin
  • 2. Introduction  What is a deflagration?  From Magnetisation jumps to magnetic deflagration.  Molecule Magnets  Manganese Oxides  Intermetallic Compounds
  • 3. Deflagration is a technical term describing subsonic combustion that usually propagates through thermal conductivity Energy released  E Ignition (barrier overcoming)  U Thermal diffusion  Metastable U Characteristic length of propagation  State  There are two characteristic timescales which are important here. The first is the thermal diffusion E timescale is approximately equal to Estable State  The second is the burning timescale that strongly decreases with temperature, typically as  When the burning timescale greater exceed the difussion timescale, the huge amount of energy realized by the metastable spins could lead to the ocurrence of a Magnetic Deflagration.
  • 4. Manganites Field jumps 1999 Deflagration-like description 2007 T = 3 K 1.0 Molecule magnets Field jumps 1999 M/M S 0.5 Deflagration-like description 2005 0.0 0 10 20 30 H (kOe) T = 1.8 K 1.0 Intermetallic compounds 0.5 Field jumps 2002 s Deflagration-like description 2010 M/M 0.0 -0.5 1.0 -1.0 0.8 -30 -20 -10 0 10 20 30 0.6 H (kOe) M/M S 0.4 0.2 0.0 0 5 10 15 20 25 30 35 40 45 50
  • 5. H ΔE Magnetic deflagration: Propagation of a front of reversing spins at constant velocity along the crystal A. Hernández-Mínguez et. al. PRL 95 17205 (2005) Problem: Sweeping H we cannot control the magnetic Y. Suzuki et. al. PRL 95, 147201 (2005) field at which it occurs.
  • 6. Surface acoustic waves (SAWs) are low frequency acoustic phonons (below 1 GHz) The coaxial cable is connected to an Agilent microwave signal generator. The change of the magnetic moment is registered by a rf-SQUID magnetometer. Hz coaxial cable IDT Mn12 crystal c-axis conducting LiNbO3 stripes substrate
  • 7. • The speed of the avalanche increases with the applied magnetic field. • At resonant fields the • The ignition time shows peaks at velocity of the flame front the magnetic fields at which spin presents peaks. levels become resonant.
  • 8. • Space is needed to place piezoelectric devices and ignite avalanches •NO cavities can be used Optical detection Frequency 150-350 GHz f 9,8= 269 GHz H=12 kOe 9.1 0.0 9.0 -0.1 8.9 -0.2 (arb.u.) (arb.u.) 8.8 -0.3 8.7 E6,5 -0.4 Sign. Ampl. Sign. Ampl. 8.6 E-10,-9 E7,6 -0.5 8.5 E8,7 -0.6 8.4 E9,8 -0.7 8.3 -0.8 0 10 20 30 40 50 60 H (kOe) F. Macià et. al. PRB 77 020403R (2008)
  • 9. • Surface Acoustic Waves allow us t (ms) t (ms) to control magnetic avalanches 0 50 100 150 0 25 50 (arb. units) (arb. units) 0.00 0.0 Sign. Ampl. -0.05 Sign. Ampl. -0.1 (a) (b) -0.10 0.0 0.0 (arb. units) (c) (d) (arb. u.) -0.2 Sign. Ampl. Avalanche Sign. Ampl. -0.4 SAW pulse Avalanche SAW pulse -0.4 0 50 100 150 0 50 100 t (ms) t (ms)
  • 10. Very fast sweeping magnetic fields Decelle et al. Phys. Rev. Lett. 102, 027203 (2009)
  • 11. Superradiance During the second of two field pulses with the same polarity. During the second of two field pulses with opposite polarity. 0 -1 V ( mV ) -2 -3 -4 100 200 300 400 500 600 700 800 time ( s ) H-M. et al. Europhys. Lett. 69, 270 (2005)
  • 12. • Is the described deflagration-like process in molecular clusters unique? • Among the variety of compounds presenting steps in the magnetisation curves… are there also spatial propagation involved? PS Manganites The fragility of the state shown here implies that several perturbations besides magnetic fields should induce dramatic changes, including pressure, strain, (La,Pr,Ca)-MnO3 and electric fields. Antiferromagnetic and Isolating Ferromagnetic and Conductor
  • 13. T=3K x = M / Mferro 1.0 x, fraction of the ferromagnetic phase S M/M 0.5 1.00 0.0 0 10 20 30 FM-CD final state H (kOe) 0.75 s 2.0 M/M 0.50 12 3.0 K 3.5 K 1.5 0.25 4.0 K AF-CO initial state 4.5 K M (emu) 1.0 5.0 K 36 0.00 H a (kOe) 32 0 20 40 0.5 H (kOe) 28 0.0 0 50 100 1 xa (%) 0 10 20 30 40 50 H (kOe)
  • 14.  Commercial MPMS SQUID magnetometer  Three pick-up coils detect the magnetic flux variation.  Recorded by an oscilloscope 1.0 1.2 z = 4.0 cm z 0.8 cm = 5.5 z = 6.5 cm 1.0 coil A V coil / V coil,max 0.6 coil B V coil / V coil,max 0.8 coil C Sample 0.4 0.6 T = 3.5 K 0.4 0.2 0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 t (ms)  Evidence of propagation0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.0 0.4 0.6 0.8 t (ms) t (ms) t (ms)  Avalanche begins at the centre of the sample
  • 15. T=3K Energy Barrier 1.0 AF S M/M 0.5 ? Energy released 0.0 FM 0 10 H (kOe) 20 30 Energy released 1.00 12 10 0.75 Thermal diffusion 8 M (arb. u.) T (K) 1.00 0.50 0.95 6 M (arb. u.) 0.25 Ignition 0.01 0.00 4 0.00 (barrier overcoming) 80 90 100 t (ms) 110 120 2 0 200 400 600 t (ms)
  • 16. Initial FM fraction dependence H=28 kOe 2.0 12 600 (a) 1.5 400 M (emu) t ig (ms) 1.0 36 200 H a (kOe) 32 0.5 28 0.0 0 50 100 0 1 xa (%) 0 10 20 30 40 50 H (kOe) 12 (b) 10 t d (ms) The larger the initial FM phase 8 concentration, the slower the deflagration velocity 6 20 25 30 35 40 45 50 55 x (%) Macià et al. Phys. Rev. B 76, 174424 (2007)
  • 17. T=2K T=3K T=4K As the field increases the energy 600 (a) barriers decrease and 500 t ig (ms) deflagration becomes faster. 200 100 0 1.00 27.0 kOe 20 60 (b) 0.98 27.5 kOe x (%) 40 28.0 kOe 20 M (arb.u.) 28.5 kOe 15 28 30 32 0.96 29.0 kOe t d (ms) H (kOe) 29.5 kOe 30.0 kOe 10 0.01 30.5 kOe 31.0 kOe 0.00 5 28 30 32 0 100 200 300 400 t (ms) H (kOe)
  • 18. • Initially sample is in the AF-CO phase. • As field increases FM-CD phase begins to grow. • At some time a conducting path appears. • It is not necessarily associated with the magnetic avalanche O.C. 1.0 0.8 100 T=3 K 0.6 M/M resistance (k ) 10 magnetisation s 0.4 1 0.2 0.1 0.0 0 10 20 30 H (kOe)
  • 19. Initial FM-CD phase concentration smaller than 10% AF-CO 8 (insulator) OC 750 O.C. T = 2.5 K 6 R (k ) 800 500 400 R (k ) T (K) 0 FM-CD -200 0 200 400 4 250 t ( s) (metallic) 0 2 -2 -1 0 1 t (s) Macià et al. Phys. Rev. B 77, 012403 (2008)
  • 20. Initial FM-CD phase concentration larger than 10% Zero field cooled Field cooled H = 15 kOe 140 6 T=3K 120 T=3K 100 5 80 R (k ) 4 O.C. 60 6 1000 40 3 20 R (k ) T (K) 100 4 0 2 10 0 10 20 30 40 50 t (s) 1 2 -6 -4 -2 0 2 t (s)
  • 21. Coax. Resonator f 3 GHz, Q 100 3.92 0.30 0.4 S 11 (a. u.) 0.25 3.88 S 11 (arb. units) f (GHz) 0.20 0 1 2 0.2 t (ms) f=3.88 GHz 3.84 T=3 K 0.0 3.80 10 20 30 H (kOe) Macià et al. Europhys. Lett. 82, 37005 (2008)
  • 22. Outline: Magnetic and crystallographic Properties • At low temperatures, the field driven AFM FM transition undergoes via an avalanche due to the arrest • In the ac plane the spins are aligned of kinetics of the crystal structure. ferromagnetically • Two different crystal structures: AFM or FM coupling between the spin layers along the b axis Dynamical study  It is a magnetic deflagration?
  • 23. • Hability to control the initial FM phase (x) cooling the sample at different HFC • Avalanches appear at HFC smaller than HFC ~11.0 kOe (x~0.5) T=2K Velez et al. Phys. Rev. B 81, 064437 (2010)
  • 24. •Set-up •Ignited avalanche by sending a heat pulse: •For spontaneous avalanches: The signals detected with the two coils are almost simultaneous: The Nucleation should take place at the middle of the sample •For ignited avalanches, a time diference is observed between the coils: A phase deflagration front is generated an it propagates through the sample changing the magneto- crystallographic structure of the system: Magnetostructural Deflagration.
  • 25. Magnetic time-evolution of the sample for different ignition fields (Hign) at T=2 K The quasi-linear time evolution of M(t) indicates that the phase-front traverses the sample at a constant speed.
  • 26. T = 2K Hign = 22 KOe T = 2K Speed of the flame vs Hign at two dif. HFC Speed of the flame vs HFC  different xini • The velocity increases with the Hign • The velocity decreases with the initial FM phase x: losses of the flammability of the system
  • 27. U E U 200 K 1 4 D 5 (1 x) E Tf 30 K AFM 3k B D D 120 K ΔE FM 4 1 Tf exp U / k BT f 10 s 1 v k BT f / U Tf Tf 2 0 . 1m / s 5 2 Tf 10 m /s
  • 28. b Hz c coaxial 2.45 mm cable Gd5Ge4 SC 1.04 mm IDT a 1.17 mm Conducting LiNbO3 stripes substrate c a 1.07 mm 2.40 mm b 1.29 mm Magnetic deflagrations have been induced by means of controlled SAW pulses. They were induced on Gd5Ge4 Single Crystals with diferent geometries and under different sample configurations. The magnetic time evolution of the sample was taken directly from the SQUID-voltmeter
  • 29. Same direction of applied magnetic field + different sample configuration: Anisotropic Magnetic Deflagration attributed to the Anisotropy of the Thermal Difussivity 30 S1 H b, SAW a S1 H b, SAW c S2 H a, SAW c S2 H a, SAW b 20 Due to the sample’s td~L/ vp(ms) geometry, L is approx the same for all cases 10 0 16 18 20 22 24 26 28 30 Hig (kOe) Clear different speed for different crystallographic direction of the applied magnetic field + Correlation with the magnetic anisotropy of the sample: Anisotropic Magnetic Deflagration attributed to the Magnetic Anisotropy Velez et al. Submitted
  • 30. Magnetic deflagration is observed in several magnetic materials.  Molecular magnets:  New methods to study spin dynamics (SAW+HFEPR) and to correlate experiments with theory.  Radiation emission associated to deflagration and detonation (SUPERRADIANCE  TASER)  Manganites:  Colossal MagnetoResistance associated to the phase deflagration  Intermetallic compounds  Fast Magnetostructural transitions  Anisotropic Magnetic Deflagration: Magnetic and Thermal diffusivity