SlideShare a Scribd company logo
1 of 23
Download to read offline
Odd & Even Functions
(1) Even   f  x   f  x 
Odd & Even Functions
(1) Even        f  x   f  x 
           a                 a

            f  x dx  2 f  x dx
           a                0
Odd & Even Functions
(1) Even                       f  x   f  x 
                          a                 a

                           f  x dx  2 f  x dx
                          a                0
                            ca                     ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                    c
Odd & Even Functions
(1) Even                       f  x   f  x 
                          a                 a

                           f  x dx  2 f  x dx
                          a                0
                            ca                      ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                     c

(2) Odd                       f  x    f  x 
Odd & Even Functions
(1) Even                        f  x   f  x 
                           a                 a

                           f  x dx  2 f  x dx
                          a                 0
                            ca                       ca
 NOTE: horizontal shift
                                f  x  c dx  2  f  x  c dx
                               ca                     c

(2) Odd                        f  x    f  x 
                          a

                           f  x dx  0
                          a
Odd & Even Functions
(1) Even                        f  x   f  x 
                          a                  a

                           f  x dx  2 f  x dx
                          a                 0
                            ca                      ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                     c

(2) Odd                       f  x    f  x 
                          a

                           f  x dx  0
                          a
                          ca
 NOTE: horizontal shift
                            f  x  c dx  0
                          ca
Odd & Even Functions
(1) Even                        f  x   f  x 
                          a                  a

                           f  x dx  2 f  x dx
                          a                 0
                            ca                      ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                     c

(2) Odd                       f  x    f  x 
                          a

                           f  x dx  0
                          a
                          ca
 NOTE: horizontal shift
                            f  x  c dx  0
                          ca
                    a                a

                    f  x dx   f a  x dx
(3)
                    0                0
a

          f a  x dx
Proof:
         0
a

          f a  x dx
Proof:                     u ax
         0                du  dx
a

          f a  x dx
Proof:                     u ax
         0                du  dx
                          x  0, u  a
                          x  a, u  0
a

          f a  x dx
Proof:                     u ax
         0   0            du  dx
            f u du   x  0, u  a
             a
                          x  a, u  0
a

          f a  x dx
Proof:                     u ax
         0       0        du  dx
            f u du   x  0, u  a
                 a
             a            x  a, u  0
           f u du
             0
a

          f a  x dx
Proof:                     u ax
         0       0        du  dx
            f u du   x  0, u  a
                 a
             a            x  a, u  0
           f u du
             0
             a
           f  x dx
             0
a

          f a  x dx
Proof:                                     u ax
         0       0                        du  dx
            f u du                   x  0, u  a
                 a
             a                            x  a, u  0
           f u du
             0
             a
           f  x dx
             0




                            odd  odd  even
                           odd  even  odd
                          even  even  even
1
e.g. i   sin 3 xdx
        1
1
e.g. i   sin 3 xdx   odd function 3  odd function
        1
1
e.g. i   sin 3 xdx  0   odd function 3  odd function
       1
1
e.g. i   sin 3 xdx  0   odd function 3  odd function
       1



       1
   ii  x 2 1  xdx
       0
1
e.g. i   sin 3 xdx  0       odd function 3  odd function
       1



       1                    1

   ii  x 1  xdx   1  x  xdx
            2                   2

       0                    0
1
e.g. i   sin 3 xdx  0            odd function 3  odd function
       1



       1                     1

   ii  x 1  xdx   1  x  xdx
            2                        2

       0                     0
                             1
                                 1      3   5
                                               
                               x  2 x  x dx
                                
                                   2     2   2

                              0               
1
e.g. i   sin 3 xdx  0             odd function 3  odd function
       1



       1                     1

   ii  x 1  xdx   1  x  xdx
            2                         2

       0                     0
                             1
                                 1      3   5
                                               
                               x  2 x  x dx
                                
                                   2     2   2

                              0               
                                                7 1
                             2   3
                                  4   2  5
                             x  x  x 
                                  2       2     2

                             3   5   7 0
1
e.g. i   sin 3 xdx  0             odd function 3  odd function
       1



       1                     1

   ii  x 1  xdx   1  x  xdx
            2                         2

       0                     0
                             1
                                 1      3   5
                                               
                               x  2 x  x dx
                                
                                   2     2   2

                              0               
                                                7 1
                             2   3
                                  4   2  5
                             x  x  x 
                                  2       2     2

                             3   5   7 0

                              2 4 2
                               0
                              3 5 7
                              16
                            
                              105
Exercise 2I; 1 bdf, 2 ace, 3

    Exercise 2J; 42, 44

     The 100 (not 78)

More Related Content

What's hot

Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Qwerty1293
 
Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8Quyen Le
 
12X1 T02 01 differentiating exponentials
12X1 T02 01 differentiating exponentials12X1 T02 01 differentiating exponentials
12X1 T02 01 differentiating exponentialsNigel Simmons
 

What's hot (6)

Formulas para derivacion
Formulas para derivacionFormulas para derivacion
Formulas para derivacion
 
Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)
 
Ex algebra (13)
Ex algebra  (13)Ex algebra  (13)
Ex algebra (13)
 
Operadores teoria
Operadores teoriaOperadores teoria
Operadores teoria
 
Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8
 
12X1 T02 01 differentiating exponentials
12X1 T02 01 differentiating exponentials12X1 T02 01 differentiating exponentials
12X1 T02 01 differentiating exponentials
 

Viewers also liked

11X1 T05 06 line through point of intersection (2010)
11X1 T05 06 line through point of intersection (2010)11X1 T05 06 line through point of intersection (2010)
11X1 T05 06 line through point of intersection (2010)Nigel Simmons
 
X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)Nigel Simmons
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)Nigel Simmons
 
X2 t04 03 t results (2012)
X2 t04 03 t results (2012)X2 t04 03 t results (2012)
X2 t04 03 t results (2012)Nigel Simmons
 
X2 t04 07 quadratic denominators (2012)
X2 t04 07 quadratic denominators (2012)X2 t04 07 quadratic denominators (2012)
X2 t04 07 quadratic denominators (2012)Nigel Simmons
 
X2 t04 05 trig substitutions (2012)
X2 t04 05 trig substitutions (2012)X2 t04 05 trig substitutions (2012)
X2 t04 05 trig substitutions (2012)Nigel Simmons
 
11X1 T05 05 perpendicular distance (2010)
11X1 T05 05 perpendicular distance (2010)11X1 T05 05 perpendicular distance (2010)
11X1 T05 05 perpendicular distance (2010)Nigel Simmons
 
X2 t04 04 reduction formula (2012)
X2 t04 04 reduction formula (2012)X2 t04 04 reduction formula (2012)
X2 t04 04 reduction formula (2012)Nigel Simmons
 
12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)Nigel Simmons
 
X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)Nigel Simmons
 
X2 T04 01 integration by parts (12)
X2 T04 01 integration by parts (12)X2 T04 01 integration by parts (12)
X2 T04 01 integration by parts (12)Nigel Simmons
 
11 x1 t05 03 equation of lines (2012)
11 x1 t05 03 equation of lines (2012)11 x1 t05 03 equation of lines (2012)
11 x1 t05 03 equation of lines (2012)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 

Viewers also liked (14)

11X1 T05 06 line through point of intersection (2010)
11X1 T05 06 line through point of intersection (2010)11X1 T05 06 line through point of intersection (2010)
11X1 T05 06 line through point of intersection (2010)
 
X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)X2 t04 02 trig integrals (2012)
X2 t04 02 trig integrals (2012)
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
 
X2 t04 03 t results (2012)
X2 t04 03 t results (2012)X2 t04 03 t results (2012)
X2 t04 03 t results (2012)
 
X2 t04 07 quadratic denominators (2012)
X2 t04 07 quadratic denominators (2012)X2 t04 07 quadratic denominators (2012)
X2 t04 07 quadratic denominators (2012)
 
X2 t04 05 trig substitutions (2012)
X2 t04 05 trig substitutions (2012)X2 t04 05 trig substitutions (2012)
X2 t04 05 trig substitutions (2012)
 
11X1 T05 05 perpendicular distance (2010)
11X1 T05 05 perpendicular distance (2010)11X1 T05 05 perpendicular distance (2010)
11X1 T05 05 perpendicular distance (2010)
 
X2 t04 04 reduction formula (2012)
X2 t04 04 reduction formula (2012)X2 t04 04 reduction formula (2012)
X2 t04 04 reduction formula (2012)
 
12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)
 
X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)X2 t04 06 partial fractions (2012)
X2 t04 06 partial fractions (2012)
 
X2 T04 01 integration by parts (12)
X2 T04 01 integration by parts (12)X2 T04 01 integration by parts (12)
X2 T04 01 integration by parts (12)
 
Linear Function
Linear FunctionLinear Function
Linear Function
 
11 x1 t05 03 equation of lines (2012)
11 x1 t05 03 equation of lines (2012)11 x1 t05 03 equation of lines (2012)
11 x1 t05 03 equation of lines (2012)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Seth-Godin-–-Tribus-PDFDrive-.pdf en espaoñ
Seth-Godin-–-Tribus-PDFDrive-.pdf en espaoñSeth-Godin-–-Tribus-PDFDrive-.pdf en espaoñ
Seth-Godin-–-Tribus-PDFDrive-.pdf en espaoñcarrenoelio8
 
French Revolution (फ्रेंच राज्यक्रांती)
French Revolution  (फ्रेंच राज्यक्रांती)French Revolution  (फ्रेंच राज्यक्रांती)
French Revolution (फ्रेंच राज्यक्रांती)Shankar Aware
 
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...Nguyen Thanh Tu Collection
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...Nguyen Thanh Tu Collection
 

Recently uploaded (6)

Seth-Godin-–-Tribus-PDFDrive-.pdf en espaoñ
Seth-Godin-–-Tribus-PDFDrive-.pdf en espaoñSeth-Godin-–-Tribus-PDFDrive-.pdf en espaoñ
Seth-Godin-–-Tribus-PDFDrive-.pdf en espaoñ
 
French Revolution (फ्रेंच राज्यक्रांती)
French Revolution  (फ्रेंच राज्यक्रांती)French Revolution  (फ्रेंच राज्यक्रांती)
French Revolution (फ्रेंच राज्यक्रांती)
 
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
TUYỂN TẬP 25 ĐỀ THI HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2023 CÓ ĐÁP ÁN (SƯU...
 
LAR MARIA MÃE DE ÁFRICA .
LAR MARIA MÃE DE ÁFRICA                 .LAR MARIA MÃE DE ÁFRICA                 .
LAR MARIA MÃE DE ÁFRICA .
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
TUYỂN TẬP 20 ĐỀ THI KHẢO SÁT HỌC SINH GIỎI MÔN TIẾNG ANH LỚP 6 NĂM 2020 (CÓ Đ...
 

X2 t04 08 odd & even functions (2012)

  • 1. Odd & Even Functions (1) Even f  x   f  x 
  • 2. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0
  • 3. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c
  • 4. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x 
  • 5. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x  a  f  x dx  0 a
  • 6. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x  a  f  x dx  0 a ca NOTE: horizontal shift  f  x  c dx  0 ca
  • 7. Odd & Even Functions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x  a  f  x dx  0 a ca NOTE: horizontal shift  f  x  c dx  0 ca a a  f  x dx   f a  x dx (3) 0 0
  • 8. a  f a  x dx Proof: 0
  • 9. a  f a  x dx Proof: u ax 0 du  dx
  • 10. a  f a  x dx Proof: u ax 0 du  dx x  0, u  a x  a, u  0
  • 11. a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a x  a, u  0
  • 12. a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a a x  a, u  0   f u du 0
  • 13. a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a a x  a, u  0   f u du 0 a   f  x dx 0
  • 14. a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a a x  a, u  0   f u du 0 a   f  x dx 0 odd  odd  even odd  even  odd even  even  even
  • 15. 1 e.g. i   sin 3 xdx 1
  • 16. 1 e.g. i   sin 3 xdx odd function 3  odd function 1
  • 17. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1
  • 18. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 ii  x 2 1  xdx 0
  • 19. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 1  xdx   1  x  xdx 2 2 0 0
  • 20. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 1  xdx   1  x  xdx 2 2 0 0 1  1 3 5     x  2 x  x dx  2 2 2 0 
  • 21. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 1  xdx   1  x  xdx 2 2 0 0 1  1 3 5     x  2 x  x dx  2 2 2 0  7 1 2 3 4 2  5  x  x  x  2 2 2 3 5 7 0
  • 22. 1 e.g. i   sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 1  xdx   1  x  xdx 2 2 0 0 1  1 3 5     x  2 x  x dx  2 2 2 0  7 1 2 3 4 2  5  x  x  x  2 2 2 3 5 7 0 2 4 2    0 3 5 7 16  105
  • 23. Exercise 2I; 1 bdf, 2 ace, 3 Exercise 2J; 42, 44 The 100 (not 78)